Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms


Cite item

Full Text

Abstract

Background:The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms.

Methods:AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes.

Results:The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases.

Conclusion:The present findings encourage the development of alternative therapies with high efficacy and low toxicity.

About the authors

Majed Masadeh

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Zeinab Al-Tal

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology

Email: info@benthamscience.net

Mai Khanfar

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology

Email: info@benthamscience.net

Karem Alzoubi

Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah

Email: info@benthamscience.net

Salsabeel Sabi

Department of Biological Sciences, Faculty of Science,, The Hashemite University

Email: info@benthamscience.net

Majd Masadeh

Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology,

Email: info@benthamscience.net

References

  1. Vouga, M.; Greub, G. Emerging bacterial pathogens: The past and beyond. Clin. Microbiol. Infect., 2016, 22(1), 12-21. doi: 10.1016/j.cmi.2015.10.010 PMID: 26493844
  2. Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 541340. doi: 10.1155/2014/541340
  3. Natan, M.; Banin, E. From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev., 2017, 41(3), 302-322. doi: 10.1093/femsre/fux003 PMID: 28419240
  4. Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: Current crisis of antibiotic resistance. Bionanoscience, 2019, 9(4), 778-788. doi: 10.1007/s12668-019-00658-4
  5. Eckhardt, M.; Hultquist, J.F.; Kaake, R.M.; Hüttenhain, R.; Krogan, N.J. A systems approach to infectious disease. Nat. Rev. Genet., 2020, 21(6), 339-354. doi: 10.1038/s41576-020-0212-5 PMID: 32060427
  6. Malik, B.; Bhattacharyya, S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep., 2019, 9(1), 1-12. PMID: 30626917
  7. Founou, R.C.; Founou, L.L.; Essack, S.Y. Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: A comparative study between a district and tertiary hospital in South Africa. Antimicrob. Resist. Infect. Control, 2018, 7(1), 134. doi: 10.1186/s13756-018-0423-0 PMID: 30473784
  8. Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016, 2475067. doi: 10.1155/2016/2475067
  9. Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 2017, 8(3), 162-173. doi: 10.4292/wjgpt.v8.i3.162 PMID: 28828194
  10. Byarugaba, D.K. Mechanisms of antimicrobial resistance. In: Antimicrobial resistance in developing countries; Springer, 2010; pp. 15-26. doi: 10.1007/978-0-387-89370-9_2
  11. Gao, W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(6), 532-547. doi: 10.1002/wnan.1282 PMID: 25044325
  12. Song, W.; Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules, 2019, 24(6), 1033. doi: 10.3390/molecules24061033 PMID: 30875929
  13. Holister, P.; Weener, J-W.; Roman, C.; Harper, T. Nanoparticles. In: Technology White Papers; Cientifica, 2003.
  14. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931. doi: 10.1016/j.arabjc.2017.05.011
  15. Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503. doi: 10.1002/adhm.201701503 PMID: 29808627
  16. Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain aspects of silver and silver nanoparticles in wound care: A minireview. J. Nanomater., 2016, 2016, 7614753. doi: 10.1155/2016/7614753
  17. Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14. doi: 10.1186/s12951-018-0334-5 PMID: 29452593
  18. Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534. doi: 10.3390/ijms17091534 PMID: 27649147
  19. Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028. doi: 10.1021/la104825u PMID: 21401066
  20. Gharpure, S.; Akash, A.; Ankamwar, B. A review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol., 2020, 20(6), 3303-3339. doi: 10.1166/jnn.2020.17677 PMID: 31748024
  21. Naqvi, S.Z.; Kiran, U.; Ali, M.I.; Jamal, A.; Hameed, A.; Ahmed, S.; Ali, N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomedicine, 2013, 8, 3187-3195. doi: 10.2147/IJN.S49284 PMID: 23986635
  22. Ahlberg, S.; Antonopulos, A.; Diendorf, J.; Dringen, R.; Epple, M. Flöck, R.; Goedecke, W.; Graf, C.; Haberl, N.; Helmlinger, J.; Herzog, F.; Heuer, F.; Hirn, S.; Johannes, C.; Kittler, S.; Köller, M.; Korn, K.; Kreyling, W.G.; Krombach, F.; Lademann, J.; Loza, K.; Luther, E.M.; Malissek, M.; Meinke, M.C.; Nordmeyer, D.; Pailliart, A.; Raabe, J.; Rancan, F.; Rothen-Rutishauser, B.; Rühl, E.; Schleh, C.; Seibel, A.; Sengstock, C.; Treuel, L.; Vogt, A.; Weber, K.; Zellner, R. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J. Nanotechnol., 2014, 5(1), 1944-1965. doi: 10.3762/bjnano.5.205 PMID: 25383306
  23. Lanje, A.S.; Sharma, S.J.; Pode, R.B. Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res., 2010, 2(3), 478-483.
  24. Chen, Q.; Liu, G.; Chen, G.; Mi, T.; Tai, J. Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources, 2017, 12(1), 608-621.
  25. Clogston, J.D.; Patri, A.K. Zeta potential measurement. In: Characterization of nanoparticles intended for drug delivery; Springer, 2011; pp. 63-70. doi: 10.1007/978-1-60327-198-1_6
  26. Instruments, M. Zetasizer nano user manual MAN0485 Issue 1.1 April 2013 English; Tech. Rep, 2007.
  27. CLSI CJM-SJ.Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement; Google Books, 2014.
  28. Sueke, H.; Kaye, S.B.; Neal, T.; Hall, A.; Tuft, S. An in vitroinvestigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest. Ophthalmol. Vis. Sci., 2010, 51(8), 4151-4155.
  29. Asghar, M.A.; Yousuf, R.I.; Shoaib, M.H.; Asghar, M.A.; Ansar, S.; Zehravi, M.; Abdul Rehman, A. Synergistic Nanocomposites of different antibiotics coupled with green synthesized chitosan-based silver nanoparticles: characterization, antibacterial, in vivo toxicological and biodistribution studies. Int. J. Nanomedicine, 2020, 15, 7841-7859. doi: 10.2147/IJN.S274987 PMID: 33116504
  30. Masadeh, M.; Ayyad, A.; Haddad, R.; Alsaggar, M.; Alzoubi, K.; Alrabadi, N. Functional and toxicological evaluation of MAA-41: A novel rationally designed antimicrobial peptide using hybridization and modification methods from LL-37 and BMAP-28. Curr. Pharm. Des., 2022, 28(26), 2177-2188. doi: 10.2174/1381612828666220705150817 PMID: 35792128
  31. Lemire, J.A.; Kalan, L.; Bradu, A.; Turner, R.J. Silver oxynitrate, an unexplored silver compound with antimicrobial and antibiofilm activity. Antimicrob. Agents Chemother., 2015, 59(7), 4031-4039. doi: 10.1128/AAC.05177-14 PMID: 25918137
  32. Almaaytah, A.; Tarazi, S.; Alsheyab, F.; Al-Balas, Q.; Mukattash, T. Antimicrobial and antibiofilm activity of mauriporin, a multifunctional scorpion venom peptide. Int. J. Pept. Res. Ther., 2014, 20(4), 397-408. doi: 10.1007/s10989-014-9405-0
  33. Wang, W.; Tao, R.; Tong, Z.; Ding, Y.; Kuang, R.; Zhai, S. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides, 2012, 33(2), 212-219. doi: 10.1016/j.peptides.2012.01.006
  34. Macia, M.; Rojo-Molinero, E. Oliver, AJCM Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect., 2014, 20(10), 981-990.
  35. Feng, X.; Sambanthamoorthy, K.; Palys, T.; Paranavitana, C.J.P. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides, 2013, 49, 131-137. doi: 10.1016/j.peptides.2013.09.007
  36. Almaaytah, A.; Zhou, M.; Wang, L.; Chen, T.; Walker, B.; Shaw, C.J.P. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: Biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides, 2012, 35(2), 291-299.
  37. Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evid. Based Complement. Alternat. Med., 2017, 2017, 4534350. doi: 10.1155/2017/4534350
  38. Fadwa, A.O.; Alkoblan, D.K.; Mateen, A.; Albarag, A.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci., 2021, 28(1), 928-935. doi: 10.1016/j.sjbs.2020.09.064 PMID: 33424384
  39. Malina, D.; Sobczak-Kupiec, A.; Wzorek, Z.; Kowalski, Z. Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater. Biostruct., 2012, 7(4)
  40. Kumar, M.; Devi, P.; Kumar, A. Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical and gas sensing properties. J. Mater. Sci. Mater. Electron., 2017, 28(6), 5014-5020. doi: 10.1007/s10854-016-6157-y
  41. Khan, T.; Yasmin, A.; Townley, H.E. An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids Surf. B Biointerfaces, 2020, 194, 111156. doi: 10.1016/j.colsurfb.2020.111156 PMID: 32512312
  42. Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem., 2017, 10(6), 862-876. doi: 10.1016/j.arabjc.2015.08.008
  43. Khatoon, N.; Alam, H.; Khan, A.; Raza, K.; Sardar, M. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci. Rep., 2019, 9(1), 6848. doi: 10.1038/s41598-019-43309-0 PMID: 31048721
  44. Mohammadkarimi, V.; Azarpira, N.; Ghanbarinasab, Z.; Shiri, P.; Dehghani, F.S.; Nakhostin-Ansari, A. Synthesis of silverdoxycycline complex nanoparticles and their biological evaluation on MCF-7 cell line of the breast cancer. J. Chem., 2021, 2021
  45. Silva, H.F.O.; de Lima, R.P.; da Costa, F.S.L.; Moraes, E.P.; Melo, M.C.N.; Sant’Anna, C.; Eugênio, M.; Gasparotto, L.H.S. On the synergy between silver nanoparticles and doxycycline towards the inhibition of Staphylococcus aureus growth. RSC Advances, 2018, 8(42), 23578-23584. doi: 10.1039/C8RA02176G PMID: 35540305
  46. World Health Organization. No time to Wait: Securing the future from drug-resistant infections. 2019. Available from: https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections
  47. Hemeg, H. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed., 2017, 12, 8211-8225. doi: 10.2147/IJN.S132163 PMID: 29184409
  48. Zerfas, B.L.; Joo, Y.; Gao, J.J.C. Gramicidin a mutants with antibiotic activity against both gram-positive and gram-negative bacteria. ChemMedChem, 2016, 11(6), 629-636. doi: 10.1002/cmdc.201500602
  49. Keat, C.L.; Aziz, A.; Eid, A.M.; Elmarzugi, N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess., 2015, 2(1), 47. doi: 10.1186/s40643-015-0076-2 PMID: 25771428
  50. Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874. doi: 10.3390/molecules20058856 PMID: 25993417
  51. Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406. PMID: 26339255
  52. Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 2014, 4(8), 3974-3983. doi: 10.1039/C3RA44507K
  53. Wang, H.; Qiao, X.; Chen, J.; Ding, S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf. A Physicochem. Eng. Asp., 2005, 256(2-3), 111-115. doi: 10.1016/j.colsurfa.2004.12.058
  54. Maryan, A.S.; Gorji, M. Synthesize of nano silver using cellulose or glucose as a reduction agent: The study of their antibacterial activity on polyurethan fibers. Izv. Him., 2016, 47(5), 151-155.
  55. Pereira, L.; Dias, N.; Carvalho, J.; Fernandes, S.; Santos, C.; Lima, N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol., 2014, 117(6), 1601-1613. doi: 10.1111/jam.12652 PMID: 25234047
  56. Van Viet, P.; Sang, T.T.; Bich, N.H.N.; Thi, C.M. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles. J. Photochem. Photobiol. B, 2018, 182, 108-114. doi: 10.1016/j.jphotobiol.2018.04.002 PMID: 29656219
  57. Kittler, S.; Greulich, C.; Gebauer, J.S.; Diendorf, J.; Treuel, L.; Ruiz, L.; Gonzalez-Calbet, J.M.; Vallet-Regi, M.; Zellner, R. Köller, M.; Epple, M. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J. Mater. Chem., 2010, 20(3), 512-518. doi: 10.1039/B914875B
  58. Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555. doi: 10.3389/fmicb.2018.01555 PMID: 30061871
  59. Aguilar-Méndez, M.A. San Martín-Martínez, E.; Ortega-Arroyo, L.; Cobián-Portillo, G.; Sánchez-Espíndola, E. Synthesis and characterization of silver nanoparticles: Effect on phytopathogen Colletotrichum gloesporioides. J. Nanopart. Res., 2011, 13(6), 2525-2532. doi: 10.1007/s11051-010-0145-6
  60. Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275. doi: 10.1016/j.jrras.2015.01.007
  61. Greulich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M. Köller, M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2012, 2(17), 6981-6987. doi: 10.1039/c2ra20684f
  62. Pulit, J.; Banach, M. Preparation of nanocrystalline silver using gelatin and glucose as stabilizing and reducing agents, respectively. Dig. J. Nanomater. Biostruct., 2013, 8(2)
  63. Lee, G.; Shin, S-I.; Kim, Y-C.; Oh, S-G. Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater. Chem. Phys., 2004, 84(2-3), 197-204. doi: 10.1016/j.matchemphys.2003.11.024
  64. Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp., 2010, 372(1-3), 172-176. doi: 10.1016/j.colsurfa.2010.10.013
  65. Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitrocytotoxicity studies. Toxicol. In Vitro, 2017, 38, 179-192. doi: 10.1016/j.tiv.2016.10.012 PMID: 27816503
  66. Lee, S.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865. doi: 10.3390/ijms20040865 PMID: 30781560
  67. Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V.; Suppi, S.; Vija, H. Käkinen, A.; Titma, T.; Heinlaan, M.; Visnapuu, M.; Koller, D.; Kisand, V.; Kahru, A. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One, 2014, 9(7), e102108. doi: 10.1371/journal.pone.0102108 PMID: 25048192
  68. Bélteky, P. Rónavári, A.; Zakupszky, D.; Boka, E.; Igaz, N.; Szerencsés, B.; Pfeiffer, I.; Vágvölgyi, C.; Kiricsi, M.; Kónya, Z. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int. J. Nanomedicine, 2021, 16, 3021-3040. doi: 10.2147/IJN.S304138 PMID: 33935497
  69. Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci., 2016, 9(3), 217-227. doi: 10.1016/j.jrras.2015.10.002
  70. Li, W.R.; Sun, T.L.; Zhou, S.L.; Ma, Y.K.; Shi, Q.S.; Xie, X.B.; Huang, X-M. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int. Biodeterior. Biodegradation, 2017, 123, 304-310. doi: 10.1016/j.ibiod.2017.07.015
  71. Samoilova, N.; Krayukhina, M.; Naumkin, A.; Anuchina, N.; Popov, D. Silver nanoparticles doped with silver cations and stabilized with maleic acid copolymers: Specific structure and antimicrobial properties. New J. Chem., 2021, 45(32), 14513-14521. doi: 10.1039/D1NJ02478G
  72. Liao, C.; Li, Y.; Tjong, S. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci., 2019, 20(2), 449. doi: 10.3390/ijms20020449 PMID: 30669621
  73. Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007, 3(1), 95-101. doi: 10.1016/j.nano.2006.12.001 PMID: 17379174
  74. Mikhailova, E.O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater., 2020, 11(4), 84. doi: 10.3390/jfb11040084 PMID: 33255874
  75. Grigor’eva, A.; Saranina, I.; Tikunova, N.; Safonov, A.; Timoshenko, N.; Rebrov, A.; Ryabchikova, E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals, 2013, 26(3), 479-488. doi: 10.1007/s10534-013-9633-3 PMID: 23686387
  76. Bondarenko, O.M.; Sihtmäe, M.; Kuzmičiova, J.; Ragelienė, L.; Kahru, A.; Daugelavičius, R. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int. J. Nanomedicine, 2018, 13, 6779-6790. doi: 10.2147/IJN.S177163 PMID: 30498344
  77. Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141. doi: 10.1007/s10534-010-9381-6 PMID: 20938718
  78. Maiti, S.; Krishnan, D.; Barman, G.; Ghosh, S.K.; Laha, J.K. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J. Anal. Sci. Technol., 2014, 5(1), 40. doi: 10.1186/s40543-014-0040-3
  79. Haque, M.A.; Imamura, R.; Brown, G.A.; Krishnamurthi, V.R.; Niyonshuti, I.I.; Marcelle, T.; Mathurin, L.E.; Chen, J.; Wang, Y. An experiment-based model quantifying antimicrobial activity of silver nanoparticles on Escherichia coli. RSC Advances, 2017, 7(89), 56173-56182. doi: 10.1039/C7RA10495B
  80. Punjabi, K.; Mehta, S.; Chavan, R.; Chitalia, V.; Deogharkar, D.; Deshpande, S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front. Microbiol., 2018, 9, 2207. doi: 10.3389/fmicb.2018.02207 PMID: 30294309
  81. Aabed, K.; Mohammed, A.E. Synergistic and antagonistic effects of biogenic silver nanoparticles in combination with antibiotics against some pathogenic microbes. Front. Bioeng. Biotechnol., 2021, 9, 652362. doi: 10.3389/fbioe.2021.652362 PMID: 33959599
  82. Mohsen, E.; El-Borady, O.M.; Mohamed, M.B.; Fahim, I.S. Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J. Radiat. Res. Appl. Sci., 2020, 13(1), 416-425. doi: 10.1080/16878507.2020.1748941
  83. Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 2019, 14(11), e0224904. doi: 10.1371/journal.pone.0224904 PMID: 31703098
  84. Arsène, M.M.J.; Podoprigora, I.V.; Davares, A.K.L.; Razan, M.; Das, M.S.; Senyagin, A.N. Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Vet. World, 2021, 14(5), 1330-1341. doi: 10.14202/vetworld.2021.1330-1341 PMID: 34220139
  85. Tippayawat, P.; Sapa, V.; Srijampa, S.; Boueroy, P.; Chompoosor, A. d-Maltose coated silver nanoparticles and their synergistic effect in combination with ampicillin. Monatsh. Chem., 2017, 148(7), 1197-1203. doi: 10.1007/s00706-017-2004-y
  86. Hwang, I.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol., 2012, 61(12), 1719-1726. doi: 10.1099/jmm.0.047100-0 PMID: 22956753
  87. Markowska, K.; Grudniak, A.M.; Krawczyk, K. Wróbel, I.; Wolska, K.I. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J. Med. Microbiol., 2014, 63(6), 849-854. doi: 10.1099/jmm.0.068833-0 PMID: 24623636
  88. Ahmad, S.; Hameed, A.; Khan, K.; Tauseef, I.; Ali, M.; Sultan, F.; Shahzad, M. Evaluation of synergistic effect of nanoparticles with antibiotics against enteric pathogens. Appl. Nanosci., 2020, 10(8), 3337-3340. doi: 10.1007/s13204-019-01201-3
  89. Silva, H.F.O.; Lima, K.M.G.; Cardoso, M.B.; Oliveira, J.F.A.; Melo, M.C.N.; Sant’Anna, C.; Eugênio, M.; Gasparotto, L.H.S. Doxycycline conjugated with polyvinylpyrrolidone-encapsulated silver nanoparticles: A polymer’s malevolent touch against Escherichia coli. RSC Advances, 2015, 5(82), 66886-66893. doi: 10.1039/C5RA10880B
  90. Kumar, N.; Das, S.; Jyoti, A.; Kaushik, S. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumoniae. Int. J. Pharm. Pharm. Sci., 2016, 8(7), 183-186.
  91. Panáček, A.; Smékalová, M.; Večeřová, R.; Bogdanová, K.; Röderová, M.; Kolář, M.; Kilianová, M.; Hradilová, Š.; Froning, J.P.; Havrdová, M.; Prucek, R.; Zbořil, R.; Kvítek, L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces, 2016, 142, 392-399. doi: 10.1016/j.colsurfb.2016.03.007 PMID: 26970828
  92. Tyagi, S.; Tyagi, P.K.; Gola, D.; Chauhan, N.; Bharti, R.K. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl. Sci., 2019, 1(12), 1545. doi: 10.1007/s42452-019-1593-y
  93. Nikparast, Y.; Saliani, M. Synergistic effect between phyto-syntesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains. J. Med. Bacteriol., 2018, 7(1-2), 36-43.
  94. Hagbani, T.A.; Yadav, H.; Moin, A.; Lila, A.S.A.; Mehmood, K.; Alshammari, F.; Khan, S.; Khafagy, E.S.; Hussain, T.; Rizvi, S.M.D.; Abdallah, M.H. Enhancement of vancomycin potential against pathogenic bacterial strains via gold nano-formulations: A nano-antibiotic approach. Materials, 2022, 15(3), 1108. doi: 10.3390/ma15031108 PMID: 35161053
  95. Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.; Chudasama, B. Influence of antibiotic adsorption on biocidal activities of silver nanoparticles. IET Nanobiotechnol., 2016, 10(2), 69-74. doi: 10.1049/iet-nbt.2015.0005
  96. Singh, P.; Pandit, S.; Jers, C.; Joshi, A.S. Garnæs, J.; Mijakovic, I. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci. Rep., 2021, 11(1), 12619. doi: 10.1038/s41598-021-92006-4 PMID: 34135368
  97. Martinez-Gutierrez, F.; Boegli, L.; Agostinho, A. Sánchez, E.M.; Bach, H.; Ruiz, F.; James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 2013, 29(6), 651-660. doi: 10.1080/08927014.2013.794225 PMID: 23731460
  98. Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y.Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5(9), 3834-3840. doi: 10.1039/c3nr34254a PMID: 23525222
  99. Javed, B.; Nadhman, A.; Mashwani, Z-R. Phytosynthesis of Ag nanoparticles from Mentha longifolia: Their structural evaluation and therapeutic potential against HCT116 colon cancer, Leishmanial and bacterial cells. Appl. Nanosci., 2020, 10(9), 3503-3515. doi: 10.1007/s13204-020-01428-5
  100. Chi, Z.; Lin, H.; Li, W.; Zhang, X.; Zhang, Q. in vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells. Environ. Sci. Pollut. Res. Int., 2018, 25(32), 32373-32380. doi: 10.1007/s11356-018-3217-2 PMID: 30229494
  101. Choi, J.; Reipa, V.; Hitchins, V.M.; Goering, P.L.; Malinauskas, R.A. Physicochemical characterization and in vitrohemolysis evaluation of silver nanoparticles. Toxicol. Sci., 2011, 123(1), 133-143. doi: 10.1093/toxsci/kfr149 PMID: 21652737
  102. Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano, 2011, 5(7), 5717-5728. doi: 10.1021/nn2013904 PMID: 21630682
  103. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed., 2013, 52(6), 1636-1653. doi: 10.1002/anie.201205923 PMID: 23255416

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers