Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms
- Authors: Masadeh M.1, Al-Tal Z.1, Khanfar M.1, Alzoubi K.2, Sabi S.3, Masadeh M.4
-
Affiliations:
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah
- Department of Biological Sciences, Faculty of Science,, The Hashemite University
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology,
- Issue: Vol 25, No 14 (2024)
- Pages: 1884-1903
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644592
- DOI: https://doi.org/10.2174/0113892010279217240102100405
- ID: 644592
Cite item
Full Text
Abstract
Background:The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms.
Methods:AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes.
Results:The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases.
Conclusion:The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
About the authors
Majed Masadeh
Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
Zeinab Al-Tal
Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology
Email: info@benthamscience.net
Mai Khanfar
Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology
Email: info@benthamscience.net
Karem Alzoubi
Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah
Email: info@benthamscience.net
Salsabeel Sabi
Department of Biological Sciences, Faculty of Science,, The Hashemite University
Email: info@benthamscience.net
Majd Masadeh
Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology,
Email: info@benthamscience.net
References
- Vouga, M.; Greub, G. Emerging bacterial pathogens: The past and beyond. Clin. Microbiol. Infect., 2016, 22(1), 12-21. doi: 10.1016/j.cmi.2015.10.010 PMID: 26493844
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 541340. doi: 10.1155/2014/541340
- Natan, M.; Banin, E. From nano to micro: Using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev., 2017, 41(3), 302-322. doi: 10.1093/femsre/fux003 PMID: 28419240
- Abadi, A.; Rizvanov, A.A.; Haertlé, T.; Blatt, N.L. World Health Organization report: Current crisis of antibiotic resistance. Bionanoscience, 2019, 9(4), 778-788. doi: 10.1007/s12668-019-00658-4
- Eckhardt, M.; Hultquist, J.F.; Kaake, R.M.; Hüttenhain, R.; Krogan, N.J. A systems approach to infectious disease. Nat. Rev. Genet., 2020, 21(6), 339-354. doi: 10.1038/s41576-020-0212-5 PMID: 32060427
- Malik, B.; Bhattacharyya, S. Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Sci. Rep., 2019, 9(1), 1-12. PMID: 30626917
- Founou, R.C.; Founou, L.L.; Essack, S.Y. Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: A comparative study between a district and tertiary hospital in South Africa. Antimicrob. Resist. Infect. Control, 2018, 7(1), 134. doi: 10.1186/s13756-018-0423-0 PMID: 30473784
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int., 2016, 2016, 2475067. doi: 10.1155/2016/2475067
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther., 2017, 8(3), 162-173. doi: 10.4292/wjgpt.v8.i3.162 PMID: 28828194
- Byarugaba, D.K. Mechanisms of antimicrobial resistance. In: Antimicrobial resistance in developing countries; Springer, 2010; pp. 15-26. doi: 10.1007/978-0-387-89370-9_2
- Gao, W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(6), 532-547. doi: 10.1002/wnan.1282 PMID: 25044325
- Song, W.; Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules, 2019, 24(6), 1033. doi: 10.3390/molecules24061033 PMID: 30875929
- Holister, P.; Weener, J-W.; Roman, C.; Harper, T. Nanoparticles. In: Technology White Papers; Cientifica, 2003.
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931. doi: 10.1016/j.arabjc.2017.05.011
- Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503. doi: 10.1002/adhm.201701503 PMID: 29808627
- Konop, M.; Damps, T.; Misicka, A.; Rudnicka, L. Certain aspects of silver and silver nanoparticles in wound care: A minireview. J. Nanomater., 2016, 2016, 7614753. doi: 10.1155/2016/7614753
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14. doi: 10.1186/s12951-018-0334-5 PMID: 29452593
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534. doi: 10.3390/ijms17091534 PMID: 27649147
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028. doi: 10.1021/la104825u PMID: 21401066
- Gharpure, S.; Akash, A.; Ankamwar, B. A review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol., 2020, 20(6), 3303-3339. doi: 10.1166/jnn.2020.17677 PMID: 31748024
- Naqvi, S.Z.; Kiran, U.; Ali, M.I.; Jamal, A.; Hameed, A.; Ahmed, S.; Ali, N. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int. J. Nanomedicine, 2013, 8, 3187-3195. doi: 10.2147/IJN.S49284 PMID: 23986635
- Ahlberg, S.; Antonopulos, A.; Diendorf, J.; Dringen, R.; Epple, M. Flöck, R.; Goedecke, W.; Graf, C.; Haberl, N.; Helmlinger, J.; Herzog, F.; Heuer, F.; Hirn, S.; Johannes, C.; Kittler, S.; Köller, M.; Korn, K.; Kreyling, W.G.; Krombach, F.; Lademann, J.; Loza, K.; Luther, E.M.; Malissek, M.; Meinke, M.C.; Nordmeyer, D.; Pailliart, A.; Raabe, J.; Rancan, F.; Rothen-Rutishauser, B.; Rühl, E.; Schleh, C.; Seibel, A.; Sengstock, C.; Treuel, L.; Vogt, A.; Weber, K.; Zellner, R. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J. Nanotechnol., 2014, 5(1), 1944-1965. doi: 10.3762/bjnano.5.205 PMID: 25383306
- Lanje, A.S.; Sharma, S.J.; Pode, R.B. Synthesis of silver nanoparticles: A safer alternative to conventional antimicrobial and antibacterial agents. J. Chem. Pharm. Res., 2010, 2(3), 478-483.
- Chen, Q.; Liu, G.; Chen, G.; Mi, T.; Tai, J. Green synthesis of silver nanoparticles with glucose for conductivity enhancement of conductive ink. BioResources, 2017, 12(1), 608-621.
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. In: Characterization of nanoparticles intended for drug delivery; Springer, 2011; pp. 63-70. doi: 10.1007/978-1-60327-198-1_6
- Instruments, M. Zetasizer nano user manual MAN0485 Issue 1.1 April 2013 English; Tech. Rep, 2007.
- CLSI CJM-SJ.Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement; Google Books, 2014.
- Sueke, H.; Kaye, S.B.; Neal, T.; Hall, A.; Tuft, S. An in vitroinvestigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest. Ophthalmol. Vis. Sci., 2010, 51(8), 4151-4155.
- Asghar, M.A.; Yousuf, R.I.; Shoaib, M.H.; Asghar, M.A.; Ansar, S.; Zehravi, M.; Abdul Rehman, A. Synergistic Nanocomposites of different antibiotics coupled with green synthesized chitosan-based silver nanoparticles: characterization, antibacterial, in vivo toxicological and biodistribution studies. Int. J. Nanomedicine, 2020, 15, 7841-7859. doi: 10.2147/IJN.S274987 PMID: 33116504
- Masadeh, M.; Ayyad, A.; Haddad, R.; Alsaggar, M.; Alzoubi, K.; Alrabadi, N. Functional and toxicological evaluation of MAA-41: A novel rationally designed antimicrobial peptide using hybridization and modification methods from LL-37 and BMAP-28. Curr. Pharm. Des., 2022, 28(26), 2177-2188. doi: 10.2174/1381612828666220705150817 PMID: 35792128
- Lemire, J.A.; Kalan, L.; Bradu, A.; Turner, R.J. Silver oxynitrate, an unexplored silver compound with antimicrobial and antibiofilm activity. Antimicrob. Agents Chemother., 2015, 59(7), 4031-4039. doi: 10.1128/AAC.05177-14 PMID: 25918137
- Almaaytah, A.; Tarazi, S.; Alsheyab, F.; Al-Balas, Q.; Mukattash, T. Antimicrobial and antibiofilm activity of mauriporin, a multifunctional scorpion venom peptide. Int. J. Pept. Res. Ther., 2014, 20(4), 397-408. doi: 10.1007/s10989-014-9405-0
- Wang, W.; Tao, R.; Tong, Z.; Ding, Y.; Kuang, R.; Zhai, S. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides, 2012, 33(2), 212-219. doi: 10.1016/j.peptides.2012.01.006
- Macia, M.; Rojo-Molinero, E. Oliver, AJCM Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect., 2014, 20(10), 981-990.
- Feng, X.; Sambanthamoorthy, K.; Palys, T.; Paranavitana, C.J.P. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides, 2013, 49, 131-137. doi: 10.1016/j.peptides.2013.09.007
- Almaaytah, A.; Zhou, M.; Wang, L.; Chen, T.; Walker, B.; Shaw, C.J.P. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: Biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides, 2012, 35(2), 291-299.
- Appiah, T.; Boakye, Y.D.; Agyare, C. Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evid. Based Complement. Alternat. Med., 2017, 2017, 4534350. doi: 10.1155/2017/4534350
- Fadwa, A.O.; Alkoblan, D.K.; Mateen, A.; Albarag, A.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci., 2021, 28(1), 928-935. doi: 10.1016/j.sjbs.2020.09.064 PMID: 33424384
- Malina, D.; Sobczak-Kupiec, A.; Wzorek, Z.; Kowalski, Z. Silver nanoparticles synthesis with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomater. Biostruct., 2012, 7(4)
- Kumar, M.; Devi, P.; Kumar, A. Structural analysis of PVP capped silver nanoparticles synthesized at room temperature for optical, electrical and gas sensing properties. J. Mater. Sci. Mater. Electron., 2017, 28(6), 5014-5020. doi: 10.1007/s10854-016-6157-y
- Khan, T.; Yasmin, A.; Townley, H.E. An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines. Colloids Surf. B Biointerfaces, 2020, 194, 111156. doi: 10.1016/j.colsurfb.2020.111156 PMID: 32512312
- Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem., 2017, 10(6), 862-876. doi: 10.1016/j.arabjc.2015.08.008
- Khatoon, N.; Alam, H.; Khan, A.; Raza, K.; Sardar, M. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci. Rep., 2019, 9(1), 6848. doi: 10.1038/s41598-019-43309-0 PMID: 31048721
- Mohammadkarimi, V.; Azarpira, N.; Ghanbarinasab, Z.; Shiri, P.; Dehghani, F.S.; Nakhostin-Ansari, A. Synthesis of silverdoxycycline complex nanoparticles and their biological evaluation on MCF-7 cell line of the breast cancer. J. Chem., 2021, 2021
- Silva, H.F.O.; de Lima, R.P.; da Costa, F.S.L.; Moraes, E.P.; Melo, M.C.N.; SantAnna, C.; Eugênio, M.; Gasparotto, L.H.S. On the synergy between silver nanoparticles and doxycycline towards the inhibition of Staphylococcus aureus growth. RSC Advances, 2018, 8(42), 23578-23584. doi: 10.1039/C8RA02176G PMID: 35540305
- World Health Organization. No time to Wait: Securing the future from drug-resistant infections. 2019. Available from: https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections
- Hemeg, H. Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed., 2017, 12, 8211-8225. doi: 10.2147/IJN.S132163 PMID: 29184409
- Zerfas, B.L.; Joo, Y.; Gao, J.J.C. Gramicidin a mutants with antibiotic activity against both gram-positive and gram-negative bacteria. ChemMedChem, 2016, 11(6), 629-636. doi: 10.1002/cmdc.201500602
- Keat, C.L.; Aziz, A.; Eid, A.M.; Elmarzugi, N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess., 2015, 2(1), 47. doi: 10.1186/s40643-015-0076-2 PMID: 25771428
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874. doi: 10.3390/molecules20058856 PMID: 25993417
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406. PMID: 26339255
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 2014, 4(8), 3974-3983. doi: 10.1039/C3RA44507K
- Wang, H.; Qiao, X.; Chen, J.; Ding, S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf. A Physicochem. Eng. Asp., 2005, 256(2-3), 111-115. doi: 10.1016/j.colsurfa.2004.12.058
- Maryan, A.S.; Gorji, M. Synthesize of nano silver using cellulose or glucose as a reduction agent: The study of their antibacterial activity on polyurethan fibers. Izv. Him., 2016, 47(5), 151-155.
- Pereira, L.; Dias, N.; Carvalho, J.; Fernandes, S.; Santos, C.; Lima, N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol., 2014, 117(6), 1601-1613. doi: 10.1111/jam.12652 PMID: 25234047
- Van Viet, P.; Sang, T.T.; Bich, N.H.N.; Thi, C.M. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles. J. Photochem. Photobiol. B, 2018, 182, 108-114. doi: 10.1016/j.jphotobiol.2018.04.002 PMID: 29656219
- Kittler, S.; Greulich, C.; Gebauer, J.S.; Diendorf, J.; Treuel, L.; Ruiz, L.; Gonzalez-Calbet, J.M.; Vallet-Regi, M.; Zellner, R. Köller, M.; Epple, M. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J. Mater. Chem., 2010, 20(3), 512-518. doi: 10.1039/B914875B
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555. doi: 10.3389/fmicb.2018.01555 PMID: 30061871
- Aguilar-Méndez, M.A. San Martín-Martínez, E.; Ortega-Arroyo, L.; Cobián-Portillo, G.; Sánchez-Espíndola, E. Synthesis and characterization of silver nanoparticles: Effect on phytopathogen Colletotrichum gloesporioides. J. Nanopart. Res., 2011, 13(6), 2525-2532. doi: 10.1007/s11051-010-0145-6
- Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275. doi: 10.1016/j.jrras.2015.01.007
- Greulich, C.; Braun, D.; Peetsch, A.; Diendorf, J.; Siebers, B.; Epple, M. Köller, M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Advances, 2012, 2(17), 6981-6987. doi: 10.1039/c2ra20684f
- Pulit, J.; Banach, M. Preparation of nanocrystalline silver using gelatin and glucose as stabilizing and reducing agents, respectively. Dig. J. Nanomater. Biostruct., 2013, 8(2)
- Lee, G.; Shin, S-I.; Kim, Y-C.; Oh, S-G. Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater. Chem. Phys., 2004, 84(2-3), 197-204. doi: 10.1016/j.matchemphys.2003.11.024
- Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A Physicochem. Eng. Asp., 2010, 372(1-3), 172-176. doi: 10.1016/j.colsurfa.2010.10.013
- Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitrocytotoxicity studies. Toxicol. In Vitro, 2017, 38, 179-192. doi: 10.1016/j.tiv.2016.10.012 PMID: 27816503
- Lee, S.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865. doi: 10.3390/ijms20040865 PMID: 30781560
- Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V.; Suppi, S.; Vija, H. Käkinen, A.; Titma, T.; Heinlaan, M.; Visnapuu, M.; Koller, D.; Kisand, V.; Kahru, A. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One, 2014, 9(7), e102108. doi: 10.1371/journal.pone.0102108 PMID: 25048192
- Bélteky, P. Rónavári, A.; Zakupszky, D.; Boka, E.; Igaz, N.; Szerencsés, B.; Pfeiffer, I.; Vágvölgyi, C.; Kiricsi, M.; Kónya, Z. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int. J. Nanomedicine, 2021, 16, 3021-3040. doi: 10.2147/IJN.S304138 PMID: 33935497
- Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci., 2016, 9(3), 217-227. doi: 10.1016/j.jrras.2015.10.002
- Li, W.R.; Sun, T.L.; Zhou, S.L.; Ma, Y.K.; Shi, Q.S.; Xie, X.B.; Huang, X-M. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int. Biodeterior. Biodegradation, 2017, 123, 304-310. doi: 10.1016/j.ibiod.2017.07.015
- Samoilova, N.; Krayukhina, M.; Naumkin, A.; Anuchina, N.; Popov, D. Silver nanoparticles doped with silver cations and stabilized with maleic acid copolymers: Specific structure and antimicrobial properties. New J. Chem., 2021, 45(32), 14513-14521. doi: 10.1039/D1NJ02478G
- Liao, C.; Li, Y.; Tjong, S. Bactericidal and cytotoxic properties of silver nanoparticles. Int. J. Mol. Sci., 2019, 20(2), 449. doi: 10.3390/ijms20020449 PMID: 30669621
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; Kim, Y.K.; Lee, Y.S.; Jeong, D.H.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007, 3(1), 95-101. doi: 10.1016/j.nano.2006.12.001 PMID: 17379174
- Mikhailova, E.O. Silver nanoparticles: Mechanism of action and probable bio-application. J. Funct. Biomater., 2020, 11(4), 84. doi: 10.3390/jfb11040084 PMID: 33255874
- Grigoreva, A.; Saranina, I.; Tikunova, N.; Safonov, A.; Timoshenko, N.; Rebrov, A.; Ryabchikova, E. Fine mechanisms of the interaction of silver nanoparticles with the cells of Salmonella typhimurium and Staphylococcus aureus. Biometals, 2013, 26(3), 479-488. doi: 10.1007/s10534-013-9633-3 PMID: 23686387
- Bondarenko, O.M.; Sihtmäe, M.; Kuzmičiova, J.; Ragelienė, L.; Kahru, A.; Daugelavičius, R. Plasma membrane is the target of rapid antibacterial action of silver nanoparticles in Escherichia coli and Pseudomonas aeruginosa. Int. J. Nanomedicine, 2018, 13, 6779-6790. doi: 10.2147/IJN.S177163 PMID: 30498344
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141. doi: 10.1007/s10534-010-9381-6 PMID: 20938718
- Maiti, S.; Krishnan, D.; Barman, G.; Ghosh, S.K.; Laha, J.K. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J. Anal. Sci. Technol., 2014, 5(1), 40. doi: 10.1186/s40543-014-0040-3
- Haque, M.A.; Imamura, R.; Brown, G.A.; Krishnamurthi, V.R.; Niyonshuti, I.I.; Marcelle, T.; Mathurin, L.E.; Chen, J.; Wang, Y. An experiment-based model quantifying antimicrobial activity of silver nanoparticles on Escherichia coli. RSC Advances, 2017, 7(89), 56173-56182. doi: 10.1039/C7RA10495B
- Punjabi, K.; Mehta, S.; Chavan, R.; Chitalia, V.; Deogharkar, D.; Deshpande, S. Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front. Microbiol., 2018, 9, 2207. doi: 10.3389/fmicb.2018.02207 PMID: 30294309
- Aabed, K.; Mohammed, A.E. Synergistic and antagonistic effects of biogenic silver nanoparticles in combination with antibiotics against some pathogenic microbes. Front. Bioeng. Biotechnol., 2021, 9, 652362. doi: 10.3389/fbioe.2021.652362 PMID: 33959599
- Mohsen, E.; El-Borady, O.M.; Mohamed, M.B.; Fahim, I.S. Synthesis and characterization of ciprofloxacin loaded silver nanoparticles and investigation of their antibacterial effect. J. Radiat. Res. Appl. Sci., 2020, 13(1), 416-425. doi: 10.1080/16878507.2020.1748941
- Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 2019, 14(11), e0224904. doi: 10.1371/journal.pone.0224904 PMID: 31703098
- Arsène, M.M.J.; Podoprigora, I.V.; Davares, A.K.L.; Razan, M.; Das, M.S.; Senyagin, A.N. Antibacterial activity of grapefruit peel extracts and green-synthesized silver nanoparticles. Vet. World, 2021, 14(5), 1330-1341. doi: 10.14202/vetworld.2021.1330-1341 PMID: 34220139
- Tippayawat, P.; Sapa, V.; Srijampa, S.; Boueroy, P.; Chompoosor, A. d-Maltose coated silver nanoparticles and their synergistic effect in combination with ampicillin. Monatsh. Chem., 2017, 148(7), 1197-1203. doi: 10.1007/s00706-017-2004-y
- Hwang, I.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol., 2012, 61(12), 1719-1726. doi: 10.1099/jmm.0.047100-0 PMID: 22956753
- Markowska, K.; Grudniak, A.M.; Krawczyk, K. Wróbel, I.; Wolska, K.I. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J. Med. Microbiol., 2014, 63(6), 849-854. doi: 10.1099/jmm.0.068833-0 PMID: 24623636
- Ahmad, S.; Hameed, A.; Khan, K.; Tauseef, I.; Ali, M.; Sultan, F.; Shahzad, M. Evaluation of synergistic effect of nanoparticles with antibiotics against enteric pathogens. Appl. Nanosci., 2020, 10(8), 3337-3340. doi: 10.1007/s13204-019-01201-3
- Silva, H.F.O.; Lima, K.M.G.; Cardoso, M.B.; Oliveira, J.F.A.; Melo, M.C.N.; SantAnna, C.; Eugênio, M.; Gasparotto, L.H.S. Doxycycline conjugated with polyvinylpyrrolidone-encapsulated silver nanoparticles: A polymers malevolent touch against Escherichia coli. RSC Advances, 2015, 5(82), 66886-66893. doi: 10.1039/C5RA10880B
- Kumar, N.; Das, S.; Jyoti, A.; Kaushik, S. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumoniae. Int. J. Pharm. Pharm. Sci., 2016, 8(7), 183-186.
- Panáček, A.; Smékalová, M.; Večeřová, R.; Bogdanová, K.; Röderová, M.; Kolář, M.; Kilianová, M.; Hradilová, .; Froning, J.P.; Havrdová, M.; Prucek, R.; Zbořil, R.; Kvítek, L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces, 2016, 142, 392-399. doi: 10.1016/j.colsurfb.2016.03.007 PMID: 26970828
- Tyagi, S.; Tyagi, P.K.; Gola, D.; Chauhan, N.; Bharti, R.K. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl. Sci., 2019, 1(12), 1545. doi: 10.1007/s42452-019-1593-y
- Nikparast, Y.; Saliani, M. Synergistic effect between phyto-syntesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains. J. Med. Bacteriol., 2018, 7(1-2), 36-43.
- Hagbani, T.A.; Yadav, H.; Moin, A.; Lila, A.S.A.; Mehmood, K.; Alshammari, F.; Khan, S.; Khafagy, E.S.; Hussain, T.; Rizvi, S.M.D.; Abdallah, M.H. Enhancement of vancomycin potential against pathogenic bacterial strains via gold nano-formulations: A nano-antibiotic approach. Materials, 2022, 15(3), 1108. doi: 10.3390/ma15031108 PMID: 35161053
- Khurana, C.; Vala, A.K.; Andhariya, N.; Pandey, O.; Chudasama, B. Influence of antibiotic adsorption on biocidal activities of silver nanoparticles. IET Nanobiotechnol., 2016, 10(2), 69-74. doi: 10.1049/iet-nbt.2015.0005
- Singh, P.; Pandit, S.; Jers, C.; Joshi, A.S. Garnæs, J.; Mijakovic, I. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability. Sci. Rep., 2021, 11(1), 12619. doi: 10.1038/s41598-021-92006-4 PMID: 34135368
- Martinez-Gutierrez, F.; Boegli, L.; Agostinho, A. Sánchez, E.M.; Bach, H.; Ruiz, F.; James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 2013, 29(6), 651-660. doi: 10.1080/08927014.2013.794225 PMID: 23731460
- Liu, L.; Yang, J.; Xie, J.; Luo, Z.; Jiang, J.; Yang, Y.Y.; Liu, S. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for Gram-positive bacteria over erythrocytes. Nanoscale, 2013, 5(9), 3834-3840. doi: 10.1039/c3nr34254a PMID: 23525222
- Javed, B.; Nadhman, A.; Mashwani, Z-R. Phytosynthesis of Ag nanoparticles from Mentha longifolia: Their structural evaluation and therapeutic potential against HCT116 colon cancer, Leishmanial and bacterial cells. Appl. Nanosci., 2020, 10(9), 3503-3515. doi: 10.1007/s13204-020-01428-5
- Chi, Z.; Lin, H.; Li, W.; Zhang, X.; Zhang, Q. in vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells. Environ. Sci. Pollut. Res. Int., 2018, 25(32), 32373-32380. doi: 10.1007/s11356-018-3217-2 PMID: 30229494
- Choi, J.; Reipa, V.; Hitchins, V.M.; Goering, P.L.; Malinauskas, R.A. Physicochemical characterization and in vitrohemolysis evaluation of silver nanoparticles. Toxicol. Sci., 2011, 123(1), 133-143. doi: 10.1093/toxsci/kfr149 PMID: 21652737
- Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano, 2011, 5(7), 5717-5728. doi: 10.1021/nn2013904 PMID: 21630682
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed., 2013, 52(6), 1636-1653. doi: 10.1002/anie.201205923 PMID: 23255416
Supplementary files
