Drug Repositioning Using Computer-aided Drug Design (CADD)
- Authors: Roy A.1, Nagaprasad N.2, Aruna M.3, Tesfaye J.4, Badassa B.5, Krishnaraj R.6, Rawat S.7, Subramaniam K.8, Subramanian S.9, Subbarayan S.10, Dhanabalan S.11, Chidambaram S.K.12, Stalin B.13
-
Affiliations:
- Department of Biotechnology, School of Engineering & Technology,, Sharda University
- Department of Mechanical Engineering, ULTRA College of Engineering and Technology
- College of Engineering and Computing, Al Ghurair University, Academic Cit
- College of Natural and Computational Science, Department of Physics, Dambi Dollo University,
- Department of Mechanical Engineering,, Dambi Dollo University
- Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University
- School of Life Sciences, Jaipur National University
- Department of Civil Engineering, KPR Institute of Engineering and Technology
- Department of Sciences, Amrita School of Engineering
- Department of Civil Engineering,, National Institute of Technology
- Department of Mechanical Engineering, M. Kumarasamy College of Engineering
- Centre for Water Resources, Department of Civil Engineering, Anna University
- Department of Mechanical Engineering, Anna University
- Issue: Vol 25, No 3 (2024)
- Pages: 301-312
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644771
- DOI: https://doi.org/10.2174/1389201024666230821103601
- ID: 644771
Cite item
Full Text
Abstract
Drug repositioning is a method of using authorized drugs for other unusually complex diseases. Compared to new drug development, this method is fast, low in cost, and effective. Through the use of outstanding bioinformatics tools, such as computer-aided drug design (CADD), computer strategies play a vital role in the re-transformation of drugs. The use of CADD's special strategy for target-based drug reuse is the most promising method, and its realization rate is high. In this review article, we have particularly focused on understanding the various technologies of CADD and the use of computer-aided drug design for target-based drug reuse, taking COVID-19 and cancer as examples. Finally, it is concluded that CADD technology is accelerating the development of repurposed drugs due to its many advantages, and there are many facts to prove that the new ligand-targeting strategy is a beneficial method and that it will gain momentum with the development of technology.
About the authors
Arpita Roy
Department of Biotechnology, School of Engineering & Technology,, Sharda University
Email: info@benthamscience.net
Nagaraj Nagaprasad
Department of Mechanical Engineering, ULTRA College of Engineering and Technology
Email: info@benthamscience.net
Mahalingam Aruna
College of Engineering and Computing, Al Ghurair University, Academic Cit
Email: info@benthamscience.net
Jule Tesfaye
College of Natural and Computational Science, Department of Physics, Dambi Dollo University,
Email: info@benthamscience.net
Bayissa Badassa
Department of Mechanical Engineering,, Dambi Dollo University
Email: info@benthamscience.net
Ramaswamy Krishnaraj
Centre for Excellence-Indigenous Knowledge, Innovative Technology Transfer and Entrepreneurship, Dambi Dollo University
Author for correspondence.
Email: info@benthamscience.net
Sona Rawat
School of Life Sciences, Jaipur National University
Email: info@benthamscience.net
Kanmani Subramaniam
Department of Civil Engineering, KPR Institute of Engineering and Technology
Email: info@benthamscience.net
Selva Subramanian
Department of Sciences, Amrita School of Engineering
Email: info@benthamscience.net
Saravanan Subbarayan
Department of Civil Engineering,, National Institute of Technology
Email: info@benthamscience.net
Subramanian Dhanabalan
Department of Mechanical Engineering, M. Kumarasamy College of Engineering
Email: info@benthamscience.net
Sashik Kumar Chidambaram
Centre for Water Resources, Department of Civil Engineering, Anna University
Email: info@benthamscience.net
Balasubramaniam Stalin
Department of Mechanical Engineering, Anna University
Email: info@benthamscience.net
References
- Rester, U. From virtuality to reality-virtual screening in lead discovery and lead optimization: A medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel., 2008, 11(4), 559-568. PMID: 18600572
- Andrews, K.T.; Fisher, G.; Skinner-Adams, T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist., 2014, 4(2), 95-111. doi: 10.1016/j.ijpddr.2014.02.002 PMID: 25057459
- Parvathaneni, V.; Kulkarni, N.S.; Muth, A.; Gupta, V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today, 2019, 24(10), 2076-2085. doi: 10.1016/j.drudis.2019.06.014 PMID: 31238113
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem., 2021, 224, 113705. doi: 10.1016/j.ejmech.2021.113705 PMID: 34303871
- Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414. doi: 10.1093/nar/gks378 PMID: 22553363
- Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Res., 2007, 35(Database), D301-D303. doi: 10.1093/nar/gkl971 PMID: 17142228
- Schneider, G.; Geppert, T.; Hartenfeller, M.; Reisen, F.; Klenner, A.; Reutlinger, M.; Hähnke, V.; Hiss, J.A.; Zettl, H.; Keppner, S.; Spänkuch, B.; Schneider, P. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors. Future Med. Chem., 2011, 3(4), 415-424. doi: 10.4155/fmc.11.8 PMID: 21452978
- Johnson, D.K.; Karanicolas, J. Computational screening and design for compounds that disrupt protein-protein interactions. Curr. Top. Med. Chem., 2017, 17(23), 2703-2714. doi: 10.2174/1568026617666170508153904 PMID: 28482793
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949. doi: 10.1038/nrd1549 PMID: 15520816
- Dudley, J.T.; Deshpande, T.; Butte, A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform., 2011, 12(4), 303-311. doi: 10.1093/bib/bbr013 PMID: 21690101
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293. doi: 10.1038/s41586-020-2223-y PMID: 32272481
- Reichle, A. Evolution-adjusted Tumor Pathophysiology; Springer, 2013. doi: 10.1007/978-94-007-6866-6
- Pieper, U.; Webb, B.M.; Barkan, D.T.; Schneidman-Duhovny, D.; Schlessinger, A.; Braberg, H.; Yang, Z.; Meng, E.C.; Pettersen, E.F.; Huang, C.C.; Datta, R.S.; Sampathkumar, P.; Madhusudhan, M.S.; Sjölander, K.; Ferrin, T.E.; Burley, S.K.; Sali, A. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res., 2011, 39(Database), D465-D474. doi: 10.1093/nar/gkq1091 PMID: 21097780
- Sarvagalla, S.; Syed, S.B.; Coumar, M.S. An overview of computational methods, tools, servers, and databases for drug repurposing; Silico Drug Des, 2019, pp. 743-780. doi: 10.1016/B978-0-12-816125-8.00025-0
- Kazandjian, D.; Suzman, D.L.; Blumenthal, G.; Mushti, S.; He, K.; Libeg, M.; Keegan, P.; Pazdur, R. FDA approval summary: Nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist, 2016, 21(5), 634-642. doi: 10.1634/theoncologist.2015-0507 PMID: 26984449
- Wang, Z.; Lachmann, A.; Keenan, A.B.; Maayan, A. L1000FWD: Fireworks visualization of drug-induced transcriptomic signatures. Bioinformatics, 2018, 34(12), 2150-2152. doi: 10.1093/bioinformatics/bty060 PMID: 29420694
- Hood, L.E.; Omenn, G.S.; Moritz, R.L.; Aebersold, R.; Yamamoto, K.R.; Amos, M.; Hunter-Cevera, J.; Locascio, L. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences. Proteomics, 2012, 12(18), 2773-2783. doi: 10.1002/pmic.201270086 PMID: 22807061
- Talele, T.; Khedkar, S.; Rigby, A. Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141. doi: 10.2174/156802610790232251 PMID: 19929824
- Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644. doi: 10.1016/j.drudis.2013.11.005 PMID: 24239728
- Himmelstein, D.S.; Lizee, A.; Hessler, C.; Brueggeman, L.; Chen, S.L.; Hadley, D.; Green, A.; Khankhanian, P.; Baranzini, S.E. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife, 2017, 6, e26726. doi: 10.7554/eLife.26726 PMID: 28936969
- Spengler, D. Aurora-C-T191D is a hyperactive Aurora-C mutant. Cell Cycle, 2007, 6(14), 1803-1804. doi: 10.4161/cc.6.14.4479 PMID: 17637569
- Basak, S.C. Chemobioinformatics: The advancing frontier of computer-aided drug design in the post-genomic era. Curr. Computeraided Drug Des., 2012, 8(1), 1-2. doi: 10.2174/18756697MTEz9MjEaz PMID: 22320162
- Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: Enriched resource for facilitating bench-toclinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127. doi: 10.1093/nar/gkx1076 PMID: 29140520
- Ke, Y.Y.; Peng, T.T.; Yeh, T.K.; Huang, W.Z.; Chang, S.E.; Wu, S.H.; Hung, H.C.; Hsu, T.A.; Lee, S.J.; Song, J.S.; Lin, W.H.; Chiang, T.J.; Lin, J.H.; Sytwu, H.K.; Chen, C.T. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed. J., 2020, 43(4), 355-362. doi: 10.1016/j.bj.2020.05.001 PMID: 32426387
- Cai, R.; Zhang, Y.; Simmering, J.E.; Schultz, J.L.; Li, Y.; Fernandez-Carasa, I.; Consiglio, A.; Raya, A.; Polgreen, P.M.; Narayanan, N.S.; Yuan, Y.; Chen, Z.; Su, W.; Han, Y.; Zhao, C.; Gao, L.; Ji, X.; Welsh, M.J.; Liu, L. Enhancing glycolysis attenuates Parkinsons disease progression in models and clinical databases. J. Clin. Invest., 2019, 129(10), 4539-4549. doi: 10.1172/JCI129987 PMID: 31524631
- Wang, Y.; Chen, S.; Deng, N.; Wang, Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One, 2013, 8(11), e78518. doi: 10.1371/journal.pone.0078518 PMID: 24244318
- Jorgensen, W.L. Pulled from a proteins embrace. Nature, 2010, 466(7302), 42-43. doi: 10.1038/466042a PMID: 20596009
- Mullard, A. 2017 FDA drug approvals. Nat. Rev. Drug Discov., 2018, 17(2), 81-85. doi: 10.1038/nrd.2018.4 PMID: 29348678
- Quartuccio, S.M.; Schindler, K. Functions of Aurora kinase C in meiosis and cancer. Front. Cell Dev. Biol., 2015, 3, 50. doi: 10.3389/fcell.2015.00050 PMID: 26347867
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database), D198-D201. doi: 10.1093/nar/gkl999 PMID: 17145705
- Zhang, D.; Wu, K.; Zhang, X.; Deng, S.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158. doi: 10.1016/j.joim.2020.02.005 PMID: 32113846
- Schenone, M.; Dančík, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol., 2013, 9(4), 232-240. doi: 10.1038/nchembio.1199 PMID: 23508189
- Kumar, R.; Harilal, S.; Gupta, S.V.; Jose, J.; Thomas Parambi, D.G.; Uddin, M.S.; Shah, M.A.; Mathew, B. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur. J. Med. Chem., 2019, 182, 111602. doi: 10.1016/j.ejmech.2019.111602 PMID: 31421629
- Koes, D.R.; Dömling, A.; Camacho, C.J. AnchorQuery: Rapid online virtual screening for small-molecule protein-protein interaction inhibitors. Protein Sci., 2018, 27(1), 229-232. doi: 10.1002/pro.3303 PMID: 28921842
- Zhao, S.; Nishimura, T.; Chen, Y.; Azeloglu, E.U.; Gottesman, O.; Giannarelli, C. Systems pharmacology of adverse event mitigation by drug combinations. Sci. Transl. Med., 2013, 5(206), 206ra140. doi: 10.1126/scitranslmed.3006548
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250. doi: 10.1007/978-1-4939-2269-7_19 PMID: 25618350
- Firoz, A.D.; Rahman, M.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049. doi: 10.1038/s41598-021-83626-x
- Khan, J.; Khan, S.; Attaullah, S.; Ali, I.; Khan, S.N. Aurora kinase-C-T191D is constitutively active mutant. BMC Cell Biol., 2012, 13, 1-9.
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server), W407-W410. doi: 10.1093/nar/gkm290 PMID: 17517781
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
- Berman, H.; Westbrook, M.; Feng, Z.; Gilliland, G. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-42.
- Guilhot-Gaudeffroy, A.; Froidevaux, C.; Azé, J.; Bernauer, J. Protein-RNA complexes and efficient automatic docking: expanding RosettaDock possibilities. PLoS One, 2014, 9(9), e108928. doi: 10.1371/journal.pone.0108928 PMID: 25268579
- Iwakiri, J.; Hamada, M.; Asai, K.; Kameda, T. Improved accuracy in RNAProtein rigid body docking by incorporating force field for molecular dynamics simulation into the scoring function. J. Chem. Theory Comput., 2016, 12(9), 4688-4697. doi: 10.1021/acs.jctc.6b00254 PMID: 27494732
- Rose, P.W.; Beran, B.; Bi, C.; Bluhm, W.F.; Dimitropoulos, D.; Goodsell, D.S.; Prlic, A.; Quesada, M.; Quinn, G.B.; Westbrook, J.D.; Young, J.; Yukich, B.; Zardecki, C.; Berman, H.M.; Bourne, P.E. The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Res., 2011, 39(Database), D392-D401. doi: 10.1093/nar/gkq1021 PMID: 21036868
- Parisi, D.; Adasme, M.F.; Sveshnikova, A.; Bolz, S.N.; Moreau, Y.; Schroeder, M. Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs. Comput. Struct. Biotechnol. J., 2020, 18, 1043-1055. doi: 10.1016/j.csbj.2020.04.004 PMID: 32419905
- Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: A next-generation drug library and information re-source. Nat. Med., 2017, 23(4), 405-408. doi: 10.1038/nm.4306 PMID: 28388612
- Markley, J.L.; Ulrich, E.L.; Berman, H.M.; Henrick, K.; Nakamura, H.; Akutsu, H. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): New policies affecting biomolecular NMR depositions. J. Biomol. NMR, 2008, 40(3), 153-155. doi: 10.1007/s10858-008-9221-y PMID: 18288446
- Pérot, S.; Sperandio, O.; Miteva, M.A.; Camproux, A.C.; Villoutreix, B.O. Druggable pockets and binding site centric chemical space: A paradigm shift in drug discovery. Drug Discov. Today, 2010, 15(15-16), 656-667. doi: 10.1016/j.drudis.2010.05.015 PMID: 20685398
- Falchi, F.; Caporuscio, F.; Recanatini, M. Structure-based design of small-molecule proteinprotein interaction modulators: The story so far. Future Med. Chem., 2014, 6(3), 343-357. doi: 10.4155/fmc.13.204 PMID: 24575969
- Awasthi, M.; Singh, S.; Tiwari, S.; Pandey, V.P.; Dwivedi, U.N. Computational approaches for therapeutic application of natural products in Alzheimers disease; Comput Model Drugs Against Alzheimers Dis, 2018, pp. 483-511.
- Takian, A.; Raoofi, A.; Kazempour-Ardebili, S. COVID-19 battle during the toughest sanctions against Iran. Lancet, 2020, 395(10229), 1035-1036. doi: 10.1016/S0140-6736(20)30668-1 PMID: 32199073
- Yoo, M.; Shin, J.; Kim, J.; Ryall, K.A.; Lee, K.; Lee, S.; Jeon, M.; Kang, J.; Tan, A.C. DSigDB: Drug signatures database for gene set analysis. Bioinformatics, 2015, 31(18), 3069-3071. doi: 10.1093/bioinformatics/btv313 PMID: 25990557
- Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M.; Sankaranarayanan, M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery. Eur. J. Med. Chem., 2020, 195, 112275. doi: 10.1016/j.ejmech.2020.112275 PMID: 32283298
- Janson, G.; Zhang, C.; Prado, M.G.; Paiardini, A. PyMod 2.0: Improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinformatics, 2017, 33(3), 444-446. doi: 10.1093/bioinformatics/btw638 PMID: 28158668
- Khan, J.; Ezan, F.; Crémet, J.Y.; Fautrel, A.; Gilot, D.; Lambert, M.; Benaud, C.; Troadec, M.B.; Prigent, C. Overexpression of active Aurora-C kinase results in cell transformation and tumour formation. PLoS One, 2011, 6(10), e26512. doi: 10.1371/journal.pone.0026512 PMID: 22046298
- Lindsay, M.A. Target discovery. Nat. Rev. Drug Discov., 2003, 2(10), 831-838. doi: 10.1038/nrd1202 PMID: 14526386
- Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L. DrugCentral: Online drug compendium. Nucleic Acids Res., 2017, 45(D1), D932-D939. PMID: 27789690
- Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1), W442-W448. doi: 10.1093/nar/gkw287 PMID: 27095195
- Simossis, V.A.; Heringa, J. PRALINE: A multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res., 2005, 33(Web Server), W289-W294. doi: 10.1093/nar/gki390 PMID: 15980472
- Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun., 2016, 7(1), 10331. doi: 10.1038/ncomms10331 PMID: 26831545
- Tang, Y.; Zhu, W.; Chen, K.; Jiang, H. New technologies in computer-aided drug design: Toward target identification and new chemical entity discovery. Drug Discov. Today. Technol., 2006, 3(3), 307-313. doi: 10.1016/j.ddtec.2006.09.004 PMID: 24980533
- Chen, V.B.; Arendall, W.B., III; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(1), 12-21. doi: 10.1107/S0907444909042073 PMID: 20057044
- Bartuzi, D.; Kaczor, A.; Targowska-Duda, K.; Matosiuk, D. Recent advances and applications of molecular docking to G protein-coupled receptors. Molecules, 2017, 22(2), 340. doi: 10.3390/molecules22020340 PMID: 28241450
- Krieger, E.; Joo, K.; Lee, J.; Lee, J.; Raman, S.; Thompson, J.; Tyka, M.; Baker, D.; Karplus, K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 2009, 77(Suppl. 9), 114-122. doi: 10.1002/prot.22570 PMID: 19768677
- Peng, C.; Chen, J.; Hu, P.; Wang, H. Molecular Adsorption Kinetics: Nonlinear entropyenthalpy loss quantified by constrained AIMD and insights into the adsorption-site determination on metal oxides. J. Phys. Chem. C, 2021, 125(20), 10974-10982. doi: 10.1021/acs.jpcc.1c02537
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(D1), D1100-D1107. doi: 10.1093/nar/gkr777 PMID: 21948594
- Takahashi, T.; Zhou, S.Y.; Nakamura, K.; Tanino, R.; Furuichi, A.; Kido, M.; Kawasaki, Y.; Noguchi, K.; Seto, H.; Kurachi, M.; Suzuki, M. A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(8), 1957-1964. doi: 10.1016/j.pnpbp.2011.07.009 PMID: 21820482
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci., 2018, 27(1), 135-145. doi: 10.1002/pro.3290 PMID: 28884485
- Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839. doi: 10.1016/j.drudis.2011.07.006 PMID: 21810482
- Lavecchia, A.; Giovanni, C. Virtual screening strategies in drug discovery: A critical review. Curr. Med. Chem., 2013, 20(23), 2839-2860. doi: 10.2174/09298673113209990001 PMID: 23651302
- Andreeva, A.; Howorth, D.; Chandonia, J-M.; Brenner, S.E.; Hubbard, T.J.P.; Chothia, C.; Murzin, A.G. Data growth and its impact on the SCOP database: New developments. Nucleic Acids Res., 2008, 36(Database issue), D419-D425. PMID: 18000004
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Shekhar, C. In silico pharmacology: Computer-aided methods could transform drug development. Chem. Biol., 2008, 15(5), 413-4. doi: 10.1016/j.chembiol.2008.05.001
- Paez Espinosa, E.V.; Murad, J.P.; Khasawneh, F.T. Aspirin: Pharmacology and clinical applications. Thrombosis, 2012, 2012, 173124. doi: 10.1155/2012/173124
- Vyas, V.K.; Ukawala, R.D.; Chintha, C.; Ghate, M. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17. doi: 10.4103/0250-474X.102537 PMID: 23204616
- Guo, Z.; Li, B.; Cheng, L.T.; Zhou, S.; McCammon, J.A.; Che, J. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. J. Chem. Theory Comput., 2015, 11(2), 753-765. doi: 10.1021/ct500867u PMID: 25941465
- Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res., 2010, 38(Suppl. 1), D355-D360. doi: 10.1093/nar/gkp896 PMID: 19880382
- Hu, B.; Lill, M.A. PharmDock: A pharmacophore-based docking program. J. Cheminform., 2014, 6(1), 14. doi: 10.1186/1758-2946-6-14 PMID: 24739488
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; Lahr, D.L.; Hirschman, J.E.; Liu, Z.; Donahue, M.; Julian, B.; Khan, M.; Wadden, D.; Smith, I.C.; Lam, D.; Liberzon, A.; Toder, C.; Bagul, M.; Orzechowski, M.; Enache, O.M.; Piccioni, F.; Johnson, S.A.; Lyons, N.J.; Berger, A.H.; Shamji, A.F.; Brooks, A.N.; Vrcic, A.; Flynn, C.; Rosains, J.; Takeda, D.Y.; Hu, R.; Davison, D.; Lamb, J.; Ardlie, K.; Hogstrom, L.; Greenside, P.; Gray, N.S.; Clemons, P.A.; Silver, S.; Wu, X.; Zhao, W.N.; Read-Button, W.; Wu, X.; Haggarty, S.J.; Ronco, L.V.; Boehm, J.S.; Schreiber, S.L.; Doench, J.G.; Bittker, J.A.; Root, D.E.; Wong, B.; Golub, T.R. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 2017, 171(6), 1437-1452.e17. doi: 10.1016/j.cell.2017.10.049 PMID: 29195078
- Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2014, 66(1), 334-395. doi: 10.1124/pr.112.007336 PMID: 24381236
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
- Sawyer, J.S.; Anderson, B.D.; Beight, D.W.; Campbell, R.M.; Jones, M.L.; Herron, D.K.; Lampe, J.W.; McCowan, J.R.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.R.; Vieth, M.; Weir, L.C.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J. Med. Chem., 2003, 46(19), 3953-3956. doi: 10.1021/jm0205705 PMID: 12954047
- Siramshetty, V.B.; Nickel, J.; Omieczynski, C.; Gohlke, B.O.; Drwal, M.N.; Preissner, R. WITHDRAWNa resource for withdrawn and discontinued drugs. Nucleic Acids Res., 2016, 44(D1), D1080-D1086. doi: 10.1093/nar/gkv1192 PMID: 26553801
- Allen, W.J.; Balius, T.E.; Mukherjee, S.; Brozell, S.R.; Moustakas, D.T.; Lang, P.T.; Case, D.A.; Kuntz, I.D.; Rizzo, R.C. DOCK 6: Impact of new features and current docking performance. J. Comput. Chem., 2015, 36(15), 1132-1156. doi: 10.1002/jcc.23905 PMID: 25914306
- Bhattacharya, D.; Nowotny, J.; Cao, R.; Cheng, J. 3Drefine: An interactive web server for efficient protein structure refinement. Nucleic Acids Res., 2016, 44(W1), W406-W409. doi: 10.1093/nar/gkw336 PMID: 27131371
- Corona virus SARS-CoV-2 disease COVID-19: infection, prevention and clinical advances of the prospective chemical drug therapeutics. Chem. Biol. Lett., 2020, 7, 63-72.
- Hamada, A.; Nauertz, A. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot., 2016, 79(6), 1001-12. doi: 10.4315/0362-028X.JFP-15-593
- Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115. doi: 10.2174/156802610790232260 PMID: 19929826
- UniProt. The universal protein knowledgebase. Nucleic Acids Res., 2018, 46(5), 2699. doi: 10.1093/nar/gky092 PMID: 29425356
- Tsou, J.H.; Chang, K.C.; Chang-Liao, P.Y.; Yang, S.T.; Lee, C.T.; Chen, Y.P.; Lee, Y.C.; Lin, B.W.; Lee, J.C.; Shen, M.R.; Chuang, C.K.; Chang, W.C.; Wang, J.M.; Hung, L.Y. Aberrantly expressed AURKC enhances the transformation and tumourigenicity of epithelial cells. J. Pathol., 2011, 225(2), 243-254. doi: 10.1002/path.2934 PMID: 21710690
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformat., 2016, 54(1), 6.1-37. doi: 10.1002/cpbi.3 PMID: 27322406
- Vasaikar, S.; Bhatia, P.; Bhatia, P.; Chu Yaiw, K. Complementary approaches to existing target based drug discovery for identifying novel drug targets. Biomedicines, 2016, 4(4), 27. doi: 10.3390/biomedicines4040027 PMID: 28536394
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; Schwede, T. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014, 42(W1), W252-W258. doi: 10.1093/nar/gku340 PMID: 24782522
- Abdolmaleki, A.; Ghasemi, F.; Ghasemi, J.B. Computer-aided drug design to explore cyclodextrin therapeutics and biomedical applications. Chem. Biol. Drug Des., 2017, 89(2), 257-268. doi: 10.1111/cbdd.12825 PMID: 28205401
- Gutmanas, A.; Alhroub, Y.; Battle, G.M.; Berrisford, J.M.; Bochet, E.; Conroy, M.J.; Dana, J.M.; Fernandez Montecelo, M.A.; van Ginkel, G.; Gore, S.P.; Haslam, P.; Hatherley, R.; Hendrickx, P.M.S.; Hirshberg, M.; Lagerstedt, I.; Mir, S.; Mukhopadhyay, A.; Oldfield, T.J.; Patwardhan, A.; Rinaldi, L.; Sahni, G.; Sanz-García, E.; Sen, S.; Slowley, R.A.; Velankar, S.; Wainwright, M.E.; Kleywegt, G.J. PDBe: Protein data bank in Europe. Nucleic Acids Res., 2014, 42(D1), D285-D291. doi: 10.1093/nar/gkt1180 PMID: 24288376
- Barradas-Bautista, D.; Rosell, M.; Pallara, C.; Fernández-Recio, J. Structural prediction of protein--protein interactions by docking: Application to biomedical problems. Adv. Protein Chem. Struct. Biol., 2018, 110, 203-249. doi: 10.1016/bs.apcsb.2017.06.003 PMID: 29412997
- Choi, S.; Choi, K.Y. Screening-based approaches to identify small molecules that inhibit proteinprotein interactions. Expert Opin. Drug Discov., 2017, 12(3), 293-303. doi: 10.1080/17460441.2017.1280456 PMID: 28067063
- Kinjo, A.R.; Suzuki, H.; Yamashita, R.; Ikegawa, Y.; Kudou, T.; Igarashi, R.; Kengaku, Y.; Cho, H.; Standley, D.M.; Nakagawa, A.; Nakamura, H. Protein Data Bank Japan (PDBj): Maintaining a structural data archive and resource description framework format. Nucleic Acids Res., 2012, 40(D1), D453-D460. doi: 10.1093/nar/gkr811 PMID: 21976737
- Chu, C.M.; Cheng, V.C.C.; Hung, I.F.N.; Wong, M.M.L.; Chan, K.H.; Chan, K.S.; Kao, R.Y.; Poon, L.L.; Wong, C.L.; Guan, Y.; Peiris, J.S.; Yuen, K.Y. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax, 2004, 59(3), 252-256. doi: 10.1136/thorax.2003.012658 PMID: 14985565
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res., 2007, 35(Database), D61-D65. doi: 10.1093/nar/gkl842 PMID: 17130148
- Swamidass, S.J. Mining small-molecule screens to repurpose drugs. Brief. Bioinform., 2011, 12(4), 327-335. doi: 10.1093/bib/bbr028 PMID: 21715466
- Ooms, F. Molecular modeling and computer aided drug design. Examples of their applications in medicinal chemistry. Curr. Med. Chem., 2000, 7(2), 141-158. doi: 10.2174/0929867003375317 PMID: 10637360
- Kimura, M.; Matsuda, Y.; Yoshioka, T.; Okano, Y. Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J. Biol. Chem., 1999, 274(11), 7334-7340. doi: 10.1074/jbc.274.11.7334 PMID: 10066797
- Pirhadi, S.; Shiri, F.; Ghasemi, J.B. Methods and applications of structure based pharmacophores in drug discovery. Curr. Top. Med. Chem., 2013, 13(9), 1036-1047. doi: 10.2174/1568026611313090006 PMID: 23651482
- Gopalakrishnan, K.; Sowmiya, G.; Sheik, S.S.; Sekar, K. Ramachandran plot on the web (2.0). Protein Pept. Lett., 2007, 14(7), 669-671. doi: 10.2174/092986607781483912 PMID: 17897092
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447. doi: 10.1021/ct700301q PMID: 26620784
- Zhu, M.; Gao, L.; Li, X.; Liu, Z.; Xu, C.; Yan, Y.; Walker, E.; Jiang, W.; Su, B.; Chen, X.; Lin, H. The analysis of the drugtargets based on the topological properties in the human proteinprotein interaction network. J. Drug Target., 2009, 17(7), 524-532. doi: 10.1080/10611860903046610 PMID: 19530902
- Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663. doi: 10.7150/ijbs.9224 PMID: 25013375
- Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182. doi: 10.1021/ci049714+ PMID: 15667143
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683. doi: 10.1038/nrd1468 PMID: 15286734
- Di Tommaso, P.; Moretti, S.; Xenarios, I.; Orobitg, M.; Montanyola, A.; Chang, J.M.; Taly, J.F.; Notredame, C. T-Coffee: A web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res., 2011, 39(Suppl. 1), W13-W17. doi: 10.1093/nar/gkr245 PMID: 21558174
- Foroutan, M.; Fatemi, S.M.; Esmaeilian, F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur. Phys. J. E, 2017, 40(2), 19. doi: 10.1140/epje/i2017-11507-7 PMID: 28229319
- Ma, H.; Zhao, H. Drug target inference through pathway analysis of genomics data. Adv. Drug Deliv. Rev., 2013, 65(7), 966-972. doi: 10.1016/j.addr.2012.12.004 PMID: 23369829
- Kim, H.S. Drug repositioning: Exploring new indications for existing drug-disease relationships. Endocrinol. Metab., 2022, 37(1), 62-64. doi: 10.3803/EnM.2022.1403 PMID: 35255602
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
- Younes, N.; Al-Sadeq, D.W. AL-Jighefee, H.; Younes, S.; Al-Jamal, O.; Daas, H.I.; Yassine, H.M.; Nasrallah, G.K. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses, 2020, 12(6), 582. doi: 10.3390/v12060582 PMID: 32466458
Supplementary files
