Evaluation of New Folate Receptor-mediated Mitoxantrone Targeting Liposomes In Vitro


Cite item

Full Text

Abstract

Background::Ligand-mediated liposomes targeting folate receptors (FRs) that are overexpressed on the surface of tumor cells may improve drug delivery. However, the properties of liposomes also affect cellular uptake and drug release.

Objective::Mitoxantrone folate targeted liposomes were prepared to increase the enrichment of drugs in tumor cells and improve the therapeutic index of drugs by changing the route of drug administration.

Methods::Liposomes were prepared with optimized formulation, including mitoxantrone folatetargeted small unilamellar liposome (MIT-FSL), mitoxantrone folate-free small unilamellar liposome (MIT-SL), mitoxantrone folate-targeted large unilamellar liposome (MIT-FLL), mitoxantrone folate-free large unilamellar liposomes (MIT-LL). Cells with different levels of folate alpha receptor (FRα) expression were used to study the differences in the enrichment of liposomes, the killing effect on tumor cells, and their ability to overcome multidrug resistance.

Results::The results of the drug release experiment showed that the particle size of liposomes affected their release behavior. Large single-compartment liposomes could hardly be effectively released, while small single-compartment liposomes could be effectively released, MIT-FSL vs MIT-FLL and MIT-SL vs MIT-LL had significant differences in the drug release rate (P(<0.0005). Cell uptake experiments results indicated that the ability of liposomes to enter folic acid receptor-expressing tumor cells could be improved after modification of folic acid ligands on the surface of liposomes and it was related to the expression of folate receptors on the cell surface. There were significant differences in cell uptake rates (p(<0.0005) for cells with high FRα expression (SPC-A-1 cells), when MIT-FSL vs MIT-SL and MIT-FLL vs MIT-LL. For cells with low FRα expression (MCF-7 cells), their cell uptake rates were still different (p(<0.05), but less pronounced than in SPC-A-1 cells. The results of the cell inhibition experiment suggest that MIT-FLL and MIT-LL had no inhibitory effect on cells, MIT-FSL had a significant inhibitory effect on cells and its IC50 value was calculated to be 4502.4 ng/mL, MIT-SL also had an inhibitory effect, and its IC50 value was 25092.1 ng/mL, there was a statistical difference (p(<0.05), MIT-FSL had a higher inhibitory rate than MIT-SL at the same drug concentration. Afterward, we did an inhibitory experiment of different MIT-loaded nanoparticles on MCF-7 cells compared to the drug-resistant cells (ADR), Observing the cell growth inhibition curve, both MIT-FSL and MIT-SL can inhibit the growth of MCF-7 and MCF-7/ADR cells. For MCF- 7 cells, at the same concentration, there is little difference between the inhibition rate of MITFSL and MIT-SL, but for MCF-7/ADR, the inhibition rate of MIT-FSL was significantly higher than that of MIT-SL at the same concentration (P(<0.05).

Conclusion::By modifying folic acid on the surface of liposomes, tumor cells with high expression of folic acid receptors can be effectively targeted, thereby increasing the enrichment of intracellular drugs and improving efficacy. It can also change the delivery pathway, increase the amount of drug entering resistant tumor cells, and overcome resistance.

About the authors

Tianjiao Wen

Department of pharmacy, the Fourth Hospital of Hebei Medical University

Email: info@benthamscience.net

Yuan Gao

Department of Pharmacy, the Third Hospital of Hebei Medical University

Email: info@benthamscience.net

Ying Zheng

Department of Pharmacy, the Fourth Hospital of Hebei Medical University

Email: info@benthamscience.net

Bin Shan

Department of Pharmacy, the Fourth Hospital of Hebei Medical University

Email: info@benthamscience.net

Cong Song

Department of Pharmacy, the Fourth Hospital of Hebei Medical University

Email: info@benthamscience.net

Yahui An

Department of Pharmacy, the Fourth Hospital of Hebei Medical University

Email: info@benthamscience.net

Jingxia Cui

School of Pharmacy, Hebei Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Norimura, S.; Kontani, K.; Morishita, A.; Kubo, T.; Murazawa, C.; Hashimoto, S.; Hashimoto, N.; Kenzaki, K.; Miura, K.; Yokomise, H. Utility of prophylactic administration of pegfilgrastim in breast cancer chemotherapy. Gan To Kagaku Ryoho, 2018, 45(12), 1729-1732. PMID: 30587729
  2. Ackova, D.G.; Smilkov, K.; Bosnakovski, D. Contemporary formulations for drug delivery of anticancer bioactive compounds. Recent Patents Anticancer Drug Discov., 2019, 14(1), 19-31. doi: 10.2174/1574892814666190111104834 PMID: 30636616
  3. Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1) doi: 10.1515/dmpt-2018-0032 PMID: 30707682
  4. Shen, Q.; Shen, Y.; Jin, F.; Du, Y.; Ying, X. Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. J. Liposome Res., 2020, 30(1), 12-20. doi: 10.1080/08982104.2019.1579838 PMID: 30741058
  5. Wang, R.; Sun, Y.; He, W.; Chen, Y.; Lu, E.; Sha, X. Pulmonary surfactants affinity Pluronic-hybridized liposomes enhance the treatment of drug-resistant lung cancer. Int. J. Pharm., 2021, 607, 120973. doi: 10.1016/j.ijpharm.2021.120973 PMID: 34391853
  6. Mitoxantrone. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, 2012.
  7. Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 2020, 10(17), 7921-7924. doi: 10.7150/thno.49577 PMID: 32685029
  8. Elnakat, H.; Ratnam, M. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1067-1084. doi: 10.1016/j.addr.2004.01.001 PMID: 15094207
  9. Martín-Sabroso, C.; Torres-Suárez, A.I.; Alonso-González, M.; Fernández-Carballido, A.; Fraguas-Sánchez, A.I. Active targeted nanoformulations via folate receptors: State of the art and future perspectives. Pharmaceutics, 2021, 14(1), 14. doi: 10.3390/pharmaceutics14010014 PMID: 35056911
  10. Wang, T.; Feng, H.; Ma, Y.; Li, W.; Ma, K. Cell surface markers and their targeted drugs in breast cancer. Curr. Protein Pept. Sci., 2022, 23(5), 335-346. doi: 10.2174/1389203723666220530102720 PMID: 35638536
  11. de Oliveira Silva, J.; Fernandes, R.S.; Ramos Oda, C.M.; Ferreira, T.H.; Machado Botelho, A.F.; Martins Melo, M.; de Miranda, M.C.; Assis Gomes, D.; Dantas Cassali, G.; Townsend, D.M.; Rubello, D.; Oliveira, M.C.; de Barros, A.L.B. Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomed. Pharmacother., 2019, 118, 109323. doi: 10.1016/j.biopha.2019.109323 PMID: 31400669
  12. Druckmann, S.; Gabizon, A.; Barenholz, Y. Separation of liposome-associated doxorubicin from non-liposome-associated doxorubicin in human plasma: Implications for pharmacokinetic studies. Biochim. Biophys. Acta Biomembr., 1989, 980(3), 381-384. doi: 10.1016/0005-2736(89)90329-5 PMID: 2653445
  13. Liu, X.; Tang, S.; Liu, Y.; Hu, D.; Zhang, C.; Zhang, W.; Chai, Y.; Tang, X.; Jiang, L.; Gong, C.; Peng, H.; Li, M. Targeting regulation of dually modified liposomes by polyethylene glycol length of vesicle surface. J. Biomed. Nanotechnol., 2019, 15(12), 2413-2427. doi: 10.1166/jbn.2019.2855 PMID: 31748021
  14. Mukherjee, D.; Paul, D.; Sarker, S.; Hasan, M.N.; Ghosh, R.; Prasad, S.E.; Vemula, P.K.; Das, R.; Adhikary, A.; Pal, S.K.; Rakshit, T. Polyethylene glycol-mediated fusion of extracellular vesicles with cationic liposomes for the design of hybrid delivery systems. ACS Appl. Bio Mater., 2021, 4(12), 8259-8266. doi: 10.1021/acsabm.1c00804 PMID: 35005950
  15. Kenworthy, A.K.; Hristova, K.; Needham, D.; McIntosh, T.J. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys. J., 1995, 68(5), 1921-1936. doi: 10.1016/S0006-3495(95)80369-3 PMID: 7612834
  16. Huang, Z.; Wu, L.; Wang, W.; Wang, W.; Fu, F.; Zhang, X.; Huang, Y.; Pan, X.; Wu, C. Major difference in particle size, minor difference in release profile: A case study of solid lipid nanoparticles. Pharm. Dev. Technol., 2021, 26(10), 1110-1119. doi: 10.1080/10837450.2021.1998114 PMID: 34694203
  17. Nwahara, N.; Abrahams, G.; Prinsloo, E.; Nyokong, T. Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagn. Photodyn. Ther., 2021, 36, 102527.
  18. Christensen, E.; Henriksen, J.R.; Jørgensen, J.T.; Amitay, Y.; Schmeeda, H.; Gabizon, A.A.; Kjær, A.; Andresen, T.L.; Hansen, A.E. Folate receptor targeting of radiolabeled liposomes reduces intratumoral liposome accumulation in human KB carcinoma xenografts. Int. J. Nanomedicine, 2018, 13, 7647-7656. doi: 10.2147/IJN.S182579 PMID: 30538449
  19. Andar, A.U.; Hood, R.R.; Vreeland, W.N.; DeVoe, D.L.; Swaan, P.W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res., 2014, 31(2), 401-413. doi: 10.1007/s11095-013-1171-8 PMID: 24092051
  20. Chen, J.; Yu, X.; Liu, X.; Ni, J.; Yang, G.; Zhang, K. Advances in nanobiotechnology-propelled multidrug resistance circumvention of cancer. Nanoscale, 2022, 14(36), 12984-12998. doi: 10.1039/D2NR04418H PMID: 36056710
  21. Silva, V.; Gil-Martins, E.; Silva, B.; Rocha-Pereira, C.; Sousa, M.E.; Remião, F.; Silva, R. Xanthones as P-glycoprotein modulators and their impact on drug bioavailability. Expert Opin. Drug Metab. Toxicol., 2021, 17(4), 441-482. doi: 10.1080/17425255.2021.1861247 PMID: 33283552
  22. Karthika, C.; Sureshkumar, R.; Zehravi, M.; Akter, R.; Ali, F.; Ramproshad, S.; Mondal, B.; Tagde, P.; Ahmed, Z.; Khan, F.S.; Rahman, M.H.; Cavalu, S. Multidrug resistance of cancer cells and the vital role of p-glycoprotein. Life, 2022, 12(6), 897. doi: 10.3390/life12060897 PMID: 35743927
  23. Tan, H.; Zhang, M.; Wang, Y.; Timashev, P.; Zhang, Y.; Zhang, S.; Liang, X.J.; Li, F. Innovative nanochemotherapy for overcoming cancer multidrug resistance. Nanotechnology, 2022, 33(5), 052001. doi: 10.1088/1361-6528/ac3355 PMID: 34700307
  24. An, D.; Yu, X.; Jiang, L.; Wang, R.; He, P.; Chen, N.; Guo, X.; Li, X.; Feng, M. Reversal of multidrug resistance by apolipoprotein a1-modified doxorubicin liposome for breast cancer treatment. Molecules, 2021, 26(5), 1280. doi: 10.3390/molecules26051280 PMID: 33652957
  25. Gazzano, E.; Rolando, B.; Chegaev, K.; Salaroglio, I.C.; Kopecka, J.; Pedrini, I.; Saponara, S.; Sorge, M.; Buondonno, I.; Stella, B.; Marengo, A.; Valoti, M.; Brancaccio, M.; Fruttero, R.; Gasco, A.; Arpicco, S.; Riganti, C. Folate-targeted liposomal nitrooxy-doxorubicin: An effective tool against P-glycoprotein-positive and folate receptor-positive tumors. J. Control. Release, 2018, 270, 37-52. doi: 10.1016/j.jconrel.2017.11.042 PMID: 29191785

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers