Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer


Cite item

Full Text

Abstract

:Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms [SNPs] in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma [ESCC]. These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci [eQTL] have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.

About the authors

Surovi Saikia

Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University

Email: info@benthamscience.net

Humzah Postwala

Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy

Email: info@benthamscience.net

Vishnu Athilingam

Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University

Email: info@benthamscience.net

Aparna Anandan

Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University

Email: info@benthamscience.net

V. Padma

Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University

Email: info@benthamscience.net

Partha Kalita

Program of Biotechnology, Assam Down Town University

Author for correspondence.
Email: info@benthamscience.net

Mehul Chorawala

Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy

Email: info@benthamscience.net

Bhupendra Prajapati

Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Smyth, E.C.; Lagergren, J.; Fitzgerald, R.C.; Lordick, F.; Shah, M.A.; Lagergren, P.; Cunningham, D. Oesophageal cancer. Nat. Rev. Dis. Primers, 2017, 3(1), 17048. doi: 10.1038/nrdp.2017.48 PMID: 28748917
  2. Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology, 2022, 163(3), 649-658.e2. doi: 10.1053/j.gastro.2022.05.054 PMID: 35671803
  3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  4. Statistics for Esophageal Cancer: Esophageal Cancer Stats. Available from: www.cancer.org/cancer/types/esophagus-cancer/about/key-statistics.html (Accessed on: 27 May 2023).
  5. Pourhoseingholi, M.A.; Vahedi, M.; Baghestani, A.R. Burden of gastrointestinal cancer in Asia; an overview. Gastroenterol. Hepatol. Bed Bench, 2015, 8(1), 19-27. PMID: 25584172
  6. Mosavi-Jarrahi, A.; Mohagheghi, M.A. Epidemiology of esophageal cancer in the high-risk population of iran. Asian Pac. J. Cancer Prev., 2006, 7(3), 375-380. PMID: 17059325
  7. Samarasam, I. Esophageal cancer in India: Current status and future perspectives. Int. J. Adv. Med. Health Res., 2017, 4(1), 5. doi: 10.4103/IJAMR.IJAMR_19_17
  8. Chitra, S.; Ashok, L.; Anand, L.; Srinivasan, V.; Jayanthi, V. Risk factors for esophageal cancer in Coimbatore, southern India: A hospital-based case-control study. Indian J. Gastroenterol., 2004, 23(1), 19-21. PMID: 15106710
  9. Kumar Phukan, R.; Kanta Chetia, C.; Shahadat Ali, M.; Mahanta, J. Role of dietary habits in the development of esophageal cancer in Assam, the north-eastern region of India. Nutr. Cancer, 2001, 39(2), 204-209. doi: 10.1207/S15327914nc392_7 PMID: 11759281
  10. Saikia, S.; Rehman, A.U.; Barooah, P.; Sarmah, P.; Bhattacharyya, M.; Deka, M.; Deka, M.; Goswami, B.; Husain, S.A.; Medhi, S. Alteration in the expression of MGMT and RUNX3 due to non-CpG promoter methylation and their correlation with different risk factors in esophageal cancer patients. Tumour Biol., 2017, 39(5) doi: 10.1177/1010428317701630 PMID: 28468586
  11. Uhlenhopp, D.J.; Then, E.O.; Sunkara, T.; Gaduputi, V. Epidemiology of esophageal cancer: Update in global trends, etiology and risk factors. Clin. J. Gastroenterol., 2020, 13(6), 1010-1021. doi: 10.1007/s12328-020-01237-x PMID: 32965635
  12. Hvid-Jensen, F.; Pedersen, L.; Drewes, A.M. Sّrensen, H.T.; Funch-Jensen, P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med., 2011, 365(15), 1375-1383. doi: 10.1056/NEJMoa1103042 PMID: 21995385
  13. Khara, H.S.; Jackson, S.A.; Nair, S.; Deftereos, G.; Patel, S.; Silverman, J.F.; Ellsworth, E.; Sumner, C.; Corcoran, B.; Smith, D.M., Jr; Finkelstein, S.; Gross, S.A. Assessment of mutational load in biopsy tissue provides additional information about genomic instability to histological classifications of Barrett’s esophagus. J. Gastrointest. Cancer, 2014, 45(2), 137-145. doi: 10.1007/s12029-013-9570-y PMID: 24402860
  14. Lagergren, J. Bergström, R.; Lindgren, A.; Nyrén, O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med., 1999, 340(11), 825-831. doi: 10.1056/NEJM199903183401101 PMID: 10080844
  15. Masukume, G.; Mmbaga, B.T.; Dzamalala, C.P.; Mlombe, Y.B.; Finch, P.; Nyakunga-Maro, G.; Mremi, A.; Middleton, D.R.S.; Narh, C.T.; Chasimpha, S.J.D.; Abedi-Ardekani, B.; Menya, D.; Schüz, J.; McCormack, V. A very-hot food and beverage thermal exposure index and esophageal cancer risk in Malawi and Tanzania: Findings from the ESCCAPE case–control studies. Br. J. Cancer, 2022, 127(6), 1106-1115. doi: 10.1038/s41416-022-01890-8 PMID: 35768549
  16. Middleton, D.R.S.; Mmbaga, B.T.; Menya, D.; Dzamalala, C.; Nyakunga-Maro, G.; Finch, P.; Mlombe, Y.; Schüz, J.; McCormack, V.; Kigen, N.; Oduor, M.; Karuru Maina, S.; Some, F.; Kibosia, C.; Mwasamwaja, A.; Mremi, A.; Kiwelu, I.; Swai, R.; Kiwelu, G.; Mustapha, S.; Mghase, E.; Mchome, A.; Shao, R.; Mallya, E.; Kilonzo, K.; Kamkwantira, A.; Kamdolozi, M.; Liomba, G.; Chasimpha, S.; Narh, C.; Bouaoun, L.; Abedi-Ardekani, B.; Mushi, G.; Namwai, T.; Suwedi, M.; Solomon, T.; Malamba, R.; Carreira, C. Alcohol consumption and oesophageal squamous cell cancer risk in east Africa: findings from the large multicentre ESCCAPE case-control study in Kenya, Tanzania, and Malawi. Lancet Glob. Health, 2022, 10(2), e236-e245. doi: 10.1016/S2214-109X(21)00506-4 PMID: 34921758
  17. Sheikh, M.; Poustchi, H.; Pourshams, A.; Etemadi, A.; Islami, F.; Khoshnia, M.; Gharavi, A.; Hashemian, M.; Roshandel, G.; Khademi, H.; Zahedi, M.; Abedi-Ardekani, B.; Boffetta, P.; Kamangar, F.; Dawsey, S.M.; Pharaoh, P.D.; Abnet, C.C.; Day, N.E.; Brennan, P.; Malekzadeh, R. Individual and combined effects of environmental risk factors for esophageal cancer based on results from the golestan cohort study. Gastroenterology, 2019, 156(5), 1416-1427. doi: 10.1053/j.gastro.2018.12.024 PMID: 30611753
  18. Wang, J.M.; Xu, B.; Rao, J.Y.; Shen, H.B.; Xue, H.C.; Jiang, Q.W. Diet habits, alcohol drinking, tobacco smoking, green tea drinking, and the risk of esophageal squamous cell carcinoma in the Chinese population. Eur. J. Gastroenterol. Hepatol., 2007, 19(2), 171-176. doi: 10.1097/MEG.0b013e32800ff77a PMID: 17273005
  19. Lin, S.; Wang, X.; Huang, C.; Liu, X.; Zhao, J.; Yu, I.T.S.; Christiani, D.C. Consumption of salted meat and its interactions with alcohol drinking and tobacco smoking on esophageal squamous-cell carcinoma. Int. J. Cancer, 2015, 137(3), 582-589. doi: 10.1002/ijc.29406 PMID: 25544988
  20. Phukan, R.K.; Ali, M.S.; Chetia, C.K.; Mahanta, J. Betel nut and tobacco chewing; potential risk factors of cancer of oesophagus in Assam, India. Br. J. Cancer, 2001, 85(5), 661-667. doi: 10.1054/bjoc.2001.1920 PMID: 11531248
  21. Hiyama, T.; Yoshihara, M.; Tanaka, S.; Chayama, K. Genetic polymorphisms and esophageal cancer risk. Int. J. Cancer, 2007, 121(8), 1643-1658. doi: 10.1002/ijc.23044 PMID: 17674367
  22. Chen, X.X.; Zhong, Q.; Liu, Y.; Yan, S.M.; Chen, Z.H.; Jin, S.Z.; Xia, T.L.; Li, R.Y.; Zhou, A.J.; Su, Z.; Huang, Y.H.; Huang, Q.T.; Huang, L.Y.; Zhang, X.; Zhao, Y.N.; Yun, J.P.; Wu, Q.L.; Lin, D.X.; Bai, F.; Zeng, M.S. Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nat. Commun., 2017, 8(1), 524. doi: 10.1038/s41467-017-00650-0 PMID: 28900112
  23. Song, Y.; Li, L.; Ou, Y.; Gao, Z.; Li, E.; Li, X.; Zhang, W.; Wang, J.; Xu, L.; Zhou, Y.; Ma, X.; Liu, L.; Zhao, Z.; Huang, X.; Fan, J.; Dong, L.; Chen, G.; Ma, L.; Yang, J.; Chen, L.; He, M.; Li, M.; Zhuang, X.; Huang, K.; Qiu, K.; Yin, G.; Guo, G.; Feng, Q.; Chen, P.; Wu, Z.; Wu, J.; Ma, L.; Zhao, J.; Luo, L.; Fu, M.; Xu, B.; Chen, B.; Li, Y.; Tong, T.; Wang, M.; Liu, Z.; Lin, D.; Zhang, X.; Yang, H.; Wang, J.; Zhan, Q. Identification of genomic alterations in oesophageal squamous cell cancer. Nature, 2014, 509(7498), 91-95. doi: 10.1038/nature13176 PMID: 24670651
  24. Gao, Y.B.; Chen, Z.L.; Li, J.G.; Hu, X.D.; Shi, X.J.; Sun, Z.M.; Zhang, F.; Zhao, Z.R.; Li, Z.T.; Liu, Z.Y.; Zhao, Y.D.; Sun, J.; Zhou, C.C.; Yao, R.; Wang, S.Y.; Wang, P.; Sun, N.; Zhang, B.H.; Dong, J.S.; Yu, Y.; Luo, M.; Feng, X.L.; Shi, S.S.; Zhou, F.; Tan, F.W.; Qiu, B.; Li, N.; Shao, K.; Zhang, L.J.; Zhang, L.J.; Xue, Q.; Gao, S.G.; He, J. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet., 2014, 46(10), 1097-1102. doi: 10.1038/ng.3076 PMID: 25151357
  25. Ma, S.; Zhou, B.; Yang, Q.; Pan, Y.; Yang, W.; Freedland, S.J.; Ding, L.W.; Freeman, M.R.; Breunig, J.J.; Bhowmick, N.A.; Pan, J.; Koeffler, H.P.; Lin, D.C. A transcriptional regulatory loop of master regulator transcription factors, PPARG, and fatty acid synthesis promotes esophageal adenocarcinoma. Cancer Res., 2021, 81(5), 1216-1229. doi: 10.1158/0008-5472.CAN-20-0652 PMID: 33402390
  26. Kumar, S.; Buon, L.; Talluri, S.; Roncador, M.; Liao, C.; Zhao, J.; Shi, J.; Chakraborty, C.; Gonzalez, G.; Tai, Y.T.; Prabhala, R.; Samur, M.K.; Munshi, N.C.; Shammas, M.A. Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Commun. Biol., 2021, 4(1), 617. doi: 10.1038/s42003-021-02125-x PMID: 34031527
  27. Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; McKenna, A.; Carter, S.L.; Cibulskis, K.; Sivachenko, A.; Saksena, G.; Voet, D.; Ramos, A.H.; Auclair, D.; Thompson, K.; Sougnez, C.; Onofrio, R.C.; Guiducci, C.; Beroukhim, R.; Zhou, Z.; Lin, L.; Lin, J.; Reddy, R.; Chang, A.; Landrenau, R.; Pennathur, A.; Ogino, S.; Luketich, J.D.; Golub, T.R.; Gabriel, S.B.; Lander, E.S.; Beer, D.G.; Godfrey, T.E.; Getz, G.; Bass, A.J. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet., 2013, 45(5), 478-486. doi: 10.1038/ng.2591 PMID: 23525077
  28. Lagergren, J.; Smyth, E.; Cunningham, D.; Lagergren, P. Oesophageal cancer. Lancet, 2017, 390(10110), 2383-2396. doi: 10.1016/S0140-6736(17)31462-9 PMID: 28648400
  29. Yue, C.; Li, M.; Da, C.; Meng, H.; Lv, S.; Zhao, X. Association between genetic variants and esophageal cancer risk. Oncotarget, 2017, 8(29), 47167-47174. doi: 10.18632/oncotarget.17006 PMID: 28454086
  30. Zhang, C.; Liao, Z.; Yu, G.; Huang, W.; Song, X. Study on association between ERCC5 single nucleotide polymorphism and susceptibility to esophageal cancer. J. BUON, 2017, 22(4), 979-984.
  31. de Almeida, R.A.; Fraczek, M.G.; Parker, S.; Delneri, D.; O’Keefe, R.T. Non-coding RNAs and disease: The classical ncRNAs make a comeback. Biochem. Soc. Trans., 2016, 44(4), 1073-1078. doi: 10.1042/BST20160089 PMID: 27528754
  32. Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol., 2013, 10(6), 924-933. doi: 10.4161/rna.24604 PMID: 23696037
  33. Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: lncRNAs in cancer. J. Clin. Invest., 2016, 126(8), 2775-2782. doi: 10.1172/JCI84421 PMID: 27479746
  34. Zarrilli, G.; Galuppini, F.; Angerilli, V.; Munari, G.; Sabbadin, M.; Lazzarin, V.; Nicolè, L.; Biancotti, R.; Fassan, M. miRNAs involved in esophageal carcinogenesis and miRNA-related therapeutic perspectives in esophageal carcinoma. Int. J. Mol. Sci., 2021, 22(7), 3640. doi: 10.3390/ijms22073640 PMID: 33807389
  35. Hou, X.; Wen, J.; Ren, Z.; Zhang, G. Non-coding RNAs: New biomarkers and therapeutic targets for esophageal cancer. Oncotarget, 2017, 8(26), 43571-43578. doi: 10.18632/oncotarget.16721 PMID: 28388588
  36. Liu, W.; Zhang, Y.; Chen, M.; Shi, L.; Xu, L.; Zou, X. A genome‐wide analysis of long noncoding RNA profile identifies differentially expressed lnc RNA s associated with Esophageal cancer. Cancer Med., 2018, 7(8), 4181-4189. doi: 10.1002/cam4.1536 PMID: 29926523
  37. Ma, L.; Yan, W.; Sun, X.; Chen, P. Long noncoding RNA VPS9D1-AS1 promotes esophageal squamous cell carcinoma progression via the Wnt/β-catenin signaling pathway. J. Cancer, 2021, 12(22), 6894-6904. doi: 10.7150/jca.54556 PMID: 34659577
  38. Wang, X.; Wang, X. Long non coding RNA colon cancer associated transcript 2 may promote esophageal cancer growth and metastasis by regulating the Wnt signaling pathway. Oncol. Lett., 2019, 18(2), 1745-1754. doi: 10.3892/ol.2019.10488 PMID: 31423241
  39. Yang, L.; Ye, Y.; Chu, J.; Jia, J.; Qu, Y.; Sun, T.; Yin, H.; Ming, L.; Wan, J.; He, F. Long noncoding RNA FEZF1-AS1 promotes the motility of esophageal squamous cell carcinoma through Wnt/β-catenin pathway. Cancer Manag. Res., 2019, 11, 4425-4435. doi: 10.2147/CMAR.S196004 PMID: 31191005
  40. Guo, Y.; Sun, P.; Guo, W.; Yin, Q.; Han, J.; Sheng, S.; Liang, J.; Dong, Z. LncRNA DDX11 antisense RNA 1 promotes EMT process of esophageal squamous cell carcinoma by sponging miR-30d-5p to regulate SNAI1/ZEB2 expression and Wnt/β-catenin pathway. Bioengineered, 2021, 12(2), 11425-11440. doi: 10.1080/21655979.2021.2008759 PMID: 34866524
  41. Li, W.; Zhao, W.; Lu, Z.; Zhang, W.; Yang, X. Long noncoding RNA GAS5 promotes proliferation, migration, and invasion by regulation of miR-301a in esophageal cancer. Oncol. Res., 2018, 26(8), 1285-1294. doi: 10.3727/096504018X15166193231711 PMID: 29386089
  42. Yang, C.; Li, F.; Zhou, W.; Huang, J. Knockdown of long non-coding RNA CCAT2 suppresses growth and metastasis of esophageal squamous cell carcinoma by inhibiting the β -catenin/WISP1 signaling pathway. J. Int. Med. Res., 2021, 49(5) doi: 10.1177/03000605211019938 PMID: 34057837
  43. Colak, S.; ten Dijke, P. Targeting TGF-β signaling in cancer. Trends Cancer, 2017, 3(1), 56-71. doi: 10.1016/j.trecan.2016.11.008 PMID: 28718426
  44. Zhu, P.; Huang, H.; Gu, S.; Liu, Z.; Zhang, X.; Wu, K.; Lu, T.; Li, L.; Dong, C.; Zhong, C.; Zhou, Y. Long noncoding RNA FAM225A promotes esophageal squamous cell carcinoma development and progression via sponging MicroRNA-197-5p and upregulating NONO. J. Cancer, 2021, 12(4), 1073-1084. doi: 10.7150/jca.51292 PMID: 33442405
  45. Fu, X.; Chen, X.; Si, Y.; Yao, Y.; Jiang, Z.; Chen, K. Long non-coding RNA NCK1-AS1 is overexpressed in esophageal squamous cell carcinoma and predicts survival. Bioengineered, 2022, 13(4), 8302-8310. doi: 10.1080/21655979.2022.2038449 PMID: 35311444
  46. Hu, L.; Wu, Y.; Tan, D.; Meng, H.; Wang, K.; Bai, Y.; Yang, K. Up-regulation of long noncoding RNA MALAT1 contributes to proliferation and metastasis in esophageal squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2015, 34(1), 7. doi: 10.1186/s13046-015-0123-z PMID: 25613496
  47. Chen, M.; Xia, Z.; Chen, C.; Hu, W.; Yuan, Y. LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway. Anticancer Drugs, 2018, 29(8), 767-773. doi: 10.1097/CAD.0000000000000645 PMID: 29916899
  48. Wang, X.; Li, M.; Wang, Z.; Han, S.; Tang, X.; Ge, Y.; Zhou, L.; Zhou, C.; Yuan, Q.; Yang, M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem., 2015, 290(7), 3925-3935. doi: 10.1074/jbc.M114.596866 PMID: 25538231
  49. Zhang, W.; Chen, Q.; Lei, C. lncRNA MIAT promotes cell invasion and migration in esophageal cancer. Exp. Ther. Med., 2020, 19(5), 3267-3274. doi: 10.3892/etm.2020.8588 PMID: 32266022
  50. Chen, M.J.; Deng, J.; Chen, C.; Hu, W.; Yuan, Y.C.; Xia, Z.K. LncRNA H19 promotes epithelial mesenchymal transition and metastasis of esophageal cancer via STAT3/EZH2 axis. Int. J. Biochem. Cell Biol., 2019, 113, 27-36. doi: 10.1016/j.biocel.2019.05.011 PMID: 31102664
  51. Hu, J.; Gao, W. Long noncoding RNA PVT1 promotes tumour progression via the miR-128/ZEB1 axis and predicts poor prognosis in esophageal cancer. Clin. Res. Hepatol. Gastroenterol., 2021, 45(4), 101701. doi: 10.1016/j.clinre.2021.101701 PMID: 33848670
  52. Liu, T.; Wang, Z.; Zhou, R.; Liang, W. Focally amplified lncRNA on chromosome 1 regulates apoptosis of esophageal cancer cells via DRP1 and mitochondrial dynamics. IUBMB Life, 2019, 71(2), 254-260. doi: 10.1002/iub.1971 PMID: 30501006
  53. Liang, X.S.; Sun, Y.; Liu, T. Long non-coding RNA FAL1 regulated cell proliferation through Akt pathway via targeting PDK1 in esophageal cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5214-5222. PMID: 30178844
  54. Qi, Y.; Song, C.; Zhang, J.; Guo, C.; Yuan, C. Oncogenic LncRNA CASC9 in cancer progression. Curr. Pharm. Des., 2021, 27(4), 575-582. doi: 10.2174/1381612826666200917150130 PMID: 32940174
  55. Smith, C.M.; Watson, D.I.; Leong, M.P.; Mayne, G.C.; Michael, M.Z.; Wijnhoven, B.P.; Hussey, D.J. miR-200 family expression is downregulated upon neoplastic progression of Barrett’s esophagus. World J. Gastroenterol., 2011, 17(8), 1036-1044. PMID: 21448356
  56. Shen, Y.; Ding, Y.; Ma, Q.; Zhao, L.; Guo, X.; Shao, Y.; Niu, C.; He, Y.; Zhang, F.; Zheng, D.; Wei, W.; Liu, F. Identification of novel circulating miRNA biomarkers for the diagnosis of esophageal squamous cell carcinoma and squamous dysplasia. Cancer Epidemiol. Biomarkers Prev., 2019, 28(7), 1212-1220. doi: 10.1158/1055-9965.EPI-18-1199 PMID: 30988139
  57. Xiao, Q.; Chen, T.; Wu, Y.; Wu, W.; Xu, Y.; Gong, Z.; Chen, S. MicroRNA 675 3p promotes esophageal squamous cell cancer cell migration and invasion. Mol. Med. Rep., 2018, 18(4), 3631-3640. doi: 10.3892/mmr.2018.9372 PMID: 30106155
  58. Wen, S.W.; Zhang, Y.F.; Li, Y.; Liu, Z.X.; Lv, H.L.; Li, Z.H.; Xu, Y.Z.; Zhu, Y.G.; Tian, Z.Q. Characterization and effects of miR-21 expression in esophageal cancer. Genet. Mol. Res., 2015, 14(3), 8810-8818. doi: 10.4238/2015.August.3.4 PMID: 26345812
  59. Chen, Z.; Zhao, X.; Wang, J.; Li, B.; Wang, Z.; Sun, J.; Tan, F.; Ding, D.; Xu, X.; Zhou, F.; Tan, X.; Hang, J.; Shi, S.; Feng, X.; He, J. microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin. J. Biol. Chem., 2011, 286(12), 10725-10734. doi: 10.1074/jbc.M110.165654 PMID: 21148309
  60. Zhang, J.; Cheng, C.; Yuan, X.; He, J.T.; Pan, Q.H.; Sun, F.Y. microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol., 2014, 7(2), 602-610. PMID: 24551280
  61. Wang, B.; Yang, J.; Xiao, B. MicroRNA-20b (miR-20b) promotes the proliferation, migration, invasion, and tumorigenicity in esophageal cancer cells via the regulation of phosphatase and tensin homologue expression. PLoS One, 2016, 11(10), e0164105. doi: 10.1371/journal.pone.0164105 PMID: 27701465
  62. Shen, Y.; Shao, Y.; Ruan, X.; Zhu, L.; Zang, Z.; Wei, T.; Nakyeyune, R.; Wei, W.; Liu, F. Genetic variant in miR-17-92 cluster binding sites is associated with esophageal squamous cell carcinoma risk in Chinese population. BMC Cancer, 2022, 22(1), 1253. doi: 10.1186/s12885-022-10360-6 PMID: 36461008
  63. Eltayeb, M.M.; Ali, M.M.; Omar, S.M.; Mohamed, N.S.; Adam, I.; Hamdan, H.Z. Gene polymorphisms of cyclin‐dependent kinase inhibitor and matrix metalloproteinase‐9 in Sudanese patients with esophageal squamous cell carcinoma. Mol. Genet. Genomic Med., 2022, 10(12), e2074. doi: 10.1002/mgg3.2074 PMID: 36259348
  64. Chang, T.G.; Yen, T.T.; Wei, C.Y.; Hsiao, T.H.; Chen, I.C. Impacts ofADH1B rs1229984 andALDH2 rs671 polymorphisms on risks of alcohol‐related disorder and cancer. Cancer Med., 2023, 12(1), 747-759. doi: 10.1002/cam4.4920 PMID: 35670037
  65. Chen, J.; Li, X.; Liu, R.; Xie, Y.; Liu, Z.; Xiong, H.; Li, Y. The correlation of mouse double minute 4 (MDM4) Polymorphisms (rs4245739, rs1563828, rs11801299, rs10900598, and rs1380576) with cancer susceptibility: A meta-analysis. Med. Sci. Monit., 2022, 28, e935671. doi: 10.12659/MSM.935671 PMID: 35347102
  66. Wang, Z.; Li, C.; Li, X.; Shi, J.; Wu, W. Effect of vascular endothelial growth factor rs35569394 in esophageal cancer and response to chemotherapy. Biomolecules. Biochim., 2023, 23(2), 271-276.
  67. Wang, J.; Chen, T.; Tang, W.; Kang, M.; Chen, S. Associations of interleukin-4 and interleukin-4 receptor loci with esophageal squamous cell carcinoma susceptibility. Int. Immunopharmacol., 2021, 97, 107659. doi: 10.1016/j.intimp.2021.107659 PMID: 33895482
  68. Wang, R.; Si, L.; Zhu, D.; Shen, G.; Long, Q.; Zhao, Y. Genetic variants in GHR and PLCE1 genes are associated with susceptibility to esophageal cancer. Mol. Genet. Genomic Med., 2020, 8(10), e1474. doi: 10.1002/mgg3.1474 PMID: 32869542
  69. Zhao, R.; Chen, X.; Ren, W.; Dai, H.; Li, H.; Li, H.; Jia, A.; Wu, Y.; Han, P.; Shao, Y. IL-1B rs2853550 polymorphism contributes to esophageal cancer susceptibility in Chinese Han population of Northwest China. Mol. Med., 2020, 26(1), 57. doi: 10.1186/s10020-020-00178-y PMID: 32527212
  70. Shah, R.; Sharma, V.; Bhat, A.; Singh, H.; Sharma, I.; Verma, S.; Bhat, G.R.; Sharma, B.; Bakshi, D.; Kumar, R.; Dar, N.A. MassARRAY analysis of twelve cancer related SNPs in esophageal squamous cell carcinoma in J&K, India. BMC Cancer, 2020, 20(1), 497. doi: 10.1186/s12885-020-06991-2 PMID: 32487238
  71. Zang, B.; Chen, C.; Zhao, J.Q. PD-1 gene rs10204525 and rs7421861 polymorphisms are associated with increased risk and clinical features of esophageal cancer in a Chinese Han population. Aging, 2020, 12(4), 3771-3790. doi: 10.18632/aging.102845 PMID: 32084010
  72. Wang, J.; Wang, Q.; Wei, B.; Zhou, Y.; Qian, Z.; Gao, Y.; Chen, X. Intronic polymorphisms in genes LRFN2 (rs2494938) and DNAH11 (rs2285947) are prognostic indicators of esophageal squamous cell carcinoma. BMC Med. Genet., 2019, 20(1), 72. doi: 10.1186/s12881-019-0796-9 PMID: 31053115
  73. Cremer, M.; Grasser, F.; Lanctôt, C.; Müller, S.; Neusser, M.; Zinner, R.; Solovei, I.; Cremer, T. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol. Biol., 2012, 463, 205-239. doi: 10.1007/978-1-59745-406-3_15 PMID: 18951171
  74. Kibel, A.S.; Ahn, J.; Isikbay, M.; Klim, A.; Wu, W.S.; Hayes, R.B.; Isaacs, W.B.; Daw, E.W. Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma. Prostate, 2016, 76(5), 479-490. doi: 10.1002/pros.23139 PMID: 26708993
  75. Bulgakova, O.; Kussainova, A.; Bersimbaev, R. The cell cycle regulatory gene polymorphisms TP53 (rs1042522) and MDM2 (rs2279744) in lung cancer: a meta-analysis. Vavilovskii Zhurnal Genet. Selektsii, 2020, 24(7), 77-784. doi: 10.18699/VJ20.673 PMID: 33959694
  76. Duan, G.; Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLOS Comput. Biol., 2015, 11(2), e1004049. doi: 10.1371/journal.pcbi.1004049 PMID: 25692714
  77. Fraser, P.; Bickmore, W. Nuclear organization of the genome and the potential for gene regulation. Nature, 2007, 447(7143), 413-417. doi: 10.1038/nature05916 PMID: 17522674
  78. Schübeler, D. Function and information content of DNA methylation. Nature, 2015, 517(7534), 321-326. doi: 10.1038/nature14192 PMID: 25592537
  79. Dekker, J.; Mirny, L. The 3D genome as moderator of chromosomal communication. Cell, 2016, 164(6), 1110-1121. doi: 10.1016/j.cell.2016.02.007 PMID: 26967279
  80. Javierre, B.M.; Burren, O.S.; Wilder, S.P.; Kreuzhuber, R.; Hill, S.M.; Sewitz, S.; Cairns, J.; Wingett, S.W. Várnai, C.; Thiecke, M.J.; Burden, F.; Farrow, S.; Cutler, A.J.; Rehnström, K.; Downes, K.; Grassi, L.; Kostadima, M.; Freire-Pritchett, P.; Wang, F.; Stunnenberg, H.G.; Todd, J.A.; Zerbino, D.R.; Stegle, O.; Ouwehand, W.H.; Frontini, M.; Wallace, C.; Spivakov, M.; Fraser, P.; Martens, J.H.; Kim, B.; Sharifi, N.; Janssen-Megens, E.M.; Yaspo, M-L.; Linser, M.; Kovacsovics, A.; Clarke, L.; Richardson, D.; Datta, A.; Flicek, P. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell, 2016, 167(5), 1369-1384.e19. doi: 10.1016/j.cell.2016.09.037 PMID: 27863249
  81. Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature, 2000, 403(6765), 41-45. doi: 10.1038/47412 PMID: 10638745
  82. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395. doi: 10.1038/cr.2011.22 PMID: 21321607
  83. Berger, S.L. The complex language of chromatin regulation during transcription. Nature, 2007, 447(7143), 407-412. doi: 10.1038/nature05915 PMID: 17522673
  84. Suganuma, T.; Workman, J.L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem., 2011, 80(1), 473-499. doi: 10.1146/annurev-biochem-061809-175347 PMID: 21529160
  85. Henikoff, S.; Shilatifard, A. Histone modification: Cause or cog? Trends Genet., 2011, 27(10), 389-396. doi: 10.1016/j.tig.2011.06.006 PMID: 21764166
  86. Buenrostro, J.D.; Giresi, P.G.; Zaba, L.C.; Chang, H.Y.; Greenleaf, W.J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 2013, 10(12), 1213-1218. doi: 10.1038/nmeth.2688 PMID: 24097267
  87. Heintzman, N.D.; Stuart, R.K.; Hon, G.; Fu, Y.; Ching, C.W.; Hawkins, R.D.; Barrera, L.O.; Van Calcar, S.; Qu, C.; Ching, K.A.; Wang, W.; Weng, Z.; Green, R.D.; Crawford, G.E.; Ren, B. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet., 2007, 39(3), 311-318. doi: 10.1038/ng1966 PMID: 17277777
  88. Li, B.; Carey, M.; Workman, J.L. The role of chromatin during transcription. Cell, 2007, 128(4), 707-719. doi: 10.1016/j.cell.2007.01.015 PMID: 17320508
  89. Levine, M.; Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci., 2005, 102(14), 4936-4942. doi: 10.1073/pnas.0408031102 PMID: 15788537
  90. Esteller, M. Epigenetics in Cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159. doi: 10.1056/NEJMra072067 PMID: 18337604
  91. Nikbakht, H.A.; Sahraian, S.; Ghaem, H.; Javadi, A.; Janfada, M.; Hassanipour, S.; Mirahmadizadeh, A.R. Trends in mortality rates for gastrointestinal cancers in fars province, Iran (2005–2015). J. Gastrointest. Cancer, 2020, 51(1), 63-69. doi: 10.1007/s12029-019-00204-1 PMID: 30663013
  92. Wu, Y.Y.; Kuo, H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci., 2020, 27(1), 49. doi: 10.1186/s12929-020-00636-z PMID: 32264890
  93. Toden, S.; Goel, A. Non-coding RNAs as liquid biopsy biomarkers in cancer. Br. J. Cancer, 2022, 126(3), 351-360. doi: 10.1038/s41416-021-01672-8 PMID: 35013579
  94. Chen, R.; Xia, W.; Wang, X.; Qiu, M.; Yin, R.; Wang, S.; Xi, X.; Wang, J.; Xu, Y.; Dong, G.; Xu, L.; De, W. Upregulated long non-coding RNA SBF2-AS1 promotes proliferation in esophageal squamous cell carcinoma. Oncol. Lett., 2018, 15(4), 5071-5080. doi: 10.3892/ol.2018.7968 PMID: 29552140
  95. Zong, M.Z.; Shao, Q.; An, X.S. Expression and prognostic significance of long noncoding RNA AK001796 in esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(1), 181-186. PMID: 30657559
  96. Cao, T.; Shen, J.; Pan, W.; Li, C.; Qiao, Z. Upregulation of long noncoding RNA ANRIL correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. J. BUON, 2018, 23(6), 1862-1866.
  97. Bao, J.; Zhou, C.; Zhang, J.; Mo, J.; Ye, Q.; He, J.; Diao, J. Upregulation of the long noncoding RNA FOXD2-AS1 predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Biomark., 2018, 21(3), 527-533. doi: 10.3233/CBM-170260 PMID: 29286915
  98. Zong, M.Z.; Feng, W.T.; Du, N.; Yu, X.J.; Yu, W.Y. Upregulation of long noncoding RNA LEF1-AS1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(18), 7929-7934. PMID: 31599448
  99. Wang, B.; Liang, T.; Li, J. Long noncoding RNA LINC01296 is associated with poor prognosis in ESCC and promotes ESCC cell proliferation, migration and invasion. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4524-4531. PMID: 30058683
  100. Xie, J.J.; Jiang, Y.Y.; Jiang, Y.; Li, C.Q.; Lim, M.C.; An, O.; Mayakonda, A.; Ding, L.W.; Long, L.; Sun, C.; Lin, L.H.; Chen, L.; Wu, J.Y.; Wu, Z.Y.; Cao, Q.; Fang, W.K.; Yang, W.; Soukiasian, H.; Meltzer, S.J.; Yang, H.; Fullwood, M.; Xu, L.Y.; Li, E.M.; Lin, D.C.; Koeffler, H.P. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma. Gastroenterology, 2018, 154(8), 2137-2151.e1. doi: 10.1053/j.gastro.2018.02.018 PMID: 29454790
  101. Tong, Y.; Zhou, X.; Wang, X.; Wu, Q.; Yang, T.; Lv, J.; Yang, J.; Zhu, B.; Cao, X. Association of decreased expression of long non-coding RNA LOC285194 with chemoradiotherapy resistance and poor prognosis in esophageal squamous cell carcinoma. J. Transl. Med., 2014, 12(1), 233. doi: 10.1186/s12967-014-0233-y PMID: 25169763
  102. Cao, X.; Zhao, R.; Chen, Q.; Zhao, Y.; Zhang, B.; Zhang, Y.; Yu, J.; Han, G.; Cao, W.; Li, J.; Chen, X. MALAT1 might be a predictive marker of poor prognosis in patients who underwent radical resection of middle thoracic esophageal squamous cell carcinoma. Cancer Biomark., 2015, 15(6), 717-723. doi: 10.3233/CBM-150513 PMID: 26406400
  103. Ma, J.; Li, T.F.; Han, X.W.; Yuan, H.F. Downregulated MEG3 contributes to tumour progression and poor prognosis in oesophagal squamous cell carcinoma by interacting with miR-4261, downregulating DKK2 and activating the Wnt/β-catenin signalling. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1513-1523. doi: 10.1080/21691401.2019.1602538 PMID: 30990378
  104. Luo, D.; Huang, Z.; Lv, H.; Wang, Y.; Sun, W.; Sun, X. Up-regulation of MicroRNA-21 indicates poor prognosis and promotes cell proliferation in esophageal squamous cell carcinoma via upregulation of lncRNA SNHG1. Cancer Manag. Res., 2020, 12, 1-14. doi: 10.2147/CMAR.S221731 PMID: 32021418
  105. Wang, Y.L.; Bai, Y.; Yao, W.J.; Guo, L.; Wang, Z.M. Expression of long non-coding RNA ZEB1-AS1 in esophageal squamous cell carcinoma and its correlation with tumor progression and patient survival. Int. J. Clin. Exp. Pathol., 2015, 8(9), 11871-11876. PMID: 26617942
  106. Ge, X.S.; Ma, H.J.; Zheng, X.H.; Ruan, H.L.; Liao, X.Y.; Xue, W.Q.; Chen, Y.B.; Zhang, Y.; Jia, W.H. HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF ‐1 expression and activates W nt pathway. Cancer Sci., 2013, 104(12), 1675-1682. doi: 10.1111/cas.12296 PMID: 24118380
  107. Li, X.; Wu, Z.; Mei, Q.; Li, X.; Guo, M.; Fu, X.; Han, W. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br. J. Cancer, 2013, 109(8), 2266-2278. doi: 10.1038/bjc.2013.548 PMID: 24022190
  108. Xie, H.W.; Wu, Q.Q.; Zhu, B.; Chen, F.J.; Ji, L.; Li, S.Q.; Wang, C.M.; Tong, Y.S.; Tuo, L.; Wu, M.; Liu, Z.H.; Lv, J.; Shi, W.H.; Cao, X.F. Long noncoding RNA SPRY4-IT1 is upregulated in esophageal squamous cell carcinoma and associated with poor prognosis. Tumour Biol., 2014, 35(8), 7743-7754. doi: 10.1007/s13277-014-2013-y PMID: 24810925
  109. Wu, H.; Zheng, J.; Deng, J.; Zhang, L.; Li, N.; Li, W.; Li, F.; Lu, J.; Zhou, Y. LincRNA-uc002yug.2 involves in alternative splicing of RUNX1 and serves as a predictor for esophageal cancer and prognosis. Oncogene, 2015, 34(36), 4723-4734. doi: 10.1038/onc.2014.400 PMID: 25486427
  110. Zhou, X.L.; Wang, W.W.; Zhu, W.G.; Yu, C.H.; Tao, G.Z.; Wu, Q.Q.; Song, Y.Q.; Pan, P.; Tong, Y.S. High expression of long non‐coding RNA AFAP1‐AS1 predicts chemoradioresistance and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Mol. Carcinog., 2016, 55(12), 2095-2105. doi: 10.1002/mc.22454 PMID: 26756568
  111. Guan, Z.; Wang, Y.; Wang, Y.; Liu, X.; Wang, Y.; Zhang, W.; Chi, X.; Dong, Y.; Liu, X.; Shao, S.; Zhan, Q. Long non‐coding RNA LOC100133669 promotes cell proliferation in oesophageal squamous cell carcinoma. Cell Prolif., 2020, 53(4), e12750. doi: 10.1111/cpr.12750 PMID: 32130753
  112. Sud, A.; Kinnersley, B.; Houlston, R.S. Genome-wide association studies of cancer: Current insights and future perspectives. Nat. Rev. Cancer, 2017, 17(11), 692-704. doi: 10.1038/nrc.2017.82 PMID: 29026206
  113. Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.; Orlando, G.; Sud, A.; Holroyd, A.; Penegar, S.; Theodoratou, E.; Vaughan-Shaw, P.; Campbell, H.; Zgaga, L.; Hayward, C.; Campbell, A.; Harris, S.; Deary, I.J.; Starr, J.; Gatcombe, L.; Pinna, M.; Briggs, S.; Martin, L.; Jaeger, E.; Sharma-Oates, A.; East, J.; Leedham, S.; Arnold, R.; Johnstone, E.; Wang, H.; Kerr, D.; Kerr, R.; Maughan, T.; Kaplan, R.; Al-Tassan, N.; Palin, K. Hänninen, U.A.; Cajuso, T.; Tanskanen, T.; Kondelin, J.; Kaasinen, E.; Sarin, A.P.; Eriksson, J.G.; Rissanen, H.; Knekt, P.; Pukkala, E.; Jousilahti, P.; Salomaa, V.; Ripatti, S.; Palotie, A.; Renkonen-Sinisalo, L.; Lepistö, A.; Böhm, J.; Mecklin, J.P.; Buchanan, D.D.; Win, A.K.; Hopper, J.; Jenkins, M.E.; Lindor, N.M.; Newcomb, P.A.; Gallinger, S.; Duggan, D.; Casey, G.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.H.; Easton, D.F.; Pharoah, P.D.P.; Peto, J.; Canzian, F.; Swerdlow, A.; Eeles, R.A.; Kote-Jarai, Z.; Muir, K.; Pashayan, N.; Henderson, B.E.; Haiman, C.A.; Schumacher, F.R.; Al Olama, A.A.; Benlloch, S.; Berndt, S.I.; Conti, D.V.; Wiklund, F.; Chanock, S.; Gapstur, S.; Stevens, V.L.; Tangen, C.M.; Batra, J.; Clements, J.; Gronberg, H.; Schleutker, J.; Albanes, D.; Wolk, A.; West, C.; Mucci, L.; Cancel-Tassin, G.; Koutros, S.; Sorensen, K.D.; Grindedal, E.M.; Neal, D.E.; Hamdy, F.C.; Donovan, J.L.; Travis, R.C.; Hamilton, R.J.; Ingles, S.A.; Rosenstein, B.S.; Lu, Y-J.; Giles, G.G.; Kibel, A.S.; Vega, A.; Kogevinas, M.; Penney, K.L.; Park, J.Y.; Stanford, J.L.; Cybulski, C.; Nordestgaard, B.G.; Maier, C.; Kim, J.; John, E.M.; Teixeira, M.R.; Neuhausen, S.L.; De Ruyck, K.; Razack, A.; Newcomb, L.F.; Gamulin, M.; Kaneva, R.; Usmani, N.; Claessens, F.; Townsend, P.A.; Gago-Dominguez, M.; Roobol, M.J.; Menegaux, F.; Khaw, K-T.; Cannon-Albright, L.; Pandha, H.; Thibodeau, S.N.; Harkin, A.; Allan, K.; McQueen, J.; Paul, J.; Iveson, T.; Saunders, M.; Butterbach, K.; Chang-Claude, J.; Hoffmeister, M.; Brenner, H.; Kirac, I.; Matošević, P.; Hofer, P.; Brezina, S.; Gsur, A.; Cheadle, J.P.; Aaltonen, L.A.; Tomlinson, I.; Houlston, R.S.; Dunlop, M.G. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun., 2019, 10(1), 2154. doi: 10.1038/s41467-019-09775-w PMID: 31089142
  114. Cui, Y.S.; Song, Y.P.; Fang, B.J. The role of long non‐coding RNAs in multiple myeloma. Eur. J. Haematol., 2019, 103(1), 3-9. doi: 10.1111/ejh.13237 PMID: 30985973
  115. Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in extracellular fluids as cancer biomarkers: The new frontier of liquid biopsies. Cancers, 2019, 11(8), 1170. doi: 10.3390/cancers11081170 PMID: 31416190
  116. Liu, Z.; Yang, T.; Xu, Z.; Cao, X. Upregulation of the long non-coding RNA BANCR correlates with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Biomed. Pharmacother., 2016, 82, 406-412. doi: 10.1016/j.biopha.2016.05.014
  117. Gao, G.D.; Liu, X.Y.; Lin, Y.; Liu, H.F.; Zhang, G.J. LncRNA CASC9 promotes tumorigenesis by affecting EMT and predicts poor prognosis in esophageal squamous cell cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(2), 422-429. PMID: 29424900
  118. Xu, L.J.; Yu, X.J.; Wei, B.; Hui, H.X.; Sun, Y.; Dai, J.; Chen, X.F. Long non-coding RNA DUXAP8 regulates proliferation and invasion of esophageal squamous cell cancer. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2646-2652. PMID: 29771416
  119. Li, X.; Yang, H.; Wang, J.; Li, X.; Fan, Z.; Zhao, J.; Liu, L.; Zhang, M.; Goscinski, M.A.; Wang, J.; Xu, R.; Fan, H.; Li, H.; Suo, Z. High level of lncRNA H19 expression is associated with shorter survival in esophageal squamous cell cancer patients. Pathol. Res. Pract., 2019, 215(11), 152638. doi: 10.1016/j.prp.2019.152638 PMID: 31551175
  120. Yang, X.; Song, J.H.; Cheng, Y.; Wu, W.; Bhagat, T.; Yu, Y.; Abraham, J.M.; Ibrahim, S.; Ravich, W.; Roland, B.C.; Khashab, M.; Singh, V.K.; Shin, E.J.; Yang, X.; Verma, A.K.; Meltzer, S.J.; Mori, Y. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut, 2014, 63(6), 881-890. doi: 10.1136/gutjnl-2013-305266 PMID: 24000294
  121. Wang, W.; Wu, D.; He, X.; Hu, X.; Hu, C.; Shen, Z.; Lin, J.; Pan, Z.; He, Z.; Lin, H.; Wang, M. CCL18-induced HOTAIR upregulation promotes malignant progression in esophageal squamous cell carcinoma through the miR-130a-5p-ZEB1 axis. Cancer Lett., 2019, 460, 18-28. doi: 10.1016/j.canlet.2019.06.009 PMID: 31207321
  122. Kang, K.; Huang, Y.; Li, H.; Guo, S. Expression of UCA1 and MALAT1 long-chain non-coding RNAs in esophageal squamous cell carcinoma tissues is predictive of patient prognosis. Arch. Med. Sci., 2018, 14(4), 752-759. doi: 10.5114/aoms.2018.73713 PMID: 30002691
  123. Dong, Z.; Zhang, A.; Liu, S.; Lu, F.; Guo, Y.; Zhang, G.; Xu, F.; Shi, Y.; Shen, S.; Liang, J.; Guo, W. aberrant methylation-mediated silencing of lncRNA MEG3 functions as a ceRNA in esophageal cancer. Mol. Cancer Res., 2017, 15(7), 800-810. doi: 10.1158/1541-7786.MCR-16-0385 PMID: 28539329
  124. Yan, S.; Du, L.; Jiang, X.; Duan, W.; Li, J.; Xie, Y.; Zhan, Y.; Zhang, S.; Wang, L.; Li, S.; Wang, C. Evaluation of serum exosomal lncRNAs as diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Cancer Manag. Res., 2020, 12, 9753-9763. doi: 10.2147/CMAR.S250971 PMID: 33116835
  125. Shi, W.; Wu, Q.; Li, S.; Yang, T.; Liu, Z.; Tong, Y.; Tuo, L.; Wang, S.; Cao, X.F. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma. Tumour Biol., 2015, 36(4), 2501-2507. doi: 10.1007/s13277-014-2863-3 PMID: 25731728
  126. Xu, Y.; Li, Y.; Jin, J.; Han, G.; Sun, C.; Pizzi, M.P.; Huo, L.; Scott, A.; Wang, Y.; Ma, L.; Lee, J.H.; Bhutani, M.S.; Weston, B.; Vellano, C.; Yang, L.; Lin, C.; Kim, Y.; MacLeod, A.R.; Wang, L.; Wang, Z.; Song, S.; Ajani, J.A. LncRNA PVT1 up-regulation is a poor prognosticator and serves as a therapeutic target in esophageal adenocarcinoma. Mol. Cancer, 2019, 18(1), 141. doi: 10.1186/s12943-019-1064-5 PMID: 31601234
  127. Dong, Z.; Liang, X.; Wu, X.; Kang, X.; Guo, Y.; Shen, S.; Liang, J.; Guo, W. Promoter hypermethylation-mediated downregulation of tumor suppressor gene SEMA3B and lncRNA SEMA3B-AS1 correlates with progression and prognosis of esophageal squamous cell carcinoma. Clin. Exp. Metastasis, 2019, 36(3), 225-241. doi: 10.1007/s10585-019-09964-3 PMID: 30915595
  128. Yao, J.; Zhang, H.; Li, H.; Qian, R.; Liu, P.; Huang, J. P53‐regulated lncRNA uc061hsf.1 inhibits cell proliferation and metastasis in human esophageal squamous cell cancer. IUBMB Life, 2020, 72(3), 401-412. doi: 10.1002/iub.2196 PMID: 31743955
  129. Esquela-Kerscher, A.; Slack, F.J. Oncomirs — microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269. doi: 10.1038/nrc1840 PMID: 16557279
  130. Hoffman, A.E.; Zheng, T.; Yi, C.; Leaderer, D.; Weidhaas, J.; Slack, F.; Zhang, Y.; Paranjape, T.; Zhu, Y. microRNA miR-196a-2 and breast cancer: A genetic and epigenetic association study and functional analysis. Cancer Res., 2009, 69(14), 5970-5977. doi: 10.1158/0008-5472.CAN-09-0236 PMID: 19567675
  131. Shen, C.; Yan, T.; Wang, Z.; Su, H.; Zhu, X.; Tian, X.; Fang, J.Y.; Chen, H.; Hong, J. Variant of SNP rs1317082 at CCSlnc362 (RP11-362K14.5) creates a binding site for miR-4658 and diminishes the susceptibility to CRC. Cell Death Dis., 2018, 9(12), 1177. doi: 10.1038/s41419-018-1222-5 PMID: 30518759
  132. Feng, T.; Feng, N.; Zhu, T.; Li, Q.; Zhang, Q.; Wang, Y.; Gao, M.; Zhou, B.; Yu, H.; Zheng, M.; Qian, B. A SNP-mediated lncRNA (LOC146880) and microRNA (miR-539-5p) interaction and its potential impact on the NSCLC risk. J. Exp. Clin. Cancer Res., 2020, 39(1), 157. doi: 10.1186/s13046-020-01652-5 PMID: 32795333
  133. Wang, J.; Zou, Y.; Du, B.; Li, W.; Yu, G.; Li, L.; Zhou, L.; Gu, X.; Song, S.; Liu, Y.; Zhou, W.; Xu, B.; Wang, Z. SNP-mediated lncRNA-ENTPD3-AS1 upregulation suppresses renal cell carcinoma via miR-155/HIF-1α signaling. Cell Death Dis., 2021, 12(7), 672. doi: 10.1038/s41419-021-03958-4 PMID: 34218253
  134. Fu, Y.; Zhang, Y.; Cui, J.; Yang, G.; Peng, S.; Mi, W.; Yin, X.; Yu, Y.; Jiang, J.; Liu, Q.; Qin, Y.; Xu, W. SNP rs12982687 affects binding capacity of lncRNA UCA1 with miR-873-5p: involvement in smoking-triggered colorectal cancer progression. Cell Commun. Signal., 2020, 18(1), 37. doi: 10.1186/s12964-020-0518-0 PMID: 32143722
  135. Hou, Y.; Zhou, M.; Li, Y.; Tian, T.; Sun, X.; Chen, M.; Xu, W.; Lu, M. Risk SNP‐mediated LINC01614 upregulation drives head and neck squamous cell carcinoma progression via PI3K/AKT signaling pathway. Mol. Carcinog., 2022, 61(8), 797-811. doi: 10.1002/mc.23422 PMID: 35687049
  136. Zhang, Z.Y.; Xuan, Y.; Jin, X.Y.; Tian, X.; Wu, R. Meta-analysis demonstrates association of XRCC1 genetic polymorphism Arg399Gln with esophageal cancer risk in the Chinese population. Genet. Mol. Res., 2013, 12(3), 2567-2577. doi: 10.4238/2013.January.16.2 PMID: 23359058
  137. Yin, M.; Tan, D.; Wei, Q. Genetic variants of the XRCC1 gene and susceptibility to esophageal cancer: A meta-analysis. Int. J. Clin. Exp. Med., 2009, 2(1), 26-35. PMID: 19436829
  138. Warchoł, T.; Mostowska, A.; Lianeri, M.; Łącki, J.K.; Jagodziński, P.P. XRCC1 Arg399Gln gene polymorphism and the risk of systemic lupus erythematosus in the Polish population. DNA Cell Biol., 2012, 31(1), 50-56. doi: 10.1089/dna.2011.1246 PMID: 21682595
  139. Bosetti, C.; La Vecchia, C.; Talamini, R.; Simonato, L.; Zambon, P.; Negri, E.; Trichopoulos, D.; Lagiou, P.; Bardini, R.; Franceschi, S. Food groups and risk of squamous cell esophageal cancer in Northern Italy. Int. J. Cancer, 2000, 87(2), 289-294. doi: 10.1002/1097-0215(20000715)87:23.0.CO;2-9 PMID: 10861489
  140. Ba, X.; Boldogh, I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol., 2018, 14, 669-678. doi: 10.1016/j.redox.2017.11.008 PMID: 29175754
  141. Li, S.; Deng, Y.; You, J.P.; Chen, Z.P.; Peng, Q.L.; Huang, X.M.; Lu, Q.H.; Huang, X.; Zhao, J.M.; Qin, X. XRCC1 Arg399Gln, Arg194Trp, and Arg280His polymorphisms in esophageal cancer risk: A meta-analysis. Dig. Dis. Sci., 2013, 58(7), 1880-1890. doi: 10.1007/s10620-013-2569-1 PMID: 23543084
  142. Wallenstein, S.; Hodge, S.E.; Weston, A. Logistic regression model for analyzing extended haplotype data. Genet. Epidemiol., 1998, 15(2), 173-181. doi: 10.1002/(SICI)1098-2272(1998)15:23.0.CO;2-7 PMID: 9554554
  143. Goldstein, D.B.; Ahmadi, K.R.; Weale, M.E.; Wood, N.W. Genome scans and candidate gene approaches in the study of common diseases and variable drug responses. Trends Genet., 2003, 19(11), 615-622. doi: 10.1016/j.tig.2003.09.006 PMID: 14585613
  144. Garnham, R.; Scott, E.; Livermore, K.E.; Munkley, J. ST6GAL1: A key player in cancer. Oncol. Lett., 2019, 18(2), 983-989. PMID: 31423157
  145. Kuschel, B.; Auranen, A.; McBride, S.; Novik, K.L.; Antoniou, A.; Lipscombe, J.M.; Day, N.E.; Easton, D.F.; Ponder, B.A.; Pharoah, P.D.; Dunning, A. Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum. Mol. Genet., 2002, 11(12), 1399-1407. doi: 10.1093/hmg/11.12.1399 PMID: 12023982
  146. Mohrenweiser, H.W.; Xi, T. Vázquez-Matías, J.; Jones, I.M. Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans. Cancer Epidemiol. Biomarkers Prev., 2002, 11(10 Pt 1), 1054-1064. PMID: 12376507
  147. Kraus, W.L.; Lis, J.T. PARP goes transcription. Cell, 2003, 113(6), 677-683. doi: 10.1016/S0092-8674(03)00433-1 PMID: 12809599
  148. Soldatenkov, V.A.; Smulson, M. Poly(ADP-ribose) polymerase in DNA damage-response pathway:Implications for radiation oncology. Int. J. Cancer, 2000, 90(2), 59-67. doi: 10.1002/(SICI)1097-0215(20000420)90:23.0.CO;2-4 PMID: 10814955
  149. Caldecott, K.W. XRCC1 and DNA strand break repair. DNA Repair, 2003, 2(9), 955-969. doi: 10.1016/S1568-7864(03)00118-6 PMID: 12967653
  150. Talamini, G.; Capelli, P.; Zamboni, G.; Mastromauro, M.; Pasetto, M.; Castagnini, A.; Angelini, G.; Bassi, C.; Scarpa, A. Alcohol, smoking and papillomavirus infection as risk factors for esophageal squamous-cell papilloma and esophageal squamous-cell carcinoma in Italy. Int. J. Cancer, 2000, 86(6), 874-878. doi: 10.1002/(SICI)1097-0215(20000615)86:63.0.CO;2-V PMID: 10842204
  151. Dai, L.; Wang, K.; Zhang, J.; Lv, Q.; Wu, X.; Wang, Y. XRCC1 gene polymorphisms and esophageal squamous cell carcinoma risk in Chinese population: A meta-analysis of case-control studies. Int. J. Cancer, 2009, 125(5), 1102-1109. doi: 10.1002/ijc.24446 PMID: 19444915
  152. Pu, Y.; Zhao, L.; Dai, N.; Xu, M. Comprehensive analysis of the correlation between base excision repair gene SNPs and esophageal squamous cell carcinoma risk in a Chinese Han population. Mol. Clin. Oncol., 2020, 13(2), 228-236. doi: 10.3892/mco.2020.2066 PMID: 32714550
  153. Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet., 2019, 20(8), 467-484. doi: 10.1038/s41576-019-0127-1 PMID: 31068683
  154. Gamazon, E.R.; Stranger, B.E. The impact of human copy number variation on gene expression: Figure 1. Brief. Funct. Genomics, 2015, 14(5), 352-357. doi: 10.1093/bfgp/elv017 PMID: 25922366
  155. Yang, H.H.; Liu, H.; Hu, N.; Su, H.; Wang, C.; Giffen, C.; Goldstein, A.M.; Taylor, P.R.; Lee, M.P. Modified eQTL and somatic DNA segment alterations in esophageal squamous cell carcinoma for genes related to immunity, DNA repair, and inflammation. Cancers, 2022, 14(7), 1629. doi: 10.3390/cancers14071629 PMID: 35406404
  156. Yin, J.; Vogel, U.; Ma, Y.; Qi, R.; Wang, H. Haplotypes of nine single nucleotide polymorphisms on chromosome 19q13.2-3 associated with susceptibility of lung cancer in a Chinese population. Mutat. Res., 2008, 641(1-2), 12-18. doi: 10.1016/j.mrfmmm.2008.02.004 PMID: 18358500
  157. Xing, D.; Qi, J.; Miao, X.; Lu, W.; Tan, W.; Lin, D. Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. Int. J. Cancer, 2002, 100(5), 600-605. doi: 10.1002/ijc.10528 PMID: 12124811
  158. Riccio, A.; Aaltonen, L.A.; Godwin, A.K.; Loukola, A.; Percesepe, A.; Salovaara, R.; Masciullo, V.; Genuardi, M.; Paravatou-Petsotas, M.; Bassi, D.E.; Ruggeri, B.A.; Klein-Szanto, A.J.P.; Testa, J.R.; Neri, G.; Bellacosa, A. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat. Genet., 1999, 23(3), 266-268. doi: 10.1038/15443 PMID: 10545939
  159. Fu, Y.P.; Yu, J.C.; Cheng, T.C.; Lou, M.A.; Hsu, G.C.; Wu, C.Y.; Chen, S.T.; Wu, H.S.; Wu, P.E.; Shen, C.Y. Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: A multigenic study on cancer susceptibility. Cancer Res., 2003, 63(10), 2440-2446. PMID: 12750264
  160. Hemminki, K.; Xu, G.; Le Curieux, F. Re: markers of DNA repair and susceptibility to cancer in humans: An epidemiologic review. J. Natl. Cancer Inst., 2000, 92(18), 1536-1537. doi: 10.1093/jnci/92.18.1536 PMID: 10995815
  161. Stranger, B.E.; Forrest, M.S.; Dunning, M.; Ingle, C.E.; Beazley, C.; Thorne, N.; Redon, R.; Bird, C.P.; de Grassi, A.; Lee, C.; Tyler-Smith, C.; Carter, N.; Scherer, S.W.; Tavaré, S.; Deloukas, P.; Hurles, M.E.; Dermitzakis, E.T. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 2007, 315(5813), 848-853. doi: 10.1126/science.1136678 PMID: 17289997
  162. Bellacosa, A. Role ofMED1 (MBD4) Gene in DNA repair and human cancer. J. Cell. Physiol., 2001, 187(2), 137-144. doi: 10.1002/jcp.1064 PMID: 11267993
  163. Hendrich, B.; Hardeland, U.; Ng, H.H.; Jiricny, J.; Bird, A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature, 1999, 401(6750), 301-304. doi: 10.1038/45843 PMID: 10499592
  164. Petronzelli, F.; Riccio, A.; Markham, G.D.; Seeholzer, S.H.; Stoerker, J.; Genuardi, M.; Yeung, A.T.; Matsumoto, Y.; Bellacosa, A. Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J. Biol. Chem., 2000, 275(42), 32422-32429. doi: 10.1074/jbc.M004535200 PMID: 10930409
  165. Screaton, R.A.; Kiessling, S.; Sansom, O.J.; Millar, C.B.; Maddison, K.; Bird, A.; Clarke, A.R.; Frisch, S.M. Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis. Proc. Natl. Acad. Sci., 2003, 100(9), 5211-5216. doi: 10.1073/pnas.0431215100 PMID: 12702765
  166. Bader, S.; Walker, M.; Hendrich, B.; Bird, A.; Bird, C.; Hooper, M.; Wyllie, A. Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene, 1999, 18(56), 8044-8047. doi: 10.1038/sj.onc.1203229 PMID: 10637515
  167. Bader, S.; Walker, M.; Harrison, D. Most microsatellite unstable sporadic colorectal carcinomas carry MBD4 mutations. Br. J. Cancer, 2000, 83(12), 1646-1649. doi: 10.1054/bjoc.2000.1482 PMID: 11104560
  168. Rice, P.A. Holding damaged DNA together. Nat. Struct. Biol., 1999, 6(9), 805-806. doi: 10.1038/12257 PMID: 10467087
  169. Tomkinson, A.E.; Naila, T.; Khattri Bhandari, S. Altered DNA ligase activity in human disease. Mutagenesis, 2020, 35(1), 51-60. doi: 10.1093/mutage/gez026 PMID: 31630206
  170. Millar, C.B.; Guy, J.; Sansom, O.J.; Selfridge, J.; MacDougall, E.; Hendrich, B.; Keightley, P.D.; Bishop, S.M.; Clarke, A.R.; Bird, A. Enhanced CpG mutability and tumorigenesis in MBD4-deficient mice. Science, 2002, 297(5580), 403-405. doi: 10.1126/science.1073354 PMID: 12130785
  171. Wong, E.; Yang, K.; Kuraguchi, M.; Werling, U.; Avdievich, E.; Fan, K.; Fazzari, M.; Jin, B.; Brown, A.M.C.; Lipkin, M.; Edelmann, W. Mbd4 inactivation increases C→T transition mutations and promotes gastrointestinal tumor formation. Proc. Natl. Acad. Sci., 2002, 99(23), 14937-14942. doi: 10.1073/pnas.232579299 PMID: 12417741
  172. Wu, J.; Liu, J.; Zhou, Y.; Ying, J.; Zou, H.; Guo, S.; Wang, L.; Zhao, N.; Hu, J.; Lu, D.; Jin, L.; Li, Q.; Wang, J.C. Predictive value of XRCC1 gene polymorphisms on platinum-based chemotherapy in advanced non-small cell lung cancer patients: A systematic review and meta-analysis. Clin. Cancer Res., 2012, 18(14), 3972-3981. doi: 10.1158/1078-0432.CCR-11-1531 PMID: 22705987
  173. El-Khamisy, S.F.; Masutani, M.; Suzuki, H.; Caldecott, K.W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res., 2003, 31(19), 5526-5533. doi: 10.1093/nar/gkg761 PMID: 14500814
  174. Pan, J.L.; Gao, J.; Hou, J.H.; Hu, D.Z.; Li, L. Interaction between environmental risk factors and catechol-o-methyltransferase (COMT) and X-ray repair cross-complementing protein 1 (XRCC1) gene polymorphisms in risk of lung cancer among non-smoking chinese women: A case-control study. Med. Sci. Monit., 2018, 24, 5689-5697. doi: 10.12659/MSM.908240 PMID: 30109864
  175. Zhu, M.L.; He, J.; Wang, M.; Sun, M.H.; Jin, L.; Wang, X.; Yang, Y.J.; Wang, J.C.; Zheng, L.; Xiang, J.Q.; Wei, Q.Y. Potentially functional polymorphisms in the ERCC2 gene and risk of Esophageal Squamous Cell Carcinoma in Chinese populations. Sci. Rep., 2014, 4(1), 6281. doi: 10.1038/srep06281 PMID: 25209371
  176. Hao, B.; Wang, H.; Zhou, K.; Li, Y.; Chen, X.; Zhou, G.; Zhu, Y.; Miao, X.; Tan, W.; Wei, Q.; Lin, D.; He, F. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res., 2004, 64(12), 4378-4384. doi: 10.1158/0008-5472.CAN-04-0372 PMID: 15205355
  177. Shao, X.; Lv, N.; Liao, J.; Long, J.; Xue, R.; Ai, N.; Xu, D.; Fan, X. Copy number variation is highly correlated with differential gene expression: A pan-cancer study. BMC Med. Genet., 2019, 20(1), 175. doi: 10.1186/s12881-019-0909-5 PMID: 31706287
  178. Abdi, E.; Latifi-Navid, S.; Zahri, S.; Kholghi-Oskooei, V.; Mostafaiy, B.; Yazdanbod, A.; Pourfarzi, F. SNP-SNP interactions of oncogenic long non-coding RNAs HOTAIR and HOTTIP on gastric cancer susceptibility. Sci. Rep., 2020, 10(1), 16763. doi: 10.1038/s41598-020-73682-0 PMID: 33028884
  179. Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076. doi: 10.1038/nature08975 PMID: 20393566
  180. Lu, L.; Zhu, G.; Zhang, C.; Deng, Q.; Katsaros, D.; Mayne, S.T.; Risch, H.A.; Mu, L.; Canuto, E.M.; Gregori, G.; Benedetto, C.; Yu, H. Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res. Treat., 2012, 136(3), 875-883. doi: 10.1007/s10549-012-2314-z PMID: 23124417
  181. Chisholm, K.M.; Wan, Y.; Li, R.; Montgomery, K.D.; Chang, H.Y.; West, R.B. Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS One, 2012, 7(10), e47998. doi: 10.1371/journal.pone.0047998 PMID: 23133536
  182. Yang, Z.; Zhou, L.; Wu, L.M.; Lai, M.C.; Xie, H.Y.; Zhang, F.; Zheng, S.S. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol., 2011, 18(5), 1243-1250. doi: 10.1245/s10434-011-1581-y PMID: 21327457
  183. Geng, Y.J.; Xie, S.L.; Li, Q.; Ma, J.; Wang, G.Y. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res., 2011, 39(6), 2119-2128. doi: 10.1177/147323001103900608 PMID: 22289527
  184. Ishibashi, M.; Kogo, R.; Shibata, K.; Sawada, G.; Takahashi, Y.; Kurashige, J.; Akiyoshi, S.; Sasaki, S.; Iwaya, T.; Sudo, T.; Sugimachi, K.; Mimori, K.; Wakabayashi, G.; Mori, M. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncol. Rep., 2013, 29(3), 946-950. doi: 10.3892/or.2012.2219 PMID: 23292722
  185. Kogo, R.; Shimamura, T.; Mimori, K.; Kawahara, K.; Imoto, S.; Sudo, T.; Tanaka, F.; Shibata, K.; Suzuki, A.; Komune, S.; Miyano, S.; Mori, M. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res., 2011, 71(20), 6320-6326. doi: 10.1158/0008-5472.CAN-11-1021 PMID: 21862635
  186. Milhem, M.M.; Knutson, T.; Yang, S.; Zhu, D.; Wang, X.; Leslie, K.K.; Meng, X. Correlation of MTDH/AEG-1 and HOTAIR expression with metastasis and response to treatment in sarcoma patients. J. Cancer Sci. Ther., 2011, S5(4), 004. PMID: 23543869
  187. Kim, K.; Jutooru, I.; Chadalapaka, G.; Johnson, G.; Frank, J.; Burghardt, R.; Kim, S.; Safe, S. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene, 2013, 32(13), 1616-1625. doi: 10.1038/onc.2012.193 PMID: 22614017
  188. Li, D.; Feng, J.; Wu, T.; Wang, Y.; Sun, Y.; Ren, J.; Liu, M. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am. J. Pathol., 2013, 182(1), 64-70. doi: 10.1016/j.ajpath.2012.08.042 PMID: 23141928
  189. Nie, Y.; Liu, X.; Qu, S.; Song, E.; Zou, H.; Gong, C. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci., 2013, 104(4), 458-464. doi: 10.1111/cas.12092 PMID: 23281836
  190. Nakagawa, T.; Endo, H.; Yokoyama, M.; Abe, J.; Tamai, K.; Tanaka, N.; Sato, I.; Takahashi, S.; Kondo, T.; Satoh, K. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2013, 436(2), 319-324. doi: 10.1016/j.bbrc.2013.05.101 PMID: 23743197
  191. Chen, F.J.; Sun, M.; Li, S.Q.; Wu, Q.Q.; Ji, L.; Liu, Z.L.; Zhou, G.Z.; Cao, G.; Jin, L.; Xie, H.W.; Wang, C.M.; Lv, J.; De, W.; Wu, M.; Cao, X.F. Upregulation of the long non‐coding rna hotair promotes esophageal squamous cell carcinoma metastasis and poor prognosis. Mol. Carcinog., 2013, 52(11), 908-915. doi: 10.1002/mc.21944 PMID: 24151120
  192. Xu, Z.Y.; Yu, Q.M.; Du, Y.A.; Yang, L.T.; Dong, R.Z.; Huang, L.; Yu, P.F.; Cheng, X.D. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int. J. Biol. Sci., 2013, 9(6), 587-597. doi: 10.7150/ijbs.6339 PMID: 23847441
  193. Hajjari, M.; Behmanesh, M.; Sadeghizadeh, M.; Zeinoddini, M. Up-regulation of HOTAIR long non-coding RNA in human gastric adenocarcinoma tissues. Med. Oncol., 2013, 30(3), 670. doi: 10.1007/s12032-013-0670-0 PMID: 23888369
  194. Lv, X.B.; Lian, G.Y.; Wang, H.R.; Song, E.; Yao, H.; Wang, M.H. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One, 2013, 8(5), e63516. doi: 10.1371/journal.pone.0063516 PMID: 23717443
  195. Zhang, X.; Zhou, L.; Fu, G.; Sun, F.; Shi, J.; Wei, J.; Lu, C.; Zhou, C.; Yuan, Q.; Yang, M. The identification of an ESCC susceptibility SNP rs920778 that regulates the expression of lncRNA HOTAIRvia a novel intronic enhancer. Carcinogenesis, 2014, 35(9), 2062-2067. doi: 10.1093/carcin/bgu103 PMID: 24788237
  196. Ge, Y.; Jiang, R.; Zhang, M.; Wang, H.; Zhang, L.; Tang, J.; Liang, C. Analyzing 37,900 samples shows significant association between HOTAIR polymorphisms and cancer susceptibility: a meta-analysis. Int. J. Biol. Markers, 2017, 32(2), 231-242. doi: 10.5301/jbm.5000235 PMID: 27791260
  197. Hajjari, M.; Rahnama, S. Association between SNPs of long non-coding RNA HOTAIR and risk of different cancers. Front. Genet., 2019, 10, 113. doi: 10.3389/fgene.2019.00113 PMID: 30873206
  198. Lampropoulou, D.I.; Laschos, K.; Aravantinos, G.; Georgiou, K.; Papiris, K.; Theodoropoulos, G.; Gazouli, M.; Filippou, D. Association between homeobox protein transcript antisense intergenic ribonucleic acid genetic polymorphisms and cholangiocarcinoma. World J. Clin. Cases, 2021, 9(8), 1785-1792. doi: 10.12998/wjcc.v9.i8.1785 PMID: 33748227
  199. Minn, A.K.K.; Sato, N.; Mieno, M.N.; Arai, T.; Muramatsu, M. Association study of long non-coding RNA HOTAIR rs920778 polymorphism with the risk of cancer in an elderly Japanese population. Gene, 2020, 729, 144263. doi: 10.1016/j.gene.2019.144263 PMID: 31759985
  200. Qi, Q.; Wang, J.; Huang, B.; Chen, A.; Li, G.; Li, X.; Wang, J. Association of HOTAIR polymorphisms rs4759314 and rs920778 with cancer susceptibility on the basis of ethnicity and cancer type. Oncotarget, 2016, 7(25), 38775-38784. doi: 10.18632/oncotarget.9608 PMID: 27246974
  201. Jin, H.; Lu, X.; Ni, J.; Sun, J.; Gu, B.; Ding, B.; Zhu, H.; Ma, C.; Cui, M.; Xu, Y.; Zhang, Z.; Lercher, M.; Chen, J.; Gao, N.; Wang, S. HOTAIR rs7958904 polymorphism is associated with increased cervical cancer risk in a Chinese population. Sci. Rep., 2017, 7(1), 3144. doi: 10.1038/s41598-017-03174-1 PMID: 28600545
  202. Rajagopal, T.; Seshachalam, A.; Akshaya, R.L.; Rathnam, K.K.; Talluri, S.; Jothi, A.; Dunna, N.R. Association of HOTAIR (rs920778 and rs1899663) and NME1 (rs16949649 and rs2302254) gene polymorphisms with breast cancer risk in India. Gene, 2020, 762, 145033. doi: 10.1016/j.gene.2020.145033 PMID: 32781191
  203. Taheri, M.; Habibi, M.; Noroozi, R.; Rakhshan, A.; Sarrafzadeh, S.; Sayad, A.; Omrani, M.D.; Ghafouri-Fard, S. HOTAIR genetic variants are associated with prostate cancer and benign prostate hyperplasia in an Iranian population. Gene, 2017, 613, 20-24. doi: 10.1016/j.gene.2017.02.031 PMID: 28259691
  204. Yalınbaş, K.B.; Peker, B.; Tuğrul, F.; Alkan, T.Ö.; Bayram, S. Association of HOTAIR rs1899663 G>T polymorphism with colorectal cancer in the turkish population: A case-control study. Turk. J. Gastroenterol., 2022, 33(8), 689-695.
  205. Bayram, S.; Sümbül, A.T.; Batmacı, C.Y.; Genç, A. Effect of HOTAIR rs920778 polymorphism on breast cancer susceptibility and clinicopathologic features in a Turkish population. Tumour Biol., 2015, 36(5), 3863-3870. doi: 10.1007/s13277-014-3028-0 PMID: 25586347
  206. Zhu, H.; Lv, Z.; An, C.; Shi, M.; Pan, W.; Zhou, L.; Yang, W.; Yang, M. Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci. Rep., 2016, 6(1), 31969. doi: 10.1038/srep31969 PMID: 27549736
  207. Eivazi, N.; Mirfakhraie, R.; Nazemalhosseini, M.E.; Behroozi, J.; Yassaee, V.R.; Tahmaseb, M.; Sadeghi, H. Association of HOTAIR rs2366152 and rs1899663 polymorphisms with colorectal cancer susceptibility in Iranian population: A case–control study. J. Clin. Lab. Anal., 2023, 37(9-10), e24931. doi: 10.1002/jcla.24931 PMID: 37337955
  208. Liu, Y.; Zhang, Q.; Ni, R. Association between genetic variants (rs920778, rs4759314, and rs217727) in LncRNAs and cervical cancer susceptibility in Chinese population: A systematic review and meta-analysis. Front. Genet., 2022, 13, 988207. doi: 10.3389/fgene.2022.988207 PMID: 36313463
  209. Yang, C.S. Research on esophageal cancer in China: A review. Cancer Res., 1980, 40(8 Pt 1), 2633-2644. PMID: 6992989
  210. Li, J.; Li, L.; You, P.; Wei, Y.; Xu, B. Towards artificial intelligence to multi-omics characterization of tumor heterogeneity in esophageal cancer. Semin. Cancer Biol., 2023, 91, 35-49. doi: 10.1016/j.semcancer.2023.02.009 PMID: 36868394
  211. Zhao, W.S.; Yan, W.P.; Chen, D.B.; Dai, L.; Yang, Y.B.; Kang, X.Z.; Fu, H.; Chen, P.; Deng, K.J.; Wang, X.Y.; Xie, X.W.; Chen, H.S.; Chen, K.N. Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma. Am. J. Cancer Res., 2019, 9(6), 1183-1200. PMID: 31285951
  212. Hoeben, A.; Joosten, E.A.J.; van den Beuken-van, E.M.H. J. Personalized medicine: Recent progress in cancer therapy. Cancers, 2021, 13(2), 242. doi: 10.3390/cancers13020242 PMID: 33440729
  213. Gambardella, V.; Tarazona, N.; Cejalvo, J.M.; Lombardi, P.; Huerta, M. Rosellَ, S.; Fleitas, T.; Roda, D.; Cervantes, A. Personalized medicine: Recent progress in cancer therapy. Cancers , 2020, 12(4), 1009. doi: 10.3390/cancers12041009 PMID: 32325878

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers