Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review


Cite item

Full Text

Abstract

:Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.

About the authors

Sonia Chauhan

Pharmacy Institute, Noida Institute of Engineering and Technology (Pharmacy Institute)

Email: info@benthamscience.net

Sakshi Sharma

Pharmacy Institute, Noida Institute of Engineering and Technology (Pharmacy Institute)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Hussain, S.; Liufang, H.; Shah, S.M.; Ali, F.; Khan, S.A.; Shah, F.A.; Li, J.B.; Li, S. Cytotoxic effects of extracts and isolated compounds from Ifloga spicata (forssk.) sch. bip against HepG-2 cancer cell line: Supported by ADMET analysis and molecular docking. Front. Pharmacol., 2022, 13, 986456. doi: 10.3389/fphar.2022.986456 PMID: 36160390
  2. Hossain, M.S.; Kader, M.A.; Goh, K.W.; Islam, M.; Khan, M.S.; Rashid, M.H.A.; Der Jiun Ooi, H.D.M.; Coutinho, Y.M.A.W. Herb and spices in colorectal cancer prevention and treatment: A narrative review. Front. Pharmacol., 2022, 13, 865801.
  3. Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772. doi: 10.2147/CIA.S158513 PMID: 29731617
  4. Su, W.; Liu, H.; Jiang, Y.; Li, S.; Jin, Y.; Yan, C.; Chen, H. Correlation between depression and quality of life in patients with Parkinson’s disease. Clin. Neurol. Neurosurg., 2021, 202, 106523. doi: 10.1016/j.clineuro.2021.106523 PMID: 33581615
  5. Carethers, J.M. Racial and ethnic disparities in colorectal cancer incidence and mortality. Adv. Cancer Res., 2021, 151, 197-229. doi: 10.1016/bs.acr.2021.02.007 PMID: 34148614
  6. Song, M.; Hu, F.B.; Spiegelman, D. Adherence to healthy lifestyle and risk of colorectal cancer in a prospective cohort of women. Gastroenterology, 2021, 160(4), 1031-1043.e2. doi: 10.1053/j.gastro.2020.11.054 PMID: 33096098
  7. Lee, J.K.; Jensen, C.D.; Levin, T.R.; Doubeni, C.A.; Zauber, A.G.; Chubak, J.; Kamineni, A.S.; Schottinger, J.E.; Ghai, N.R.; Udaltsova, N.; Zhao, W.K.; Fireman, B.H.; Quesenberry, C.P.; Orav, E.J.; Skinner, C.S.; Halm, E.A.; Corley, D.A. Long-term risk of colorectal cancer and related death after adenoma removal in a large, community-based population. Gastroenterology, 2020, 158(4), 884-894.e5. doi: 10.1053/j.gastro.2019.09.039 PMID: 31589872
  8. Lucafò, M.; Curci, D.; Franzin, M.; Decorti, G.; Stocco, G. Inflammatory bowel disease and risk of colorectal cancer: An overview from pathophysiology to pharmacological prevention. Front. Pharmacol., 2021, 12, 772101. doi: 10.3389/fphar.2021.772101 PMID: 34744751
  9. Lemoine, L.; Sugarbaker, P.; Van der Speeten, K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J. Gastroenterol., 2016, 22(34), 7692-7707. doi: 10.3748/wjg.v22.i34.7692 PMID: 27678351
  10. Pashirzad, M.; Sathyapalan, T.; Sheikh, A.; Kesharwani, P.; Sahebkar, A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem., 2022, 115, 19-29. doi: 10.1016/j.procbio.2022.02.006
  11. Franco, D.L.; Leighton, J.A.; Gurudu, S.R. Approach to incomplete colonoscopy: New techniques and technologies. Gastroenterol. Hepatol., 2017, 13(8), 476-483. PMID: 28867979
  12. Lin, X.; Kapoor, A.; Gu, Y.; Chow, M.; Xu, H.; Major, P.; Tang, D. Assessment of biochemical recurrence of prostate cancer (Review). Int. J. Oncol., 2019, 55(6), 1194-1212. doi: 10.3892/ijo.2019.4893 PMID: 31638194
  13. Chen, K.; Zhang, Y.; Qian, L.; Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol., 2021, 14(1), 116. doi: 10.1186/s13045-021-01127-w PMID: 34301278
  14. Zhang, E.; Hou, X.; Hou, B.; Zhang, M.; Song, Y. A risk prediction model of DNA methylation improves prognosis evaluation and indicates gene targets in prostate cancer. Epigenomics, 2020, 12(4), epi-2019-epi-0349. doi: 10.2217/epi-2019-0349 PMID: 32027524
  15. Dakubo, G.D.; Dakubo, G.D. Colorectal cancer biomarkers in circulation; Cancer Biomarkers in Body Fluids, 2017, pp. 213-246. doi: 10.1007/978-3-319-48360-3_7
  16. Nagaratnam, N.; Nagaratnam, K.; Cheuk, G.; Nagaratnam, N.; Nagaratnam, K.; Cheuk, G. Gastrointestinal system. In: Diseases in the Elderly; Springer: Cham, 2016; pp. 53-79. doi: 10.1007/978-3-319-25787-7_3
  17. Katsuya-Gaviria, K.; Paris, G.; Dendooven, T.; Bandyra, K.J. Bacterial RNA chaperones and chaperone-like riboregulators: Behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol., 2022, 19(1), 419-436. doi: 10.1080/15476286.2022.2048565 PMID: 35438047
  18. Caffo, M.; Barresi, V.; Caruso, G.; Cutugno, M.; La Fata, G.; Venza, M.; Alafaci, C.; Tomasello, F. Innovative therapeutic strategies in the treatment of brain metastases. Int. J. Mol. Sci., 2013, 14(1), 2135-2174. doi: 10.3390/ijms14012135 PMID: 23340652
  19. Mahmood, N.; Rabbani, S.A. DNA methylation readers and cancer: Mechanistic and therapeutic applications. Front. Oncol., 2019, 9, 489. doi: 10.3389/fonc.2019.00489 PMID: 31245293
  20. Leystra, A.A.; Clapper, M.L. Gut microbiota influences experimental outcomes in mouse models of colorectal cancer. Genes, 2019, 10(11), 900. doi: 10.3390/genes10110900 PMID: 31703321
  21. Kordbacheh, F.; Farah, C.S. Current and emerging molecular therapies for head and neck squamous cell carcinoma. Cancers, 2021, 13(21), 5471. doi: 10.3390/cancers13215471 PMID: 34771633
  22. Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507. doi: 10.1146/annurev-pathol-011110-130235 PMID: 21090969
  23. Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol., 2005, 23(3), 609-618. doi: 10.1200/JCO.2005.01.086 PMID: 15659508
  24. Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; Patterson, S.D.; Chang, D.D. Wild-Type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2023, 41(18), 3278-3286. doi: 10.1200/JCO.22.02758 PMID: 37315390
  25. Meyerhardt, J.A.; Mayer, R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med., 2005, 352(5), 476-487. doi: 10.1056/NEJMra040958 PMID: 15689586
  26. Groden, J.; Thliveris, A.; Samowitz, W.; Carlson, M.; Gelbert, L.; Albertsen, H.; Joslyn, G.; Stevens, J.; Spirio, L.; Robertson, M.; Sargeant, L.; Krapcho, K.; Wolff, E.; Burt, R.; Hughes, J.P.; Warrington, J.; McPherson, J.; Wasmuth, J.; Le Paslier, D.; Abderrahim, H.; Cohen, D.; Leppert, M.; White, R. Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 1991, 66(3), 589-600. doi: 10.1016/0092-8674(81)90021-0 PMID: 1651174
  27. Li, Z.; Chen, Y.; Wang, D.; Wang, G.; He, L.; Suo, J. Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J. Int. Med. Res., 2012, 40(4), 1589-1598. doi: 10.1177/147323001204000439 PMID: 22971512
  28. Cercek, A.; Braghiroli, M.I.; Chou, J.F.; Hechtman, J.F.; Kemeny, N.; Saltz, L.; Capanu, M.; Yaeger, R. Clinical features and outcomes of patients with colorectal cancers harboring NRAS mutations. Clin. Cancer Res., 2017, 23(16), 4753-4760. doi: 10.1158/1078-0432.CCR-17-0400 PMID: 28446505
  29. Hunter, J.C.; Manandhar, A.; Carrasco, M.A.; Gurbani, D.; Gondi, S.; Westover, K.D. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res., 2015, 13(9), 1325-1335. doi: 10.1158/1541-7786.MCR-15-0203 PMID: 26037647
  30. Janes, M.R.; Zhang, J.; Li, L.S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell, 2018, 172(3), 578-589.e17. doi: 10.1016/j.cell.2018.01.006 PMID: 29373830
  31. Patricelli, M.P.; Janes, M.R.; Li, L.S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329. doi: 10.1158/2159-8290.CD-15-1105 PMID: 26739882
  32. ClinicalTrials.gov is a place to learn about clinical studies from around the world. Available from: https://www.clinicaltrials.gov/
  33. Dashti, H.; Dehzangi, I.; Bayati, M.; Breen, J.; Beheshti, A.; Lovell, N.; Rabiee, H.R.; Alinejad-Rokny, H. Integrative analysis of mutated genes and mutational processes reveals novel mutational biomarkers in colorectal cancer. BMC Bioinformatics, 2022, 23(1), 138. doi: 10.1186/s12859-022-04652-8 PMID: 35439935
  34. Tanaka, N.; Mashima, T.; Mizutani, A.; Sato, A.; Aoyama, A.; Gong, B.; Yoshida, H.; Muramatsu, Y.; Nakata, K.; Matsuura, M.; Katayama, R.; Nagayama, S.; Fujita, N.; Sugimoto, Y.; Seimiya, H. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol. Cancer Ther., 2017, 16(4), 752-762. doi: 10.1158/1535-7163.MCT-16-0578 PMID: 28179481
  35. Zhang, L.; Shay, J.W. Multiple roles of APC and its therapeutic implications in colorectal cancer. J. Natl. Cancer Inst., 2017, 109(8), djw332. doi: 10.1093/jnci/djw332 PMID: 28423402
  36. Piñero, J.; Rodriguez Fraga, P.S.; Valls-Margarit, J.; Ronzano, F.; Accuosto, P.; Lambea Jane, R.; Sanz, F.; Furlong, L.I. Genomic and proteomic biomarker landscape in clinical trials. Comput. Struct. Biotechnol. J., 2023, 21, 2110-2118. doi: 10.1016/j.csbj.2023.03.014 PMID: 36968019
  37. Robeson, R.H.; Siegel, A.M.; Dunckley, T. Genomic and proteomic biomarker discovery in neurological disease. Biomark. Insights, 2008, 3, BMI.S596. doi: 10.4137/BMI.S596 PMID: 19578496
  38. Babic, T.; Dragicevic, S.; Miladinov, M.; Krivokapic, Z.; Nikolic, A. SMAD4–201 transcript as a putative biomarker in colorectal cancer. BMC Cancer, 2022, 22(1), 72. doi: 10.1186/s12885-022-09186-z PMID: 35034624
  39. Grady, W.M.; Pritchard, C.C. Molecular alterations and biomarkers in colorectal cancer. Toxicol. Pathol., 2014, 42(1), 124-139. doi: 10.1177/0192623313505155 PMID: 24178577
  40. Barras, D. BRAF mutation in colorectal cancer: An update: Supplementary issue: Biomarkers for colon cancer. Biomark. Cancer, 2015, 7s1, BIC.S25248. doi: 10.4137/BIC.S25248
  41. Garcia-Carbonero, N.; Martinez-Useros, J.; Li, W.; Orta, A.; Perez, N.; Carames, C.; Hernandez, T.; Moreno, I.; Serrano, G.; Garcia-Foncillas, J. KRAS and BRAF mutations as prognostic and predictive biomarkers for standard chemotherapy response in metastatic colorectal cancer: a single institutional study. Cells, 2020, 9(1), 219. doi: 10.3390/cells9010219 PMID: 31952366
  42. Trivieri, N.; Pracella, R.; Cariglia, M.G.; Panebianco, C.; Parrella, P.; Visioli, A.; Giani, F.; Soriano, A.A.; Barile, C.; Canistro, G.; Latiano, T.P.; Dimitri, L.; Bazzocchi, F.; Cassano, D.; Vescovi, A.L.; Pazienza, V.; Binda, E. BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. J. Exp. Clin. Cancer Res., 2020, 39(1), 285. doi: 10.1186/s13046-020-01801-w PMID: 33317591
  43. Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases, 2018, 6(15), 869-881. doi: 10.12998/wjcc.v6.i15.869 PMID: 30568941
  44. Ogino, S.; Lochhead, P.; Giovannucci, E.; Meyerhardt, J.A.; Fuchs, C.S.; Chan, A.T. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: Power and promise of molecular pathological epidemiology. Oncogene, 2014, 33(23), 2949-2955. doi: 10.1038/onc.2013.244 PMID: 23792451
  45. Wang, Q.; Shi, Y.; Zhou, K.; Wang, L.; Yan, Z.; Liu, Y.; Xu, L.; Zhao, S.; Chu, H.; Shi, T.; Ma, Q.; Bi, J. PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis., 2018, 9(7), 739. doi: 10.1038/s41419-018-0776-6 PMID: 29970892
  46. Karpinski, P.; Sierzega, M. DNA methylation biomarkers in colorectal cancer. Curr. Genomics, 2019, 20(3), 176-196.
  47. Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med., 2014, 370(14), 1287-1297. doi: 10.1056/NEJMoa1311194 PMID: 24645800
  48. Li, Y.; Song, L.; Gong, Y.; He, B. Detection of colorectal cancer by DNA methylation biomarker SEPT9: Past, present and future. Biomarkers Med., 2014, 8(5), 755-769. doi: 10.2217/bmm.14.8 PMID: 25123042
  49. Mo, S.; Wang, H.; Han, L.; Xiang, W.; Dai, W.; Zhao, P.; Pei, F.; Su, Z.; Ma, C.; Li, Q.; Wang, Z.; Cai, S.; Wang, H.; Liu, R.; Cai, G. Fecal multidimensional assay for non-invasive detection of colorectal cancer: Fecal immunochemical test, stool DNA mutation, methylation, and intestinal bacteria analysis. Front. Oncol., 2021, 11, 643136. doi: 10.3389/fonc.2021.643136 PMID: 33718241
  50. Luo, X. Metabolomics in colorectal cancer: A systematic review. J. Cancer, 2020, 11(15), 4290-4303.
  51. Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Han, Y.; Wang, X. Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett., 2014, 345(1), 17-20. doi: 10.1016/j.canlet.2013.11.011 PMID: 24333717
  52. Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol., 2018, 36(4), 316-320. doi: 10.1038/nbt.4101 PMID: 29621222
  53. Grassi, E.; Corbelli, J.; Papiani, G.; Barbera, M.A.; Gazzaneo, F.; Tamberi, S. Current therapeutic strategies in BRAF-mutant metastatic colorectal cancer. Front. Oncol., 2021, 11, 601722. doi: 10.3389/fonc.2021.601722 PMID: 34249672
  54. Zhang, J.; Roberts, T.M.; Shivdasani, R.A. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology, 2011, 141(1), 50-61. doi: 10.1053/j.gastro.2011.05.010 PMID: 21723986
  55. Franke, A.J.; Skelton, W.P., IV; Starr, J.S.; Parekh, H.; Lee, J.J.; Overman, M.J.; Allegra, C.; George, T.J. Immunotherapy for colorectal cancer: A review of current and novel therapeutic approaches. J. Natl. Cancer Inst., 2019, 111(11), 1131-1141. doi: 10.1093/jnci/djz093 PMID: 31322663
  56. Krasteva, N.; Georgieva, M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics, 2022, 14(6), 1213. doi: 10.3390/pharmaceutics14061213 PMID: 35745786
  57. Paschos, K.A.; Bird, N. Current diagnostic and therapeutic approaches for colorectal cancer liver metastasis. Hippokratia, 2008, 12(3), 132-138. PMID: 18923747
  58. Azoulay, D.; Castaing, D.; Smail, A.; Adam, R.; Cailliez, V.; Laurent, A.; Lemoine, A.; Bismuth, H. Resection of nonresectable liver metastases from colorectal cancer after percutaneous portal vein embolization. Ann. Surg., 2000, 231(4), 480-486. doi: 10.1097/00000658-200004000-00005 PMID: 10749607
  59. Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
  60. Heinemann, V.; Douillard, J.Y.; Ducreux, M.; Peeters, M. Targeted therapy in metastatic colorectal cancer – An example of personalised medicine in action. Cancer Treat. Rev., 2013, 39(6), 592-601. doi: 10.1016/j.ctrv.2012.12.011 PMID: 23375249
  61. Piawah, S.; Venook, A.P. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 2019, 125(23), 4139-4147. doi: 10.1002/cncr.32163 PMID: 31433498
  62. De Simone, V.; Pallone, F.; Monteleone, G.; Stolfi, C. Role of T H 17 cytokines in the control of colorectal cancer. OncoImmunology, 2013, 2(12), e26617. doi: 10.4161/onci.26617 PMID: 24498548
  63. Heriot, A.G.; Marriott, J.B.; Cookson, S.; Kumar, D.; Dalgleish, A.G. Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection. Br. J. Cancer, 2000, 82(5), 1009-1012. doi: 10.1054/bjoc.1999.1034 PMID: 10737381
  64. Lei, S.; Zhang, X.; Men, K.; Gao, Y.; Yang, X.; Wu, S.; Duan, X.; Wei, Y.; Tong, R. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Mol. Pharm., 2020, 17(9), 3378-3391. doi: 10.1021/acs.molpharmaceut.0c00451 PMID: 32787272
  65. Perez, R.; Wu, N.; Klipfel, A.A.; Beart, R.W. Jr A better cell cycle target for gene therapy of colorectal cancer. Cyclin G. J. Gastrointest. Surg., 2003, 7(7), 884-889. doi: 10.1007/s11605-003-0034-8 PMID: 14592662
  66. Zhao, S.; Chen, S.; Yang, X.; Shen, D.; Takano, Y.; Su, R.; Zheng, H. BTG1 might be employed as a biomarker for carcinogenesis and a target for gene therapy in colorectal cancers. Oncotarget, 2017, 8(5), 7502-7520. doi: 10.18632/oncotarget.10649 PMID: 27447746
  67. Chen, M.J.; Chung-Faye, G.A.; Searle, P.F.; Young, L.S.; Kerr, D.J. Gene therapy for colorectal cancer: Therapeutic potential. BioDrugs, 2001, 15(6), 357-367. doi: 10.2165/00063030-200115060-00002 PMID: 11520247
  68. Juat, D.J.; Hachey, S.J.; Billimek, J.; Del Rosario, M.P.; Nelson, E.L.; Hughes, C.C.W.; Zell, J.A. Adoptive t-cell therapy in advanced colorectal cancer: A systematic review. Oncologist, 2022, 27(3), 210-219. doi: 10.1093/oncolo/oyab038 PMID: 35274719
  69. Yang, D.; Wang, X.; Zhou, X.; Zhao, J.; Yang, H.; Wang, S.; Morse, M.A.; Wu, J.; Yuan, Y.; Li, S.; Hobeika, A.; Lyerly, H.K.; Ren, J. Blood microbiota diversity determines response of advanced colorectal cancer to chemotherapy combined with adoptive T cell immunotherapy. OncoImmunology, 2021, 10(1), 1976953. doi: 10.1080/2162402X.2021.1976953 PMID: 34595059
  70. Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev., 2020, 86, 102017. doi: 10.1016/j.ctrv.2020.102017 PMID: 32335505
  71. Li, Q.H.; Wang, Y.Z.; Tu, J.; Liu, C.W.; Yuan, Y.J.; Lin, R.; He, W.L.; Cai, S.R.; He, Y.L.; Ye, J.N. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol. Rep., 2020, 8(3), 179-191. doi: 10.1093/gastro/goaa026 PMID: 32665850
  72. Tampellini, M.; Sonetto, C.; Scagliotti, G.V. Novel anti-angiogenic therapeutic strategies in colorectal cancer. Expert Opin. Investig. Drugs, 2016, 25(5), 507-520. doi: 10.1517/13543784.2016.1161754 PMID: 26938715
  73. Miguez-Rey, E.; Choi, D.; Kim, S.; Yoon, S.; Săndulescu, O. Monoclonal antibody therapies in the management of SARS-CoV-2 infection. Expert Opin. Investig. Drugs, 2022, 31(1), 41-58. doi: 10.1080/13543784.2022.2030310 PMID: 35164631
  74. Pileri, P.; Campagnoli, S.; Grandi, A.; Parri, M.; De Camilli, E.; Song, C.; Ganfini, L.; Lacombe, A.; Naldi, I.; Sarmientos, P.; Cinti, C.; Jin, B.; Grandi, G.; Viale, G.; Terracciano, L.; Grifantini, R. FAT1: A potential target for monoclonal antibody therapy in colon cancer. Br. J. Cancer, 2016, 115(1), 40-51. doi: 10.1038/bjc.2016.145 PMID: 27328312
  75. Hwang, K.; Yoon, J.H.; Lee, J.H.; Lee, S. Recent advances in monoclonal antibody therapy for colorectal cancers. Biomedicines, 2021, 9(1), 39. doi: 10.3390/biomedicines9010039 PMID: 33466394
  76. Lange, A.; Prenzler, A.; Frank, M.; Kirstein, M.; Vogel, A.; von der Schulenburg, J.M. A systematic review of cost-effectiveness of monoclonal antibodies for metastatic colorectal cancer. Eur. J. Cancer, 2014, 50(1), 40-49. doi: 10.1016/j.ejca.2013.08.008 PMID: 24011538
  77. Dahiya, S.; Dahiya, R.; Hernández, E. Nanocarriers for anticancer drug targeting: Recent trends and challenges. Crit. Rev. Ther. Drug Carrier Syst., 2021, 38(6), 49-103.
  78. Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865. doi: 10.1007/s10311-018-00841-1
  79. Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26. doi: 10.1155/2019/3702518
  80. Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074. doi: 10.3762/bjnano.9.98 PMID: 29719757
  81. Pugazhendhi, A.; Vasantharaj, S.; Sathiyavimal, S.; Raja, R.K.; Karuppusamy, I.; Narayanan, M.; Kandasamy, S.; Brindhadevi, K. Organic and inorganic nanomaterial coatings for the prevention of microbial growth and infections on biotic and abiotic surfaces. Surf. Coat. Tech., 2021, 425, 127739. doi: 10.1016/j.surfcoat.2021.127739
  82. Iranpour, S.; Bahrami, A.R.; Saljooghi, A.S.; Matin, M.M. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord. Chem. Rev., 2021, 442, 213949. doi: 10.1016/j.ccr.2021.213949
  83. Francés-Soriano, L.; González-Béjar, M.; Pérez-Prieto, J. Synergistic effects in organic-coated upconversion nanoparticles.Upconverting Nanomaterials; CRC Press, 2016, pp. 125-162. doi: 10.1201/9781315371535-6
  84. Locatelli, E.; Franchini, M.C. Polymeric nanoparticles: Description, synthesis and applications. Isotopes in Nanoparticles: Fundamentals and Applications 2016, 113, 1-258.
  85. Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials , 2020, 10(7), 1403. doi: 10.3390/nano10071403 PMID: 32707641
  86. Kasi, P.B.; Mallela, V.R.; Ambrozkiewicz, F.; Trailin, A.; Liška, V.; Hemminki, K. Theranostics nanomedicine applications for colorectal cancer and metastasis: Recent advances. Int. J. Mol. Sci., 2023, 24(9), 7922. doi: 10.3390/ijms24097922 PMID: 37175627
  87. Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784. doi: 10.1016/j.msec.2017.06.004 PMID: 28866227
  88. Prabha, S. Inorganic nanocarriers: A promising platform for drug delivery in cancer therapy. Inorg. Chem. Front., 2017, 4(1), 18-45.
  89. Zhang, X. Inorganic nanocarriers for cancer imaging, therapy, and theranostics. Small, 2019, 15(45), 1903762.
  90. Wang, Y. Inorganic nanocarriers for cancer therapy: Current progress, challenges, and prospects. Chem. Soc. Rev., 2019, 48(15), 4007-4035.
  91. Ma, L. Inorganic nanocarriers for drug delivery: Current status, challenges, and prospects. Acta Pharm. Sin. B, 2021, 11(4), 891-911.
  92. Hossen, S. Inorganic nanomaterials for cancer therapy. J. Control. Release, 2019, 304, 165-182.
  93. Yang, K. Carbon-based nanomaterials in cancer therapy: Recent advances, challenges, and prospects. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6520-6539.
  94. Chen, Y. Carbon-based nanomaterials for cancer therapy. Front Chem., 2020, 8, 614.
  95. Gomes, A. Carbon-based nanomaterials for cancer therapy and diagnosis: Promises and challenges. Bioengineering, 2021, 8(4), 46. PMID: 33920285
  96. Guo, W. Carbon-based nanomaterials for cancer theranostics. Small Methods, 2020, 4(7), 1900726.
  97. Saleem, J.; Wang, L.; Chen, C. Carbon‐based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20), 1800525. doi: 10.1002/adhm.201800525 PMID: 30073803
  98. Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol., 2009, 5(5), 445-455. doi: 10.1166/jbn.2009.1038 PMID: 20201417
  99. Ibharm, S.F.; Ismail, N.I.; Jusoh, N. Preparation and evaluation of folic acid-tpgs polymeric mi-celle as a quercetin anticancer drug carrier. 2021IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), Yogyakarta, Indonesia20-21 October 2021, pp. 1-6.
  100. Al Sabbagh, C.; Seguin, J.; Agapova, E.; Kramerich, D.; Boudy, V.; Mignet, N. Thermosensitive hydrogels for local delivery of 5-fluorouracil as neoadjuvant or adjuvant therapy in colorectal cancer. Eur. J. Pharm. Biopharm., 2020, 157, 154-164. doi: 10.1016/j.ejpb.2020.10.011 PMID: 33222768
  101. Shad, P.M.; Karizi, S.Z.; Javan, R.S.; Mirzaie, A.; Noorbazargan, H.; Akbarzadeh, I.; Rezaie, H. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol. In Vitro, 2020, 65, 104756. doi: 10.1016/j.tiv.2019.104756 PMID: 31884114
  102. Gugulothu, D.; Kulkarni, A.; Patravale, V.; Dandekar, P. pH-sensitive nanoparticles of curcumin-celecoxib combination: evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci., 2014, 103(2), 687-696. doi: 10.1002/jps.23828 PMID: 24375287
  103. Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7724-7733. doi: 10.1039/C5TB01245G PMID: 26617985
  104. Niebel, W.; Walkenbach, K.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J. Control. Release, 2012, 160(3), 659-665. doi: 10.1016/j.jconrel.2012.03.004 PMID: 22445727
  105. Tummala, S.; Satish Kumar, M.N.; Prakash, A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J., 2015, 23(3), 308-314. doi: 10.1016/j.jsps.2014.11.010 PMID: 26106279
  106. Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res., 2018, 10(8), 2306-2323. PMID: 30210672
  107. Raj, P.M.; Raj, R.; Kaul, A.; Mishra, A.K.; Ram, A. Biodistribution and targeting potential assessment of mucoadhesive chitosan nanoparticles designed for ulcerative colitis via scintigraphy. RSC Advances, 2018, 8(37), 20809-20821. doi: 10.1039/C8RA01898G PMID: 35542340
  108. Jain, A.; Jain, P.; Soni, P. Design and characterization of silver nanoparticles of differ-ent species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). In: J Gastrointest Cancer; , 2022; 54, pp. (1)90-95. doi: 10.1007/s12029-021-00788-7
  109. Pandey, A.N.; Rajpoot, K.; Jain, S.K. Using 5-fluorouracil-encored plga nanoparticles for the treatment of colorectal cancer: The in-vitro characterization and cytotoxicity studies. Nanomed. J., 2020, 7, 211-224.
  110. Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine, 2019, 20, 102013. doi: 10.1016/j.nano.2019.04.016 PMID: 31103736
  111. El-Gogary, R.I.; Nasr, M.; Rahsed, L.A.; Hamzawy, M.A. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci., 2022, 298, 120500. doi: 10.1016/j.lfs.2022.120500 PMID: 35341825
  112. Shahraki, N.; Mehrabian, A.; Amiri-Darban, S.; Moosavian, S.A.; Jaafari, M.R. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf. B Biointerfaces, 2021, 200, 111589. doi: 10.1016/j.colsurfb.2021.111589 PMID: 33545570
  113. Tummala, S.; Kumar, M.S.; Gowthamarajan, K.; Prakash, A.; Rama, K.; Raju, S.; Mulukutla, S. Preparation, physicochemical characterization, and in vitro evaluation of oxaliplatin solid lipid nanoparticles for the treatment of colorectal cancer. Indo Am J Pharm Res., 2014, 4, 3579-3587.
  114. Shi, J.; Ma, Z.; Pan, H.; Liu, Y.; Chu, Y.; Wang, J.; Chen, L. Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer. J. Microencapsul., 2020, 37(7), 481-491. doi: 10.1080/02652048.2020.1797914 PMID: 32700606
  115. Petersen, M.A.; Hillmyer, M.A.; Kokkoli, E. Bioresorbable polymersomes for targeted delivery of cisplatin. Bioconjug. Chem., 2013, 24(4), 533-543. doi: 10.1021/bc3003259 PMID: 23521104
  116. Genc, S.; Taghizadehghalehjoughi, A.; Yeni, Y.; Jafarizad, A.; Hacimuftuoglu, A.; Nikitovic, D.; Docea, A.O.; Mezhuev, Y.; Tsatsakis, A. Fe3O4 Nanoparticles in combination with 5-FU Exert antitumor effects superior to those of the active drug in a colon cancer cell model. Pharmaceutics, 2023, 15(1), 245. doi: 10.3390/pharmaceutics15010245 PMID: 36678874
  117. Feng, S.T.; Li, J.; Luo, Y.; Yin, T.; Cai, H.; Wang, Y.; Dong, Z.; Shuai, X.; Li, Z.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One, 2014, 9(6), e100732. doi: 10.1371/journal.pone.0100732 PMID: 24964012
  118. Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
  119. Mundekkad, D.; Cho, W.C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci., 2022, 23(3), 1685. doi: 10.3390/ijms23031685 PMID: 35163607
  120. Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164. doi: 10.3322/caac.21601 PMID: 32133645
  121. Duan, L.; Yang, W.; Wang, X.; Zhou, W.; Zhang, Y.; Liu, J.; Zhang, H.; Zhao, Q.; Hong, L.; Fan, D. Advances in prognostic markers for colorectal cancer. Expert Rev. Mol. Diagn., 2019, 19(4), 313-324. doi: 10.1080/14737159.2019.1592679 PMID: 30907673
  122. Su, S.; M. Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837. doi: 10.3390/pharmaceutics12090837 PMID: 32882875
  123. Rana, I.; Oh, J.; Baig, J.; Moon, J.H.; Son, S.; Nam, J. Nanocarriers for cancer nano-immunotherapy. Drug Deliv. Transl. Res., 2023, 13(7), 1936-1954. doi: 10.1007/s13346-022-01241-3 PMID: 36190661
  124. Tuli, H.S.; Joshi, R.; Kaur, G.; Garg, V.K.; Sak, K.; Varol, M.; Kaur, J.; Alharbi, S.A.; Alahmadi, T.A.; Aggarwal, D.; Dhama, K.; Jaswal, V.S.; Mittal, S.; Sethi, G. Metal nanoparticles in cancer: From synthesis and metabolism to cellular interactions. J. Nanostructure Chem., 2023, 13(3), 321-348. doi: 10.1007/s40097-022-00504-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers