Preparation, Swelling, and Drug Release Studies of Chitosan-based Hydrogels for Controlled Delivery of Buspirone Hydrochloride


Cite item

Full Text

Abstract

Background:Buspirone is used for the management of depression and anxiety disorders. Due to its short half-life and low bioavailability, it requires multiple daily doses and is associated with some side effects.

Aim:This study aimed to develop chitosan-based hydrogels as drug-controlled release carriers.

Objective:The objective of this study is to prepare chitosan-based hydrogels as controlled release carriers in order to overcome the side effects of buspirone HCl and improve patients' compliance and their life quality.

Methods:Polymer chitosan was polymerized with two monomers, acrylic acid and itaconic acid, to synthesize pH-sensitive hydrogel. The Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis were performed to confirm the structure formation and thermal stability. Water penetration capability and loading of the drug were performed by porosity and drug loading studies. The swelling and dissolution tests were performed to analyze the pH-sensitive nature of the developed hydrogels.

Results:FTIR, TGA, and DSC demonstrated that the chitosan-based hydrogels were successfully prepared. An increase in water penetration and drug loading into the hydrogel network was seen with the high incorporation of chitosan, acrylic acid, and itaconic acid. The swelling and dissolution studies revealed that prepared hydrogel offered the greatest swelling and drug release at a high pH of 7.4. The swelling and drug release from the hydrogel were affected by the concentrations of the incorporated contents. A controlled release of the drug was achieved by using chitosan-based hydrogel as a delivery carrier compared to commercial tablets of buspirone.

Conclusion:The results showed that the developed chitosan-based hydrogel can be considered one of the most suitable drug carrier systems for the controlled delivery of buspirone.

About the authors

Muhammad Suhail

School of Pharmacy, Kaohsiung Medical University

Email: info@benthamscience.net

Chih-Wun Fang

Divison of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital

Email: info@benthamscience.net

I-Hui Chiu

School of Pharmacy, Kaohsiung Medical University

Email: info@benthamscience.net

Hamid Ullah

School of Pharmacy, Kaohsiung Medical University

Email: info@benthamscience.net

I-Ling Lin

Department of Medicine Laboratory Science and Biotechnology, College of Health Science, Kaohsiung Medical University

Email: info@benthamscience.net

Ming-Jun Tsai

School of Pharmacy, Kaohsiung Medical University

Author for correspondence.
Email: info@benthamscience.net

Pao-Chu Wu

School of Pharmacy, Kaohsiung Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev., 2001, 101(7), 1869-1880. doi: 10.1021/cr000108x PMID: 11710233
  2. Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem., 2019, 1(3), 335-348. doi: 10.1016/j.trechm.2019.03.005
  3. Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and hydrogel-derived materials for energy and water sustainability. Chem. Rev., 2020, 120(15), 7642-7707. doi: 10.1021/acs.chemrev.0c00345 PMID: 32639747
  4. Jajoo, H.K.; Mayol, R.F.; LaBudde, J.A.; Blair, I.A. Metabolism of the antianxiety drug buspirone in human subjects. Drug Metab. Dispos., 1989, 17(6), 634-640. PMID: 2575499
  5. Mayol, R.; Adamson, D.; Gammans, R.; LaBudde, J. Pharmacokinetics and disposition of C-14 buspirone HCl after intravenous and oral dosing in man. In: Clinical Pharmacology & Therapeutics; MOSBY-YEAR BOOK INC, 1985.
  6. Caccia, S.; Vigano, G.L.; Mingardi, G.; Garattini, S.; Gammans, R.E.; Placchi, M.; Mayol, R.F.; Pfeffer, M. Clinical pharmacokinetics of oral buspirone in patients with impaired renal function. Clin. Pharmacokinet., 1988, 14(3), 171-177. doi: 10.2165/00003088-198814030-00005 PMID: 3370902
  7. Gammans, R.E.; Mayol, R.F.; Labudde, J.A. Metabolism and disposition of buspirone. Am. J. Med., 1986, 80(3), 41-51. doi: 10.1016/0002-9343(86)90331-1 PMID: 3515929
  8. Caccia, S.; Conti, I.; Viganò, G.; Garattini, S. 1-(2-Pyrimidinyl)-piperazine as active metabolite of buspirone in man and rat. Pharmacology, 1986, 33(1), 46-51. doi: 10.1159/000138199 PMID: 2874572
  9. Sakr, A.; Andheria, M. Pharmacokinetics of buspirone extended-release tablets: A single-dose study. J. Clin. Pharmacol., 2001, 41(7), 783-789. doi: 10.1177/00912700122010582 PMID: 11452712
  10. Suhail, M.; Liu, J.Y.; Hung, M.C.; Chiu, I.H.; Minhas, M.U.; Wu, P.C. Preparation, in vitrocharacterization, and cytotoxicity evaluation of polymeric ph-responsive hydrogels for controlled drug release. Pharmaceutics, 2022, 14(9), 1864. doi: 10.3390/pharmaceutics14091864 PMID: 36145612
  11. Ullah, K.; Ali Khan, S.; Murtaza, G.; Sohail, M. Azizullah; Manan, A.; Afzal, A. Gelatin-based hydrogels as potential biomaterials for colonic delivery of oxaliplatin. Int. J. Pharm., 2019, 556, 236-245. doi: 10.1016/j.ijpharm.2018.12.020 PMID: 30553956
  12. Zia, M.A.; Sohail, M.; Minhas, M.U.; Sarfraz, R.M.; Khan, S.; de Matas, M.; Hussain, Z.; Abbasi, M.; Shah, S.A.; Kousar, M.; Ahmad, N. HEMA based pH-sensitive semi IPN microgels for oral delivery; a rationale approach for ketoprofen. Drug Dev. Ind. Pharm., 2020, 46(2), 272-282. doi: 10.1080/03639045.2020.1716378 PMID: 31928342
  13. Ijaz, H.; Tulain, U.R.; Azam, F.; Qureshi, J. Thiolation of arabinoxylan and its application in the fabrication of pH-sensitive thiolated arabinoxylan grafted acrylic acid copolymer. Drug Dev. Ind. Pharm., 2019, 45(5), 754-766. doi: 10.1080/03639045.2019.1569041 PMID: 30640559
  14. Khan, S.; Ranjha, N.M. Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym. Bull., 2014, 71(8), 2133-2158. doi: 10.1007/s00289-014-1178-2
  15. Tsai, Y.H.; Chang, J.T.; Chang, J.S.; Huang, C.T.; Huang, Y.B.; Wu, P.C. The effect of component of microemulsions on transdermal delivery of buspirone hydrochloride. J. Pharm. Sci-Us, 2011, 100(6), 2358-2365. doi: 10.1002/jps.22474
  16. Peppas, N.A.; Sahlin, J.J. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm., 1989, 57(2), 169-172. doi: 10.1016/0378-5173(89)90306-2
  17. Guinesi, L.S.; E.T.G., Cavalheiro 2006 The use of dsc curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta, 2006, 444(2), 128-133. doi: 10.1016/j.tca.2006.03.003
  18. Khan, M.Z.U.; Makreski, P.; Murtaza, G. Preparation, optimization, in vitroevaluation and ex vivo permeation studies of finasteride loaded gel formulations prepared by using response surface methodology. Curr. Drug Deliv., 2018, 15(9), 1312-1322. doi: 10.2174/1567201815666180502165436 PMID: 29732987
  19. Gatiganti, D.L.; Srimathkandala, M.H.; Ananthula, M.B.; Bakshi, V. Formulation and evaluation of oral natural polysaccharide hydrogel microbeads of Irbesartan. Anal. Chem. Lett., 2016, 6(4), 334-344. doi: 10.1080/22297928.2016.1209427
  20. Ge, H.; Hua, T.; Wang, J. Preparation and characterization of poly (itaconic acid)-grafted crosslinked chitosan nanoadsorbent for high uptake of Hg2+ and Pb2+. Int. J. Biol. Macromol., 2017, 95, 954-961. doi: 10.1016/j.ijbiomac.2016.10.084 PMID: 27793682
  21. Betancourt, T.; Pardo, J.; Soo, K.; Peppas, N.A. Characterization of pH‐responsive hydrogels of poly(itaconic acid‐ g ‐ethylene glycol) prepared by UV‐initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J. Biomed. Mater. Res. A, 2010, 93A(1), 175-188. doi: 10.1002/jbm.a.32510 PMID: 19536838
  22. Azmi, S.; Al-Ghafri, L.T.; Al-Ghafri, S.S.; Al-Haribi, M.M. Determination of buspirone HCL in commercial dosage forms by extractive spectrophotometric method and comparison by HPLC method. Sci. J. Analyt. Chem., 2015, 3(6), 91. doi: 10.11648/j.sjac.20150306.13
  23. Ahmad, S.; Minhas, M.U.; Ahmad, M.; Sohail, M.; Abdullah, O.; Badshah, S.F. Preparation and evaluation of skin wound healing chitosan-based hydrogel membranes. AAPS PharmSciTech, 2018, 19(7), 3199-3209. doi: 10.1208/s12249-018-1131-z PMID: 30171450
  24. Briehl, H.; Butenuth, J. Application of DTA/DSC and TG for studying chemical reactions of monomeric organic compounds. Thermochim. Acta, 1990, 167(2), 249-292. doi: 10.1016/0040-6031(90)80482-E
  25. Kalagasidis Krušić, M.; Džunuzović, E.; Trifunović, S.; Filipović, J. Polyacrylamide and poly(itaconic acid) complexes. Eur. Polym. J., 2004, 40(4), 793-798. doi: 10.1016/j.eurpolymj.2003.11.016
  26. Singh, B.; Dhiman, A. Functionalization of carbopol with NVP for designing antibiotic drug loaded hydrogel dressings for better wound management. J. Pharmaceut. Biopharmaceut. Res., 2019, 1(1), 1-14. doi: 10.25082/JPBR.2019.01.001
  27. Coşkun, R.; Soykan, C.; Delibaş, A. Study of free-radical copolymerization of itaconic acid/2-acrylamido-2-methyl-1-propanesulfonic acid and their metal chelates. Eur. Polym. J., 2006, 42(3), 625-637. doi: 10.1016/j.eurpolymj.2005.08.018
  28. Wei, W.; Hu, X.; Qi, X.; Yu, H.; Liu, Y.; Li, J.; Zhang, J.; Dong, W. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): Synthesis and characterization. Colloids Surf. B Biointerfaces, 2015, 125, 1-11. doi: 10.1016/j.colsurfb.2014.10.057 PMID: 25460596
  29. Hu, X.; Feng, L.; Wei, W.; Xie, A.; Wang, S.; Zhang, J.; Dong, W. Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate). Carbohydr. Polym., 2014, 105, 135-144. doi: 10.1016/j.carbpol.2014.01.051 PMID: 24708962
  30. Ray, M.; Pal, K.; Anis, A.; Banthia, A.K. Development and characterization of chitosan-based polymeric hydrogel membranes. Des. Monomers Polym., 2010, 13(3), 193-206. doi: 10.1163/138577210X12634696333479
  31. Jo, S.; Kim, S.; Noh, I. Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol. Res., 2012, 20(9), 968-976. doi: 10.1007/s13233-012-0138-7
  32. Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Dong, W.; Zhang, J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IAco-HEMA) hydrogel for release of doxorubicin. Carbohydr. Polym., 2017, 155, 242-251. doi: 10.1016/j.carbpol.2016.08.077 PMID: 27702509
  33. Lee, C.T.; Huang, C.P.; Lee, Y.D. Synthesis and characterizations of amphiphilic poly(l-lactide)-grafted chondroitin sulfate copolymer and its application as drug carrier. Biomol. Eng., 2007, 24(1), 131-139. doi: 10.1016/j.bioeng.2006.05.010 PMID: 16835016
  34. Khalid, I.; Ahmad, M.; Minhas, M.; Barkat, K. Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers. Carbohydr. Polym., 2018, 181, 1169-1179. doi: 10.1016/j.carbpol.2017.10.092 PMID: 29253946
  35. Sarika, P.R.; James, N.R.; Raj, D.K. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehydegelatin nanogels. Mater. Sci. Eng. C, 2016, 68, 251-257. doi: 10.1016/j.msec.2016.05.046 PMID: 27524019
  36. Murthy, P.S.K.; Mohan, Y.M.; Sreeramulu, J.; Raju, K.M. Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): Preparation, swelling and diffusion characteristics evaluation. React. Funct. Polym., 2006, 66(12), 1482-1493. doi: 10.1016/j.reactfunctpolym.2006.04.010
  37. Malik, N.S.; Ahmad, M.; Minhas, M.U.; Tulain, R.; Barkat, K.; Khalid, I.; Khalid, Q. Chitosan/xanthan gum based hydrogels as potential carrier for an antiviral drug: Fabrication, characterization, and safety evaluation. Front Chem., 2020, 8, 50. doi: 10.3389/fchem.2020.00050 PMID: 32117876
  38. Hussain, A.; Khalid, S.H.; Qadir, M.I.; Massud, A.; Ali, M.; Khan, I.U.; Saleem, M.; Iqbal, M.S.; Asghar, S.; Gul, H. Water uptake and drug release behaviour of methyl methacrylateco-itaconic acid P(MMA/IA) hydrogels cross-linked with methylene bisacrylamide. J. Drug Deliv. Sci. Technol., 2011, 21(3), 249-255. doi: 10.1016/S1773-2247(11)50034-6
  39. Bukhari, S.M.H.; Khan, S.; Rehanullah, M.; Ranjha, N.M. Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: Effect of pH and composition on swelling and drug release. Int. J. Polym. Sci., 2015, 2015, 1-15. doi: 10.1155/2015/187961
  40. Lim, S.L.; Tang, W.N.H.; Ooi, C.W.; Chan, E.S.; Tey, B.T. Rapid swelling and deswelling of semi‐interpenetrating network poly (acrylic acid)/poly(aspartic acid) hydrogels prepared by freezing polymerization. J. Appl. Polym. Sci., 2016, 133(24), 43515. doi: 10.1002/app.43515
  41. Shoaib, M.H.; Tazeen, J.; Merchant, H.A.; Yousuf, R.I. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak. J. Pharm. Sci., 2006, 19(2), 119-124. PMID: 16751122
  42. Maziad, N.A. Radiation preparation of smart hydrogel has antimicrobial properties for controlled release of ciprofloxacin in drug delivery systems. Drug Deliv., 2015, 14, 15.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers