Recent Approaches on Molecular Markers, Treatment and Novel Drug Delivery System Used for the Management of Colorectal Cancer: A Comprehensive Review
- Authors: Chauhan S.1, Sharma S.1
-
Affiliations:
- Pharmacy Institute, Noida Institute of Engineering and Technology (Pharmacy Institute)
- Issue: Vol 25, No 15 (2024)
- Pages: 1969-1985
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644611
- DOI: https://doi.org/10.2174/0113892010270975231208113157
- ID: 644611
Cite item
Full Text
Abstract
:Colorectal cancer affects 1 in 25 females and 1 in 24 males, making it the third most frequent cancer with over 6,08,030 deaths worldwide, despite advancements in detection and treatments, including surgery, chemotherapeutics, radiotherapy, and immune therapeutics. Novel potential agents have increased survival in acute and chronic disease conditions, with a higher risk of side effects and cost. However, metastatic disease has an insignificant long-term diagnosis, and significant challenges remain due to last-stage diagnosis and treatment failure. Early detection, survival, and treatment efficacy are all improved by biomarkers. The advancement of cancer biomarkers' molecular pathology and genomics during the last three decades has improved therapy. Clinically useful prognostic biomarkers assist clinical judgment, for example, by predicting the success of EGFR-inhibiting antibodies in the presence of KRAS gene mutations. Few biomarkers are currently used in clinical settings, so further research is still needed. Nanocarriers, with materials like Carbon nanotubes and gold nanoparticles, provide targeted CRC drug delivery and diagnostics. Light-responsive drugs with gold and silica nanoparticles effectively target and destroy CRC cells. We evaluate the potential use of the long non-coding RNA (non-coding RNA) oncogene plasmacytoma variant translocation 1 (PVT1) as a diagnostic, prognostic, and therapeutic biomarker, along with the latest nanotech breakthroughs in CRC diagnosis and treatment.
Keywords
About the authors
Sonia Chauhan
Pharmacy Institute, Noida Institute of Engineering and Technology (Pharmacy Institute)
Email: info@benthamscience.net
Sakshi Sharma
Pharmacy Institute, Noida Institute of Engineering and Technology (Pharmacy Institute)
Author for correspondence.
Email: info@benthamscience.net
References
- Hussain, S.; Liufang, H.; Shah, S.M.; Ali, F.; Khan, S.A.; Shah, F.A.; Li, J.B.; Li, S. Cytotoxic effects of extracts and isolated compounds from Ifloga spicata (forssk.) sch. bip against HepG-2 cancer cell line: Supported by ADMET analysis and molecular docking. Front. Pharmacol., 2022, 13, 986456. doi: 10.3389/fphar.2022.986456 PMID: 36160390
- Hossain, M.S.; Kader, M.A.; Goh, K.W.; Islam, M.; Khan, M.S.; Rashid, M.H.A.; Der Jiun Ooi, H.D.M.; Coutinho, Y.M.A.W. Herb and spices in colorectal cancer prevention and treatment: A narrative review. Front. Pharmacol., 2022, 13, 865801.
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772. doi: 10.2147/CIA.S158513 PMID: 29731617
- Su, W.; Liu, H.; Jiang, Y.; Li, S.; Jin, Y.; Yan, C.; Chen, H. Correlation between depression and quality of life in patients with Parkinsons disease. Clin. Neurol. Neurosurg., 2021, 202, 106523. doi: 10.1016/j.clineuro.2021.106523 PMID: 33581615
- Carethers, J.M. Racial and ethnic disparities in colorectal cancer incidence and mortality. Adv. Cancer Res., 2021, 151, 197-229. doi: 10.1016/bs.acr.2021.02.007 PMID: 34148614
- Song, M.; Hu, F.B.; Spiegelman, D. Adherence to healthy lifestyle and risk of colorectal cancer in a prospective cohort of women. Gastroenterology, 2021, 160(4), 1031-1043.e2. doi: 10.1053/j.gastro.2020.11.054 PMID: 33096098
- Lee, J.K.; Jensen, C.D.; Levin, T.R.; Doubeni, C.A.; Zauber, A.G.; Chubak, J.; Kamineni, A.S.; Schottinger, J.E.; Ghai, N.R.; Udaltsova, N.; Zhao, W.K.; Fireman, B.H.; Quesenberry, C.P.; Orav, E.J.; Skinner, C.S.; Halm, E.A.; Corley, D.A. Long-term risk of colorectal cancer and related death after adenoma removal in a large, community-based population. Gastroenterology, 2020, 158(4), 884-894.e5. doi: 10.1053/j.gastro.2019.09.039 PMID: 31589872
- Lucafò, M.; Curci, D.; Franzin, M.; Decorti, G.; Stocco, G. Inflammatory bowel disease and risk of colorectal cancer: An overview from pathophysiology to pharmacological prevention. Front. Pharmacol., 2021, 12, 772101. doi: 10.3389/fphar.2021.772101 PMID: 34744751
- Lemoine, L.; Sugarbaker, P.; Van der Speeten, K. Pathophysiology of colorectal peritoneal carcinomatosis: Role of the peritoneum. World J. Gastroenterol., 2016, 22(34), 7692-7707. doi: 10.3748/wjg.v22.i34.7692 PMID: 27678351
- Pashirzad, M.; Sathyapalan, T.; Sheikh, A.; Kesharwani, P.; Sahebkar, A. Cancer stem cells: An overview of the pathophysiological and prognostic roles in colorectal cancer. Process Biochem., 2022, 115, 19-29. doi: 10.1016/j.procbio.2022.02.006
- Franco, D.L.; Leighton, J.A.; Gurudu, S.R. Approach to incomplete colonoscopy: New techniques and technologies. Gastroenterol. Hepatol., 2017, 13(8), 476-483. PMID: 28867979
- Lin, X.; Kapoor, A.; Gu, Y.; Chow, M.; Xu, H.; Major, P.; Tang, D. Assessment of biochemical recurrence of prostate cancer (Review). Int. J. Oncol., 2019, 55(6), 1194-1212. doi: 10.3892/ijo.2019.4893 PMID: 31638194
- Chen, K.; Zhang, Y.; Qian, L.; Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol., 2021, 14(1), 116. doi: 10.1186/s13045-021-01127-w PMID: 34301278
- Zhang, E.; Hou, X.; Hou, B.; Zhang, M.; Song, Y. A risk prediction model of DNA methylation improves prognosis evaluation and indicates gene targets in prostate cancer. Epigenomics, 2020, 12(4), epi-2019-epi-0349. doi: 10.2217/epi-2019-0349 PMID: 32027524
- Dakubo, G.D.; Dakubo, G.D. Colorectal cancer biomarkers in circulation; Cancer Biomarkers in Body Fluids, 2017, pp. 213-246. doi: 10.1007/978-3-319-48360-3_7
- Nagaratnam, N.; Nagaratnam, K.; Cheuk, G.; Nagaratnam, N.; Nagaratnam, K.; Cheuk, G. Gastrointestinal system. In: Diseases in the Elderly; Springer: Cham, 2016; pp. 53-79. doi: 10.1007/978-3-319-25787-7_3
- Katsuya-Gaviria, K.; Paris, G.; Dendooven, T.; Bandyra, K.J. Bacterial RNA chaperones and chaperone-like riboregulators: Behind the scenes of RNA-mediated regulation of cellular metabolism. RNA Biol., 2022, 19(1), 419-436. doi: 10.1080/15476286.2022.2048565 PMID: 35438047
- Caffo, M.; Barresi, V.; Caruso, G.; Cutugno, M.; La Fata, G.; Venza, M.; Alafaci, C.; Tomasello, F. Innovative therapeutic strategies in the treatment of brain metastases. Int. J. Mol. Sci., 2013, 14(1), 2135-2174. doi: 10.3390/ijms14012135 PMID: 23340652
- Mahmood, N.; Rabbani, S.A. DNA methylation readers and cancer: Mechanistic and therapeutic applications. Front. Oncol., 2019, 9, 489. doi: 10.3389/fonc.2019.00489 PMID: 31245293
- Leystra, A.A.; Clapper, M.L. Gut microbiota influences experimental outcomes in mouse models of colorectal cancer. Genes, 2019, 10(11), 900. doi: 10.3390/genes10110900 PMID: 31703321
- Kordbacheh, F.; Farah, C.S. Current and emerging molecular therapies for head and neck squamous cell carcinoma. Cancers, 2021, 13(21), 5471. doi: 10.3390/cancers13215471 PMID: 34771633
- Fearon, E.R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol., 2011, 6(1), 479-507. doi: 10.1146/annurev-pathol-011110-130235 PMID: 21090969
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol., 2005, 23(3), 609-618. doi: 10.1200/JCO.2005.01.086 PMID: 15659508
- Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; Patterson, S.D.; Chang, D.D. Wild-Type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol., 2023, 41(18), 3278-3286. doi: 10.1200/JCO.22.02758 PMID: 37315390
- Meyerhardt, J.A.; Mayer, R.J. Systemic therapy for colorectal cancer. N. Engl. J. Med., 2005, 352(5), 476-487. doi: 10.1056/NEJMra040958 PMID: 15689586
- Groden, J.; Thliveris, A.; Samowitz, W.; Carlson, M.; Gelbert, L.; Albertsen, H.; Joslyn, G.; Stevens, J.; Spirio, L.; Robertson, M.; Sargeant, L.; Krapcho, K.; Wolff, E.; Burt, R.; Hughes, J.P.; Warrington, J.; McPherson, J.; Wasmuth, J.; Le Paslier, D.; Abderrahim, H.; Cohen, D.; Leppert, M.; White, R. Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 1991, 66(3), 589-600. doi: 10.1016/0092-8674(81)90021-0 PMID: 1651174
- Li, Z.; Chen, Y.; Wang, D.; Wang, G.; He, L.; Suo, J. Detection of KRAS mutations and their associations with clinicopathological features and survival in Chinese colorectal cancer patients. J. Int. Med. Res., 2012, 40(4), 1589-1598. doi: 10.1177/147323001204000439 PMID: 22971512
- Cercek, A.; Braghiroli, M.I.; Chou, J.F.; Hechtman, J.F.; Kemeny, N.; Saltz, L.; Capanu, M.; Yaeger, R. Clinical features and outcomes of patients with colorectal cancers harboring NRAS mutations. Clin. Cancer Res., 2017, 23(16), 4753-4760. doi: 10.1158/1078-0432.CCR-17-0400 PMID: 28446505
- Hunter, J.C.; Manandhar, A.; Carrasco, M.A.; Gurbani, D.; Gondi, S.; Westover, K.D. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol. Cancer Res., 2015, 13(9), 1325-1335. doi: 10.1158/1541-7786.MCR-15-0203 PMID: 26037647
- Janes, M.R.; Zhang, J.; Li, L.S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; Feng, J.; Chen, J.H.; Li, S.; Li, S.; Long, Y.O.; Thach, C.; Liu, Y.; Zarieh, A.; Ely, T.; Kucharski, J.M.; Kessler, L.V.; Wu, T.; Yu, K.; Wang, Y.; Yao, Y.; Deng, X.; Zarrinkar, P.P.; Brehmer, D.; Dhanak, D.; Lorenzi, M.V.; Hu-Lowe, D.; Patricelli, M.P.; Ren, P.; Liu, Y. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell, 2018, 172(3), 578-589.e17. doi: 10.1016/j.cell.2018.01.006 PMID: 29373830
- Patricelli, M.P.; Janes, M.R.; Li, L.S.; Hansen, R.; Peters, U.; Kessler, L.V.; Chen, Y.; Kucharski, J.M.; Feng, J.; Ely, T.; Chen, J.H.; Firdaus, S.J.; Babbar, A.; Ren, P.; Liu, Y. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov., 2016, 6(3), 316-329. doi: 10.1158/2159-8290.CD-15-1105 PMID: 26739882
- ClinicalTrials.gov is a place to learn about clinical studies from around the world. Available from: https://www.clinicaltrials.gov/
- Dashti, H.; Dehzangi, I.; Bayati, M.; Breen, J.; Beheshti, A.; Lovell, N.; Rabiee, H.R.; Alinejad-Rokny, H. Integrative analysis of mutated genes and mutational processes reveals novel mutational biomarkers in colorectal cancer. BMC Bioinformatics, 2022, 23(1), 138. doi: 10.1186/s12859-022-04652-8 PMID: 35439935
- Tanaka, N.; Mashima, T.; Mizutani, A.; Sato, A.; Aoyama, A.; Gong, B.; Yoshida, H.; Muramatsu, Y.; Nakata, K.; Matsuura, M.; Katayama, R.; Nagayama, S.; Fujita, N.; Sugimoto, Y.; Seimiya, H. APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer. Mol. Cancer Ther., 2017, 16(4), 752-762. doi: 10.1158/1535-7163.MCT-16-0578 PMID: 28179481
- Zhang, L.; Shay, J.W. Multiple roles of APC and its therapeutic implications in colorectal cancer. J. Natl. Cancer Inst., 2017, 109(8), djw332. doi: 10.1093/jnci/djw332 PMID: 28423402
- Piñero, J.; Rodriguez Fraga, P.S.; Valls-Margarit, J.; Ronzano, F.; Accuosto, P.; Lambea Jane, R.; Sanz, F.; Furlong, L.I. Genomic and proteomic biomarker landscape in clinical trials. Comput. Struct. Biotechnol. J., 2023, 21, 2110-2118. doi: 10.1016/j.csbj.2023.03.014 PMID: 36968019
- Robeson, R.H.; Siegel, A.M.; Dunckley, T. Genomic and proteomic biomarker discovery in neurological disease. Biomark. Insights, 2008, 3, BMI.S596. doi: 10.4137/BMI.S596 PMID: 19578496
- Babic, T.; Dragicevic, S.; Miladinov, M.; Krivokapic, Z.; Nikolic, A. SMAD4201 transcript as a putative biomarker in colorectal cancer. BMC Cancer, 2022, 22(1), 72. doi: 10.1186/s12885-022-09186-z PMID: 35034624
- Grady, W.M.; Pritchard, C.C. Molecular alterations and biomarkers in colorectal cancer. Toxicol. Pathol., 2014, 42(1), 124-139. doi: 10.1177/0192623313505155 PMID: 24178577
- Barras, D. BRAF mutation in colorectal cancer: An update: Supplementary issue: Biomarkers for colon cancer. Biomark. Cancer, 2015, 7s1, BIC.S25248. doi: 10.4137/BIC.S25248
- Garcia-Carbonero, N.; Martinez-Useros, J.; Li, W.; Orta, A.; Perez, N.; Carames, C.; Hernandez, T.; Moreno, I.; Serrano, G.; Garcia-Foncillas, J. KRAS and BRAF mutations as prognostic and predictive biomarkers for standard chemotherapy response in metastatic colorectal cancer: a single institutional study. Cells, 2020, 9(1), 219. doi: 10.3390/cells9010219 PMID: 31952366
- Trivieri, N.; Pracella, R.; Cariglia, M.G.; Panebianco, C.; Parrella, P.; Visioli, A.; Giani, F.; Soriano, A.A.; Barile, C.; Canistro, G.; Latiano, T.P.; Dimitri, L.; Bazzocchi, F.; Cassano, D.; Vescovi, A.L.; Pazienza, V.; Binda, E. BRAFV600E mutation impinges on gut microbial markers defining novel biomarkers for serrated colorectal cancer effective therapies. J. Exp. Clin. Cancer Res., 2020, 39(1), 285. doi: 10.1186/s13046-020-01801-w PMID: 33317591
- Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases, 2018, 6(15), 869-881. doi: 10.12998/wjcc.v6.i15.869 PMID: 30568941
- Ogino, S.; Lochhead, P.; Giovannucci, E.; Meyerhardt, J.A.; Fuchs, C.S.; Chan, A.T. Discovery of colorectal cancer PIK3CA mutation as potential predictive biomarker: Power and promise of molecular pathological epidemiology. Oncogene, 2014, 33(23), 2949-2955. doi: 10.1038/onc.2013.244 PMID: 23792451
- Wang, Q.; Shi, Y.; Zhou, K.; Wang, L.; Yan, Z.; Liu, Y.; Xu, L.; Zhao, S.; Chu, H.; Shi, T.; Ma, Q.; Bi, J. PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis., 2018, 9(7), 739. doi: 10.1038/s41419-018-0776-6 PMID: 29970892
- Karpinski, P.; Sierzega, M. DNA methylation biomarkers in colorectal cancer. Curr. Genomics, 2019, 20(3), 176-196.
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med., 2014, 370(14), 1287-1297. doi: 10.1056/NEJMoa1311194 PMID: 24645800
- Li, Y.; Song, L.; Gong, Y.; He, B. Detection of colorectal cancer by DNA methylation biomarker SEPT9: Past, present and future. Biomarkers Med., 2014, 8(5), 755-769. doi: 10.2217/bmm.14.8 PMID: 25123042
- Mo, S.; Wang, H.; Han, L.; Xiang, W.; Dai, W.; Zhao, P.; Pei, F.; Su, Z.; Ma, C.; Li, Q.; Wang, Z.; Cai, S.; Wang, H.; Liu, R.; Cai, G. Fecal multidimensional assay for non-invasive detection of colorectal cancer: Fecal immunochemical test, stool DNA mutation, methylation, and intestinal bacteria analysis. Front. Oncol., 2021, 11, 643136. doi: 10.3389/fonc.2021.643136 PMID: 33718241
- Luo, X. Metabolomics in colorectal cancer: A systematic review. J. Cancer, 2020, 11(15), 4290-4303.
- Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Han, Y.; Wang, X. Metabolomics in diagnosis and biomarker discovery of colorectal cancer. Cancer Lett., 2014, 345(1), 17-20. doi: 10.1016/j.canlet.2013.11.011 PMID: 24333717
- Guijas, C.; Montenegro-Burke, J.R.; Warth, B.; Spilker, M.E.; Siuzdak, G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat. Biotechnol., 2018, 36(4), 316-320. doi: 10.1038/nbt.4101 PMID: 29621222
- Grassi, E.; Corbelli, J.; Papiani, G.; Barbera, M.A.; Gazzaneo, F.; Tamberi, S. Current therapeutic strategies in BRAF-mutant metastatic colorectal cancer. Front. Oncol., 2021, 11, 601722. doi: 10.3389/fonc.2021.601722 PMID: 34249672
- Zhang, J.; Roberts, T.M.; Shivdasani, R.A. Targeting PI3K signaling as a therapeutic approach for colorectal cancer. Gastroenterology, 2011, 141(1), 50-61. doi: 10.1053/j.gastro.2011.05.010 PMID: 21723986
- Franke, A.J.; Skelton, W.P., IV; Starr, J.S.; Parekh, H.; Lee, J.J.; Overman, M.J.; Allegra, C.; George, T.J. Immunotherapy for colorectal cancer: A review of current and novel therapeutic approaches. J. Natl. Cancer Inst., 2019, 111(11), 1131-1141. doi: 10.1093/jnci/djz093 PMID: 31322663
- Krasteva, N.; Georgieva, M. Promising therapeutic strategies for colorectal cancer treatment based on nanomaterials. Pharmaceutics, 2022, 14(6), 1213. doi: 10.3390/pharmaceutics14061213 PMID: 35745786
- Paschos, K.A.; Bird, N. Current diagnostic and therapeutic approaches for colorectal cancer liver metastasis. Hippokratia, 2008, 12(3), 132-138. PMID: 18923747
- Azoulay, D.; Castaing, D.; Smail, A.; Adam, R.; Cailliez, V.; Laurent, A.; Lemoine, A.; Bismuth, H. Resection of nonresectable liver metastases from colorectal cancer after percutaneous portal vein embolization. Ann. Surg., 2000, 231(4), 480-486. doi: 10.1097/00000658-200004000-00005 PMID: 10749607
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22. doi: 10.1038/s41392-020-0116-z PMID: 32296018
- Heinemann, V.; Douillard, J.Y.; Ducreux, M.; Peeters, M. Targeted therapy in metastatic colorectal cancer An example of personalised medicine in action. Cancer Treat. Rev., 2013, 39(6), 592-601. doi: 10.1016/j.ctrv.2012.12.011 PMID: 23375249
- Piawah, S.; Venook, A.P. Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer, 2019, 125(23), 4139-4147. doi: 10.1002/cncr.32163 PMID: 31433498
- De Simone, V.; Pallone, F.; Monteleone, G.; Stolfi, C. Role of T H 17 cytokines in the control of colorectal cancer. OncoImmunology, 2013, 2(12), e26617. doi: 10.4161/onci.26617 PMID: 24498548
- Heriot, A.G.; Marriott, J.B.; Cookson, S.; Kumar, D.; Dalgleish, A.G. Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection. Br. J. Cancer, 2000, 82(5), 1009-1012. doi: 10.1054/bjoc.1999.1034 PMID: 10737381
- Lei, S.; Zhang, X.; Men, K.; Gao, Y.; Yang, X.; Wu, S.; Duan, X.; Wei, Y.; Tong, R. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Mol. Pharm., 2020, 17(9), 3378-3391. doi: 10.1021/acs.molpharmaceut.0c00451 PMID: 32787272
- Perez, R.; Wu, N.; Klipfel, A.A.; Beart, R.W. Jr A better cell cycle target for gene therapy of colorectal cancer. Cyclin G. J. Gastrointest. Surg., 2003, 7(7), 884-889. doi: 10.1007/s11605-003-0034-8 PMID: 14592662
- Zhao, S.; Chen, S.; Yang, X.; Shen, D.; Takano, Y.; Su, R.; Zheng, H. BTG1 might be employed as a biomarker for carcinogenesis and a target for gene therapy in colorectal cancers. Oncotarget, 2017, 8(5), 7502-7520. doi: 10.18632/oncotarget.10649 PMID: 27447746
- Chen, M.J.; Chung-Faye, G.A.; Searle, P.F.; Young, L.S.; Kerr, D.J. Gene therapy for colorectal cancer: Therapeutic potential. BioDrugs, 2001, 15(6), 357-367. doi: 10.2165/00063030-200115060-00002 PMID: 11520247
- Juat, D.J.; Hachey, S.J.; Billimek, J.; Del Rosario, M.P.; Nelson, E.L.; Hughes, C.C.W.; Zell, J.A. Adoptive t-cell therapy in advanced colorectal cancer: A systematic review. Oncologist, 2022, 27(3), 210-219. doi: 10.1093/oncolo/oyab038 PMID: 35274719
- Yang, D.; Wang, X.; Zhou, X.; Zhao, J.; Yang, H.; Wang, S.; Morse, M.A.; Wu, J.; Yuan, Y.; Li, S.; Hobeika, A.; Lyerly, H.K.; Ren, J. Blood microbiota diversity determines response of advanced colorectal cancer to chemotherapy combined with adoptive T cell immunotherapy. OncoImmunology, 2021, 10(1), 1976953. doi: 10.1080/2162402X.2021.1976953 PMID: 34595059
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev., 2020, 86, 102017. doi: 10.1016/j.ctrv.2020.102017 PMID: 32335505
- Li, Q.H.; Wang, Y.Z.; Tu, J.; Liu, C.W.; Yuan, Y.J.; Lin, R.; He, W.L.; Cai, S.R.; He, Y.L.; Ye, J.N. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol. Rep., 2020, 8(3), 179-191. doi: 10.1093/gastro/goaa026 PMID: 32665850
- Tampellini, M.; Sonetto, C.; Scagliotti, G.V. Novel anti-angiogenic therapeutic strategies in colorectal cancer. Expert Opin. Investig. Drugs, 2016, 25(5), 507-520. doi: 10.1517/13543784.2016.1161754 PMID: 26938715
- Miguez-Rey, E.; Choi, D.; Kim, S.; Yoon, S.; Săndulescu, O. Monoclonal antibody therapies in the management of SARS-CoV-2 infection. Expert Opin. Investig. Drugs, 2022, 31(1), 41-58. doi: 10.1080/13543784.2022.2030310 PMID: 35164631
- Pileri, P.; Campagnoli, S.; Grandi, A.; Parri, M.; De Camilli, E.; Song, C.; Ganfini, L.; Lacombe, A.; Naldi, I.; Sarmientos, P.; Cinti, C.; Jin, B.; Grandi, G.; Viale, G.; Terracciano, L.; Grifantini, R. FAT1: A potential target for monoclonal antibody therapy in colon cancer. Br. J. Cancer, 2016, 115(1), 40-51. doi: 10.1038/bjc.2016.145 PMID: 27328312
- Hwang, K.; Yoon, J.H.; Lee, J.H.; Lee, S. Recent advances in monoclonal antibody therapy for colorectal cancers. Biomedicines, 2021, 9(1), 39. doi: 10.3390/biomedicines9010039 PMID: 33466394
- Lange, A.; Prenzler, A.; Frank, M.; Kirstein, M.; Vogel, A.; von der Schulenburg, J.M. A systematic review of cost-effectiveness of monoclonal antibodies for metastatic colorectal cancer. Eur. J. Cancer, 2014, 50(1), 40-49. doi: 10.1016/j.ejca.2013.08.008 PMID: 24011538
- Dahiya, S.; Dahiya, R.; Hernández, E. Nanocarriers for anticancer drug targeting: Recent trends and challenges. Crit. Rev. Ther. Drug Carrier Syst., 2021, 38(6), 49-103.
- Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865. doi: 10.1007/s10311-018-00841-1
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26. doi: 10.1155/2019/3702518
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9(1), 1050-1074. doi: 10.3762/bjnano.9.98 PMID: 29719757
- Pugazhendhi, A.; Vasantharaj, S.; Sathiyavimal, S.; Raja, R.K.; Karuppusamy, I.; Narayanan, M.; Kandasamy, S.; Brindhadevi, K. Organic and inorganic nanomaterial coatings for the prevention of microbial growth and infections on biotic and abiotic surfaces. Surf. Coat. Tech., 2021, 425, 127739. doi: 10.1016/j.surfcoat.2021.127739
- Iranpour, S.; Bahrami, A.R.; Saljooghi, A.S.; Matin, M.M. Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord. Chem. Rev., 2021, 442, 213949. doi: 10.1016/j.ccr.2021.213949
- Francés-Soriano, L.; González-Béjar, M.; Pérez-Prieto, J. Synergistic effects in organic-coated upconversion nanoparticles.Upconverting Nanomaterials; CRC Press, 2016, pp. 125-162. doi: 10.1201/9781315371535-6
- Locatelli, E.; Franchini, M.C. Polymeric nanoparticles: Description, synthesis and applications. Isotopes in Nanoparticles: Fundamentals and Applications 2016, 113, 1-258.
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials , 2020, 10(7), 1403. doi: 10.3390/nano10071403 PMID: 32707641
- Kasi, P.B.; Mallela, V.R.; Ambrozkiewicz, F.; Trailin, A.; Lika, V.; Hemminki, K. Theranostics nanomedicine applications for colorectal cancer and metastasis: Recent advances. Int. J. Mol. Sci., 2023, 24(9), 7922. doi: 10.3390/ijms24097922 PMID: 37175627
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C, 2017, 80, 771-784. doi: 10.1016/j.msec.2017.06.004 PMID: 28866227
- Prabha, S. Inorganic nanocarriers: A promising platform for drug delivery in cancer therapy. Inorg. Chem. Front., 2017, 4(1), 18-45.
- Zhang, X. Inorganic nanocarriers for cancer imaging, therapy, and theranostics. Small, 2019, 15(45), 1903762.
- Wang, Y. Inorganic nanocarriers for cancer therapy: Current progress, challenges, and prospects. Chem. Soc. Rev., 2019, 48(15), 4007-4035.
- Ma, L. Inorganic nanocarriers for drug delivery: Current status, challenges, and prospects. Acta Pharm. Sin. B, 2021, 11(4), 891-911.
- Hossen, S. Inorganic nanomaterials for cancer therapy. J. Control. Release, 2019, 304, 165-182.
- Yang, K. Carbon-based nanomaterials in cancer therapy: Recent advances, challenges, and prospects. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6520-6539.
- Chen, Y. Carbon-based nanomaterials for cancer therapy. Front Chem., 2020, 8, 614.
- Gomes, A. Carbon-based nanomaterials for cancer therapy and diagnosis: Promises and challenges. Bioengineering, 2021, 8(4), 46. PMID: 33920285
- Guo, W. Carbon-based nanomaterials for cancer theranostics. Small Methods, 2020, 4(7), 1900726.
- Saleem, J.; Wang, L.; Chen, C. Carbon‐based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Healthc. Mater., 2018, 7(20), 1800525. doi: 10.1002/adhm.201800525 PMID: 30073803
- Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol., 2009, 5(5), 445-455. doi: 10.1166/jbn.2009.1038 PMID: 20201417
- Ibharm, S.F.; Ismail, N.I.; Jusoh, N. Preparation and evaluation of folic acid-tpgs polymeric mi-celle as a quercetin anticancer drug carrier. 2021IEEE International Biomedical Instrumentation and Technology Conference (IBITeC), Yogyakarta, Indonesia20-21 October 2021, pp. 1-6.
- Al Sabbagh, C.; Seguin, J.; Agapova, E.; Kramerich, D.; Boudy, V.; Mignet, N. Thermosensitive hydrogels for local delivery of 5-fluorouracil as neoadjuvant or adjuvant therapy in colorectal cancer. Eur. J. Pharm. Biopharm., 2020, 157, 154-164. doi: 10.1016/j.ejpb.2020.10.011 PMID: 33222768
- Shad, P.M.; Karizi, S.Z.; Javan, R.S.; Mirzaie, A.; Noorbazargan, H.; Akbarzadeh, I.; Rezaie, H. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol. In Vitro, 2020, 65, 104756. doi: 10.1016/j.tiv.2019.104756 PMID: 31884114
- Gugulothu, D.; Kulkarni, A.; Patravale, V.; Dandekar, P. pH-sensitive nanoparticles of curcumin-celecoxib combination: evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci., 2014, 103(2), 687-696. doi: 10.1002/jps.23828 PMID: 24375287
- Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7724-7733. doi: 10.1039/C5TB01245G PMID: 26617985
- Niebel, W.; Walkenbach, K.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Nanoparticle-based clodronate delivery mitigates murine experimental colitis. J. Control. Release, 2012, 160(3), 659-665. doi: 10.1016/j.jconrel.2012.03.004 PMID: 22445727
- Tummala, S.; Satish Kumar, M.N.; Prakash, A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer. Saudi Pharm. J., 2015, 23(3), 308-314. doi: 10.1016/j.jsps.2014.11.010 PMID: 26106279
- Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res., 2018, 10(8), 2306-2323. PMID: 30210672
- Raj, P.M.; Raj, R.; Kaul, A.; Mishra, A.K.; Ram, A. Biodistribution and targeting potential assessment of mucoadhesive chitosan nanoparticles designed for ulcerative colitis via scintigraphy. RSC Advances, 2018, 8(37), 20809-20821. doi: 10.1039/C8RA01898G PMID: 35542340
- Jain, A.; Jain, P.; Soni, P. Design and characterization of silver nanoparticles of differ-ent species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). In: J Gastrointest Cancer; , 2022; 54, pp. (1)90-95. doi: 10.1007/s12029-021-00788-7
- Pandey, A.N.; Rajpoot, K.; Jain, S.K. Using 5-fluorouracil-encored plga nanoparticles for the treatment of colorectal cancer: The in-vitro characterization and cytotoxicity studies. Nanomed. J., 2020, 7, 211-224.
- Korani, M.; Ghaffari, S.; Attar, H.; Mashreghi, M.; Jaafari, M.R. Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine, 2019, 20, 102013. doi: 10.1016/j.nano.2019.04.016 PMID: 31103736
- El-Gogary, R.I.; Nasr, M.; Rahsed, L.A.; Hamzawy, M.A. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci., 2022, 298, 120500. doi: 10.1016/j.lfs.2022.120500 PMID: 35341825
- Shahraki, N.; Mehrabian, A.; Amiri-Darban, S.; Moosavian, S.A.; Jaafari, M.R. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf. B Biointerfaces, 2021, 200, 111589. doi: 10.1016/j.colsurfb.2021.111589 PMID: 33545570
- Tummala, S.; Kumar, M.S.; Gowthamarajan, K.; Prakash, A.; Rama, K.; Raju, S.; Mulukutla, S. Preparation, physicochemical characterization, and in vitro evaluation of oxaliplatin solid lipid nanoparticles for the treatment of colorectal cancer. Indo Am J Pharm Res., 2014, 4, 3579-3587.
- Shi, J.; Ma, Z.; Pan, H.; Liu, Y.; Chu, Y.; Wang, J.; Chen, L. Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer. J. Microencapsul., 2020, 37(7), 481-491. doi: 10.1080/02652048.2020.1797914 PMID: 32700606
- Petersen, M.A.; Hillmyer, M.A.; Kokkoli, E. Bioresorbable polymersomes for targeted delivery of cisplatin. Bioconjug. Chem., 2013, 24(4), 533-543. doi: 10.1021/bc3003259 PMID: 23521104
- Genc, S.; Taghizadehghalehjoughi, A.; Yeni, Y.; Jafarizad, A.; Hacimuftuoglu, A.; Nikitovic, D.; Docea, A.O.; Mezhuev, Y.; Tsatsakis, A. Fe3O4 Nanoparticles in combination with 5-FU Exert antitumor effects superior to those of the active drug in a colon cancer cell model. Pharmaceutics, 2023, 15(1), 245. doi: 10.3390/pharmaceutics15010245 PMID: 36678874
- Feng, S.T.; Li, J.; Luo, Y.; Yin, T.; Cai, H.; Wang, Y.; Dong, Z.; Shuai, X.; Li, Z.P. pH-sensitive nanomicelles for controlled and efficient drug delivery to human colorectal carcinoma LoVo cells. PLoS One, 2014, 9(6), e100732. doi: 10.1371/journal.pone.0100732 PMID: 24964012
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett., 2021, 16(1), 173. doi: 10.1186/s11671-021-03628-6 PMID: 34866166
- Mundekkad, D.; Cho, W.C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci., 2022, 23(3), 1685. doi: 10.3390/ijms23031685 PMID: 35163607
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164. doi: 10.3322/caac.21601 PMID: 32133645
- Duan, L.; Yang, W.; Wang, X.; Zhou, W.; Zhang, Y.; Liu, J.; Zhang, H.; Zhao, Q.; Hong, L.; Fan, D. Advances in prognostic markers for colorectal cancer. Expert Rev. Mol. Diagn., 2019, 19(4), 313-324. doi: 10.1080/14737159.2019.1592679 PMID: 30907673
- Su, S.; M. Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837. doi: 10.3390/pharmaceutics12090837 PMID: 32882875
- Rana, I.; Oh, J.; Baig, J.; Moon, J.H.; Son, S.; Nam, J. Nanocarriers for cancer nano-immunotherapy. Drug Deliv. Transl. Res., 2023, 13(7), 1936-1954. doi: 10.1007/s13346-022-01241-3 PMID: 36190661
- Tuli, H.S.; Joshi, R.; Kaur, G.; Garg, V.K.; Sak, K.; Varol, M.; Kaur, J.; Alharbi, S.A.; Alahmadi, T.A.; Aggarwal, D.; Dhama, K.; Jaswal, V.S.; Mittal, S.; Sethi, G. Metal nanoparticles in cancer: From synthesis and metabolism to cellular interactions. J. Nanostructure Chem., 2023, 13(3), 321-348. doi: 10.1007/s40097-022-00504-2
Supplementary files
