Recent Insight into Herbal Bioactives-based Novel Approaches for Chronic Intestinal Inflammatory Disorders Therapy


Citar

Texto integral

Resumo

:Inflammatory bowel disease (IBD) is a life-threatening complex disease. It causes chronic intestinal inflammation in GIT. IBD significantly affects people’s lifestyles and carries a high risk of colon cancer. IBD involves the rectum, ileum, and colon, with clinical manifestations of bloody stools, weight loss, diarrhea, and abdominal pain. The prevalence of inflammatory disease is increasing dramatically worldwide. Over 16 million people are affected annually in India, with an economic burden of $6.8- $8.8 billion for treatment. Modern medicine can manage IBD as immunosuppressive agents, corticosteroids, tumor necrosis factor antagonists, integrin blockers, and amino-salicylates. However, these approaches are allied with limitations such as limited efficacy, drug resistance, undesired side effects, and overall cost, which cannot be ignored. Hence, the herbal bioactives derived from various plant resources can be employed in managing IBD. Science Direct, PubMed, Google, and Scopus databases have been searched for conclusively relevant herbal plant-based anti-inflammatory agent compositions. Studies were screened through analysis of previously published review articles. Eminent herbal bioactives, namely curcumin, resveratrol, ellagic acid, silybin, catechin, kaempferol, icariin, glycyrrhizin acid, berberine, quercetin, rutin, and thymol are reported to be effective against IBD. Herbal leads are promising treatment options for IBD; they have been shown to display antiinflammatory and antioxidant properties by targeting enzymes and regulating the expressions of various inflammatory mediators. Natural products have been reported to have anti-inflammatory properties in various clinical and preclinical studies, and some are available as herbal preparations. Herbal medicine would be promising in association with the implication of a novel drug delivery system for managing IBD.

Sobre autores

Ranjit Harwansh

Institute of Pharmaceutical Research, GLA University

Autor responsável pela correspondência
Email: info@benthamscience.net

Sonia Chauhan

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Rohitas Deshmukh

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Rupa Mazumder

, NIET Pharmacy Institute

Email: info@benthamscience.net

Bibliografia

  1. Dasgupta, Y.; Golovine, K.; Nieborowska-Skorska, M.; Luo, L.; Matlawska-Wasowska, K.; Mullighan, C.G.; Skorski, T. Drugging DNA repair to target T-ALL cells. Leuk. Lymphoma, 2018, 59(7), 1746-1749. doi: 10.1080/10428194.2017.1397662 PMID: 29115896
  2. Deshmukh, R.; Prajapati, M.; Harwansh, R.K. A review on emerging targeted therapies for the management of metastatic colorectal cancers. Med. Oncol., 2023, 40(6), 159. doi: 10.1007/s12032-023-02020-x PMID: 37097307
  3. Sairenji, T.; Collins, K.L.; Evans, D.V. An update on inflammatory bowel disease. Prim. Care, 2017, 44(4), 673-692. doi: 10.1016/j.pop.2017.07.010 PMID: 29132528
  4. Kaplan, G.G.; Ng, S.C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology, 2017, 152(2), 313-321.e2. doi: 10.1053/j.gastro.2016.10.020 PMID: 27793607
  5. Guan, Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res., 2019, 2019, 1-16. doi: 10.1155/2019/7247238 PMID: 31886308
  6. Deshmukh, R. Kumari, S Inflammatory bowel disease: A snapshot of current knowledge. J. Gastroenterol. Hepatol., 2020, 13, 956-962.
  7. Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(1), 56-66. doi: 10.1038/s41575-020-00360-x PMID: 33033392
  8. Lee, S.H.; Kwon, J.; Cho, M.L. Immunological pathogenesis of inflammatory bowel disease. Intest. Res., 2018, 16(1), 26-42. doi: 10.5217/ir.2018.16.1.26 PMID: 29422795
  9. Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The epidemiology of inflammatory bowel disease: East meets west. J. Gastroenterol. Hepatol., 2020, 35(3), 380-389. doi: 10.1111/jgh.14872 PMID: 31596960
  10. Lo, C.H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Dietary inflammatory potential and risk of crohn’s disease and ulcerative colitis. Gastroenterology, 2020, 159(3), 873-883.e1. doi: 10.1053/j.gastro.2020.05.011 PMID: 32389666
  11. Antoni, L.; Nuding, S.; Wehkamp, J.; Stange, E.F. Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol., 2014, 20(5), 1165-1179. doi: 10.3748/wjg.v20.i5.1165 PMID: 24574793
  12. Salim, S.Y.; Söderholm, J.D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis., 2011, 17(1), 362-381. doi: 10.1002/ibd.21403 PMID: 20725949
  13. Sgambato, D.; Miranda, A.; Ranaldo, R.; Federico, A.; Romano, M. The role of stress in inflammatory bowel diseases. Curr. Pharm. Des., 2017, 23(27), 3997-4002. PMID: 28245757
  14. Uhlig, H.H. Monogenic diseases associated with intestinal inflammation: Implications for the understanding of inflammatory bowel disease. Gut, 2013, 62(12), 1795-1805. doi: 10.1136/gutjnl-2012-303956 PMID: 24203055
  15. Ananthakrishnan, A.N. Environmental risk factors for inflammatory bowel diseases: A review. Dig. Dis. Sci., 2015, 60(2), 290-298. doi: 10.1007/s10620-014-3350-9 PMID: 25204669
  16. Ananthakrishnan, A.N. Environmental risk factors for inflammatory bowel disease. Gastroenterol. Hepatol., 2013, 9(6), 367-374. PMID: 23935543
  17. Schoultz, I.; Keita, Å. Cellular and molecular therapeutic targets in inflammatory bowel disease—focusing on intestinal barrier function. Cells, 2019, 8(2), 193. doi: 10.3390/cells8020193 PMID: 30813280
  18. Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental risk factors for inflammatory bowel diseases: An umbrella review of meta-analyses. Gastroenterology, 2019, 157(3), 647-659.e4. doi: 10.1053/j.gastro.2019.04.016 PMID: 31014995
  19. Shanahan, F. Crohn’s disease. Lancet, 2002, 359(9300), 62-69. doi: 10.1016/S0140-6736(02)07284-7 PMID: 11809204
  20. Greuter, T.; Vavricka, S.R. Extraintestinal manifestations in inflammatory bowel disease - epidemiology, genetics, and pathogenesis. Expert Rev. Gastroenterol. Hepatol., 2019, 13(4), 307-317. doi: 10.1080/17474124.2019.1574569 PMID: 30791773
  21. Sartor, R.B. Mechanisms of Disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, 3(7), 390-407. doi: 10.1038/ncpgasthep0528 PMID: 16819502
  22. Pizarro, T.T.; Stappenbeck, T.S.; Rieder, F.; Rosen, M.J.; Colombel, J.F.; Donowitz, M.; Towne, J.; Mazmanian, S.K.; Faith, J.J.; Hodin, R.A.; Garrett, W.S.; Fichera, A.; Poritz, L.S.; Cortes, C.J.; Shtraizent, N.; Honig, G.; Snapper, S.B.; Hurtado-Lorenzo, A.; Salzman, N.H.; Chang, E.B. Challenges in IBD research: Preclinical human IBD mechanisms. Inflamm. Bowel Dis., 2019, 25(S2), S5-S12. doi: 10.1093/ibd/izz075 PMID: 31095706
  23. Qin, X. Etiology of inflammatory bowel disease: A unified hypothesis. World J. Gastroenterol., 2012, 18(15), 1708-1722. doi: 10.3748/wjg.v18.i15.1708 PMID: 22553395
  24. Ahluwalia, B.; Moraes, L.; Magnusson, M.K.; Öhman, L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand. J. Gastroenterol., 2018, 53(4), 379-389. doi: 10.1080/00365521.2018.1447597 PMID: 29523023
  25. Magnusson, M.K.; Brynjólfsson, S.F.; Dige, A.; Uronen-Hansson, H.; Börjesson, L.G.; Bengtsson, J.L.; Gudjonsson, S.; Öhman, L.; Agnholt, J.; Sjövall, H.; Agace, W.W.; Wick, M.J. Macrophage and dendritic cell subsets in IBD: ALDH+ cells are reduced in colon tissue of patients with ulcerative colitis regardless of inflammation. Mucosal Immunol., 2016, 9(1), 171-182. doi: 10.1038/mi.2015.48 PMID: 26080709
  26. Tatiya-aphiradee, N.; Chatuphonprasert, W.; Jarukamjorn, K. Immune response and inflammatory pathway of ulcerative colitis. J. Basic Clin. Physiol. Pharmacol., 2018, 30(1), 1-10. doi: 10.1515/jbcpp-2018-0036 PMID: 30063466
  27. Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448(7152), 427-434. doi: 10.1038/nature06005 PMID: 17653185
  28. Powrie, F.; Mauze, S.; Coffman, R.L. CD4+ T-cells in the regulation of inflammatory responses in the intestine. Res. Immunol., 1997, 148(8-9), 576-581. doi: 10.1016/S0923-2494(98)80152-1 PMID: 9588837
  29. Pazmandi, J.; Kalinichenko, A.; Ardy, R.C.; Boztug, K. Early‐onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol. Rev., 2019, 287(1), 162-185. doi: 10.1111/imr.12726 PMID: 30565237
  30. Oka, A.; Sartor, R.B. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases. Dig. Dis. Sci., 2020, 65(3), 757-788. doi: 10.1007/s10620-020-06090-z PMID: 32006212
  31. Tap, J.; Mondot, S.; Levenez, F.; Pelletier, E.; Caron, C.; Furet, J.P.; Ugarte, E.; Muñoz-Tamayo, R.; Paslier, D.L.E.; Nalin, R.; Dore, J.; Leclerc, M. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol., 2009, 11(10), 2574-2584. doi: 10.1111/j.1462-2920.2009.01982.x PMID: 19601958
  32. Schmitz, J.M.; Tonkonogy, S.L.; Dogan, B.; Leblond, A.; Whitehead, K.J.; Kim, S.C.; Simpson, K.W.; Sartor, R.B. Murine adherent and invasive E. coli induces chronic inflammation and immune responses in the small and large intestines of monoassociated IL-10-/- mice independent of long polar fimbriae adhesin A. Inflamm. Bowel Dis., 2019, 25(5), 875-885. doi: 10.1093/ibd/izy386 PMID: 30576451
  33. Allez, M.; Lemann, M.; Bonnet, J.; Cattan, P.; Jian, R.; Modigliani, R. Long term outcome of patients with active Crohn’s disease exhibiting extensive and deep ulcerations at colonoscopy. Am. J. Gastroenterol., 2002, 97(4), 947-953. doi: 10.1016/S0002-9270(02)03970-9 PMID: 12003431
  34. Takenaka, K.; Kitazume, Y.; Fujii, T.; Tsuchiya, K.; Watanabe, M.; Ohtsuka, K. Objective evaluation for treat to target in Crohn’s disease. J. Gastroenterol., 2020, 55(6), 579-587. doi: 10.1007/s00535-020-01678-8 PMID: 32130521
  35. De Cruz, P.; Kamm, M.A.; Hamilton, A.L.; Ritchie, K.J.; Krejany, E.O.; Gorelik, A.; Liew, D.; Prideaux, L.; Lawrance, I.C.; Andrews, J.M.; Bampton, P.A.; Gibson, P.R.; Sparrow, M.; Leong, R.W.; Florin, T.H.; Gearry, R.B.; Radford-Smith, G.; Macrae, F.A.; Debinski, H.; Selby, W.; Kronborg, I.; Johnston, M.J.; Woods, R.; Elliott, P.R.; Bell, S.J.; Brown, S.J.; Connell, W.R.; Desmond, P.V. Crohn’s disease management after intestinal resection: a randomised trial. Lancet, 2015, 385(9976), 1406-1417. doi: 10.1016/S0140-6736(14)61908-5 PMID: 25542620
  36. Chatu, S.; Poullis, A.; Holmes, R.; Greenhalgh, R.; Pollok, R.C.G. Temporal trends in imaging and associated radiation exposure in inflammatory bowel disease. Int. J. Clin. Pract., 2013, 67(10), 1057-1065. doi: 10.1111/ijcp.12187 PMID: 24073979
  37. Paulsen, S.R.; Huprich, J.E.; Fletcher, J.G.; Booya, F.; Young, B.M.; Fidler, J.L.; Johnson, C.D.; Barlow, J.M.; Earnest, F. IV CT enterography as a diagnostic tool in evaluating small bowel disorders: review of clinical experience with over 700 cases. Radiographics, 2006, 26(3), 641-657. doi: 10.1148/rg.263055162 PMID: 16702444
  38. Manno, M.; Barbera, C.; Bertani, H.; Manta, R.; Mirante, V.G.; Dabizzi, E.; Caruso, A.; Pigo, F.; Olivetti, G.; Conigliaro, R. Single balloon enteroscopy: Technical aspects and clinical applications. World J. Gastrointest. Endosc., 2012, 4(2), 28-32. doi: 10.4253/wjge.v4.i2.28 PMID: 22347529
  39. Fan, R.; Zhong, J.; Wang, Z.T.; Li, S.Y.; Zhou, J.; Tang, Y.H. Evaluation of "top-down" treatment of early Crohn’s disease by double balloon enteroscopy. World J. Gastroenterol., 2014, 20(39), 14479-14487. doi: 10.3748/wjg.v20.i39.14479 PMID: 25339835
  40. Hirai, F.; Andoh, A.; Ueno, F.; Watanabe, K.; Ohmiya, N.; Nakase, H.; Kato, S.; Esaki, M.; Endo, Y.; Yamamoto, H.; Matsui, T.; Iida, M.; Hibi, T.; Watanabe, M.; Suzuki, Y.; Matsumoto, T. Efficacy of endoscopic balloon dilation for small bowel strictures in patients with Crohn’s Disease: A nationwide, multi-centre, open-label, prospective cohort study. J. Crohn’s Colitis, 2018, 12(4), 394-401. doi: 10.1093/ecco-jcc/jjx159 PMID: 29194463
  41. Arulanandan, A.; Dulai, P.S.; Singh, S.; Sandborn, W.J.; Kalmaz, D. Systematic review: Safety of balloon assisted enteroscopy in Crohn’s disease. World J. Gastroenterol., 2016, 22(40), 8999-9011. doi: 10.3748/wjg.v22.i40.8999 PMID: 27833391
  42. Orlando, S.; Fraquelli, M.; Coletta, M.; Branchi, F.; Magarotto, A.; Conti, C.B.; Mazza, S.; Conte, D.; Basilisco, G.; Caprioli, F. Ultrasound elasticity imaging predicts therapeutic outcomes of patients with crohn’s disease treated with anti-tumour necrosis factor antibodies. J. Crohn’s Colitis, 2018, 12(1), 63-70. doi: 10.1093/ecco-jcc/jjx116 PMID: 28961950
  43. Dillman, J.R.; Smith, E.A.; Sanchez, R.; DiPietro, M.A.; Fazeli Dehkordy, S.; Adler, J.; DeMatos-Maillard, V.; Khalatbari, S.; Davenport, M.S. Prospective cohort study of ultrasound-ultrasound and ultrasound-MR enterography agreement in the evaluation of pediatric small bowel Crohn disease. Pediatr. Radiol., 2016, 46(4), 490-497. doi: 10.1007/s00247-015-3517-3 PMID: 26718197
  44. Knieling, F.; Neufert, C.; Hartmann, A.; Claussen, J.; Urich, A.; Egger, C.; Vetter, M.; Fischer, S.; Pfeifer, L.; Hagel, A.; Kielisch, C.; Görtz, R.S.; Wildner, D.; Engel, M.; Röther, J.; Uter, W.; Siebler, J.; Atreya, R.; Rascher, W.; Strobel, D.; Neurath, M.F.; Waldner, M.J. Multispectral optoacoustic tomography for assessment of crohn’s disease activity. N. Engl. J. Med., 2017, 376(13), 1292-1294. doi: 10.1056/NEJMc1612455 PMID: 28355498
  45. Calabrese, E.; Kucharzik, T.; Maaser, C.; Maconi, G.; Strobel, D.; Wilson, S.R.; Zorzi, F.; Novak, K.L.; Bruining, D.H.; Iacucci, M.; Watanabe, M.; Lolli, E.; Chiaramonte, C.; Hanauer, S.B.; Panaccione, R.; Pallone, F.; Ghosh, S.; Monteleone, G. Real-time interobserver agreement in bowel ultrasonography for diagnostic assessment in patients with crohn’s disease: An international multicenter study. Inflamm. Bowel Dis., 2018, 24(9), 2001-2006. doi: 10.1093/ibd/izy091 PMID: 29718450
  46. Nidhi, R.M.; Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J., 2016, 24(4), 458-472. doi: 10.1016/j.jsps.2014.10.001 PMID: 27330377
  47. Deshmukh, R.; Harwansh, R.K.; Paul, S.D.; Shukla, R. Controlled release of sulfasalazine loaded amidated pectin microparticles through Eudragit S 100 coated capsule for management of inflammatory bowel disease. J. Drug Deliv. Sci. Technol., 2020, 55, 101495. doi: 10.1016/j.jddst.2019.101495
  48. Ju, L.Z.; Ke, F.; Yadav, P.K. Herbal medicine in the treatment of ulcerative colitis. Saudi J. Gastroenterol., 2012, 18(1), 3-10. doi: 10.4103/1319-3767.91726 PMID: 22249085
  49. Suroowan, S.; Mahomoodally, F. Herbal products for common auto-inflammatory disorders - novel approaches. Comb. Chem. High Throughput Screen., 2018, 21(3), 161-174. doi: 10.2174/1386207321666180213093449 PMID: 29436996
  50. Wu, X.; Yang, Y.; Dou, Y.; Ye, J.; Bian, D.; Wei, Z.; Tong, B.; Kong, L.; Xia, Y.; Dai, Y. Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int. Immunopharmacol., 2014, 23(2), 505-515. doi: 10.1016/j.intimp.2014.09.026 PMID: 25284342
  51. Ai, X.Y.; Qin, Y.; Liu, H.J.; Cui, Z.H.; Li, M.; Yang, J.H.; Zhong, W.L.; Liu, Y.R.; Chen, S.; Sun, T.; Zhou, H.G.; Yang, C. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget, 2017, 8(59), 100216-100226. doi: 10.18632/oncotarget.22145 PMID: 29245972
  52. Hoensch, H.P.; Weigmann, B. Regulation of the intestinal immune system by flavonoids and its utility in chronic inflammatory bowel disease. World J. Gastroenterol., 2018, 24(8), 877-881. doi: 10.3748/wjg.v24.i8.877 PMID: 29491681
  53. Márquez-Flores, Y.K.; Villegas, I.; Cárdeno, A.; Rosillo, M.Á.; Alarcón-de-la-Lastra, C. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J. Nutr. Biochem., 2016, 30, 143-152. doi: 10.1016/j.jnutbio.2015.12.002 PMID: 27012631
  54. Liu, Q.; Zuo, R.; Wang, K.; Nong, F.; Fu, Y.; Huang, S.; Pan, Z.; Zhang, Y.; Luo, X.; Deng, X.; Zhang, X.; Zhou, L.; Chen, Y. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway. Acta Pharmacol. Sin., 2020, 41(6), 771-781. doi: 10.1038/s41401-019-0335-4 PMID: 31937929
  55. Li, Y.; Wang, X.; Su, Y.; Wang, Q.; Huang, S.; Pan, Z.; Chen, Y.; Liang, J.; Zhang, M.; Xie, X.; Wu, Z.; Chen, J.; Zhou, L.; Luo, X. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacol. Sin., 2022, 43(6), 1495-1507. doi: 10.1038/s41401-021-00781-7 PMID: 34671110
  56. Luo, X.; Yu, Z.; Deng, C.; Zhang, J.; Ren, G.; Sun, A.; Mani, S.; Wang, Z.; Dou, W. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci. Rep., 2017, 7(1), 16374. doi: 10.1038/s41598-017-12562-6 PMID: 29180692
  57. Zhou, J.; Wang, T.; Dou, Y.; Huang, Y.; Qu, C.; Gao, J.; Huang, Z.; Xie, Y.; Huang, P.; Lin, Z.; Su, Z. Brusatol ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammasome. Int. Immunopharmacol., 2018, 64, 264-274. doi: 10.1016/j.intimp.2018.09.008 PMID: 30218953
  58. Mai, C.T.; Wu, M.M.; Wang, C.L.; Su, Z.R.; Cheng, Y.Y.; Zhang, X.J. Palmatine attenuated dextran sulfate sodium (DSS)-induced colitis via promoting mitophagy-mediated NLRP3 inflammasome inactivation. Mol. Immunol., 2019, 105, 76-85. doi: 10.1016/j.molimm.2018.10.015 PMID: 30496979
  59. Zhang, X.J.; Yuan, Z.W.; Qu, C.; Yu, X.T.; Huang, T.; Chen, P.V.; Su, Z.R.; Dou, Y.X.; Wu, J.Z.; Zeng, H.F.; Xie, Y.; Chen, J.N. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota. Pharmacol. Res., 2018, 137, 34-46. doi: 10.1016/j.phrs.2018.09.010 PMID: 30243842
  60. Chaparala, A.; Poudyal, D.; Tashkandi, H.; Witalison, E.E.; Chumanevich, A.A.; Hofseth, J.L.; Nguyen, I.; Hardy, O.; Pittman, D.L.; Wyatt, M.D.; Windust, A.; Murphy, E.A.; Nagarkatti, M.; Nagarkatti, P.; Hofseth, L.J. Panaxynol, a bioactive component of American ginseng, targets macrophages and suppresses colitis in mice. Oncotarget, 2020, 11(22), 2026-2036. doi: 10.18632/oncotarget.27592 PMID: 32547701
  61. Lee, C.; Lee, J.W.; Seo, J.Y.; Hwang, S.W. Im, J.P.; Kim, J.S. Lupeol inhibits LPS-induced NF-kappa B signaling in intestinal epithelial cells and macrophages, and attenuates acute and chronic murine colitis. Life Sci., 2016, 146, 100-108. doi: 10.1016/j.lfs.2016.01.001 PMID: 26767626
  62. Socca, E.A.; Dunder, R.; de Almeida, A.C.; Manzo, L.; de-Faria, F.; Maia, G.L.; Barboza-Filho, J.M.; Regina, S-B.; Luiz-Ferreira, A. P-255 therapy with lupeol, a natural pentacyclic triterpenoid, attenuates intestinal inflammation in rat. Inflamm. Bowel Dis., 2017, 23, S83-S84.
  63. Marín, M.; Giner, R.; Ríos, J.L.; Carmen Recio, M. Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. J. Ethnopharmacol., 2013, 150(3), 925-934. doi: 10.1016/j.jep.2013.09.030 PMID: 24140585
  64. Ran, X.; Li, Y.; Chen, G.; Fu, S.; He, D.; Huang, B.; Wei, L.; Lin, Y.; Guo, Y.; Hu, G. Farrerol ameliorates TNBS-induced colonic inflammation by inhibiting ERK1/2, JNK1/2, and NF-κB signaling pathway. Int. J. Mol. Sci., 2018, 19(7), 2037. doi: 10.3390/ijms19072037
  65. Jeong, J.J.; Jang, S.E.; Hyam, S.R.; Han, M.J.; Kim, D.H. Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-κB and MAPK pathways. Eur. J. Pharmacol., 2014, 740, 652-661. doi: 10.1016/j.ejphar.2014.06.013 PMID: 24972244
  66. Somani, S.; Zambad, S.; Modi, K. Mangiferin attenuates DSS colitis in mice: Molecular docking and in vivo approach. Chem. Biol. Interact., 2016, 253, 18-26. doi: 10.1016/j.cbi.2016.04.033 PMID: 27125760
  67. Tahmasebi, P.; Froushani, S.M.; Ahangaran, N. Thymol has beneficial effects on the experimental model of ulcerative colitis. Avicenna J. Phytomed., 2019, 9(6), 538-550. PMID: 31763213
  68. Chamanara, M.; Abdollahi, A.; Rezayat, S.M.; Ghazi-Khansari, M.; Dehpour, A.; Nassireslami, E.; Rashidian, A. Thymol reduces acetic acid-induced inflammatory response through inhibition of NF-kB signaling pathway in rat colon tissue. Inflammopharmacology, 2019, 27(6), 1275-1283. doi: 10.1007/s10787-019-00583-8 PMID: 30903350
  69. Liu, X.; Wu, Y.L.; Liu, K.L.; Cui, X.L.; Du, X.X.; Zhang, W.Q. Effects of resveratrol on ulcerative colitis in mice and its mechanism. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih, 2019, 35(5), 447-453. PMID: 31894679
  70. Wang, J.; Zhang, Z.; Fang, A.; Wu, K.; Chen, X.; Wang, G.; Mao, F. Resveratrol attenuates inflammatory bowel disease in mice by regulating SUMO1. Biol. Pharm. Bull., 2020, 43(3), 450-457. doi: 10.1248/bpb.b19-00786 PMID: 32115503
  71. Midura-Kiela, M.T.; Radhakrishnan, V.M.; Larmonier, C.B.; Laubitz, D.; Ghishan, F.K.; Kiela, P.R. Curcumin inhibits interferon-γ signaling in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(1), G85-G96. doi: 10.1152/ajpgi.00275.2011 PMID: 22038826
  72. Bhat, A.A.; Thapa, R.; Goyal, A.; Subramaniyan, V.; Kumar, D.; Gupta, S.; Singh, S.K.; Dua, K.; Gupta, G. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases. Future Med. Chem., 2023, 15(7), 583-586. doi: 10.4155/fmc-2023-0048 PMID: 37140132
  73. McFadden, R.M.T.; Larmonier, C.B.; Shehab, K.W.; Midura-Kiela, M.; Ramalingam, R.; Harrison, C.A.; Besselsen, D.G.; Chase, J.H.; Caporaso, J.G.; Jobin, C.; Ghishan, F.K.; Kiela, P.R. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm. Bowel Dis., 2015, 21(11), 2483-2494. doi: 10.1097/MIB.0000000000000522 PMID: 26218141
  74. Wei, C.; Wang, J.Y.; Xiong, F.; Wu, B.H.; Luo, M.H.; Yu, Z.C.; Liu, T.T.; Li, D.F.; Tang, Q.; Li, Y.X.; Zhang, D.G.; Xu, Z.L.; Jin, H.T.; Wang, L.S.; Yao, J. Curcumin ameliorates DSS induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol. Med. Rep., 2021, 23(1), 23. PMID: 33179078
  75. Bastaki, S.M.; Adeghate, E.; Amir, N.; Ojha, S.; Oz, M. Menthol inhibits oxidative stress and inflammation in acetic acid-induced colitis in rat colonic mucosa. Am. J. Transl. Res., 2018, 10(12), 4210-4222. PMID: 30662664
  76. Lu, Q.; Wu, X.; Han, W.; Zhang, W.; Wang, Y.; Kong, D.; Fan, Z. Effect of Glycyrrhiza uralensis against ulcerative colitis through regulating the signaling pathway of FXR/P-gp. Am. J. Transl. Res., 2021, 13(8), 9296-9305. PMID: 34540046
  77. Sheng, Q.; Li, F.; Chen, G.; Li, J.; Li, J.; Wang, Y.; Lu, Y.; Li, Q.; Li, M.; Chai, K. Ursolic acid regulates intestinal microbiota and inflammatory cell infiltration to prevent ulcerative colitis. J. Immunol. Res., 2021, 2021, 1-16. doi: 10.1155/2021/6679316 PMID: 34007853
  78. Ran, Z.H.; Chen, C.; Xiao, S.D. Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. Biomed. Pharmacother., 2008, 62(3), 189-196. doi: 10.1016/j.biopha.2008.02.002 PMID: 18325726
  79. Abboud, P.A.; Hake, P.W.; Burroughs, T.J.; Odoms, K.; O’Connor, M.; Mangeshkar, P.; Wong, H.R.; Zingarelli, B. Therapeutic effect of epigallocatechin-3-gallate in a mouse model of colitis. Eur. J. Pharmacol., 2008, 579(1-3), 411-417. doi: 10.1016/j.ejphar.2007.10.053 PMID: 18022615
  80. Polat, F.R.; Karaboğa, İ. Immunohistochemical examination of anti-inflammatory and anti-apoptotic effects of hesperetin on trinitrobenzene sulfonic acid induced colitis in rats. Biotech. Histochem., 2019, 94(3), 151-158. doi: 10.1080/10520295.2018.1530454 PMID: 30383440
  81. Chen, A.; Fang, D.; Ren, Y.; Wang, Z. Matrine protects colon mucosal epithelial cells against inflammation and apoptosis via the Janus kinase 2/signal transducer and activator of transcription 3 pathway. Bioengineered, 2022, 13(3), 6490-6499. doi: 10.1080/21655979.2022.2031676 PMID: 35220895
  82. Goyal, A.; Agrawal, N. Quercetin: A potential candidate for the treatment of arthritis. Curr. Mol. Med., 2022, 22(4), 325-335. doi: 10.2174/1566524021666210315125330 PMID: 33719956
  83. Xu, L.; Zhang, J.; Wang, Y.; Zhang, Z.; Wang, F.; Tang, X. Uncovering the mechanism of Ge-Gen-Qin-Lian decoction for treating ulcerative colitis based on network pharmacology and molecular docking verification. Biosci. Rep., 2021, 41(2), BSR20203565. doi: 10.1042/BSR20203565 PMID: 33409535
  84. Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol., 2019, 51, 224-233. doi: 10.1016/j.jddst.2019.03.006
  85. Deshmukh, R.; Jain, A.K.; Singh, R.; Paul, S.D.; Harwansh, R.K. Andrographis paniculata and andrographolide - a snapshot on recent advances in nano drug delivery systems against cancer. Curr. Drug Deliv., 2023, 20, 1-14. PMID: 36740794
  86. Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154. doi: 10.2174/2215083808666220428092638
  87. Chaturvedi, S.; Mishra, R. Insight into delivery approaches for biopharmaceutics classification system class II and IV drugs. Drug Deliv. Lett., 2020, 10(4), 255-277. doi: 10.2174/2210303110999200712185109
  88. Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309. doi: 10.2147/IJN.S146315 PMID: 29042776
  89. Deshmukh, R.J.C.D.D. Bridging the gap of drug delivery in colon cancer: The role of chitosan and pectin based nanocarriers system. Curr. Drug Deliv., 2020, 17(10), 911-924.
  90. Deshmukh, R.; Harwansh, R.K.; Rahman, M.A. Sodium alginate-guar gum and carbopol based methotrexate loaded mucoadhesive microparticles for colon delivery: An in vitroevaluation. Braz. J. Pharm. Sci., 2021, 57, e19147. doi: 10.1590/s2175-97902020000419147
  91. Edis, Z.; Wang, J.; Waqas, M.K.; Ijaz, M.; Ijaz, M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomedicine, 2021, 16, 1313-1330. doi: 10.2147/IJN.S289443 PMID: 33628022
  92. Li, Q.; Zhai, W.; Jiang, Q.; Huang, R.; Liu, L.; Dai, J.; Gong, W.; Du, S.; Wu, Q. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int. J. Pharm., 2015, 490(1-2), 22-31. doi: 10.1016/j.ijpharm.2015.05.008 PMID: 25957703
  93. Das, S.; Ng, K.Y. Colon-specific delivery of resveratrol: Optimization of multi-particulate calcium-pectinate carrier. Int. J. Pharm., 2010, 385(1-2), 20-28. doi: 10.1016/j.ijpharm.2009.10.016 PMID: 19833179
  94. Wang, Q.S.; Wang, G.F.; Zhou, J.; Gao, L.N.; Cui, Y.L. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int. J. Pharm., 2016, 515(1-2), 176-185. doi: 10.1016/j.ijpharm.2016.10.002 PMID: 27713029
  95. Rabišková, M.; Bautzová, T.; Gajdziok, J.; Dvořáčková, K.; Lamprecht, A.; Pellequer, Y.; Spilková, J. Coated chitosan pellets containing rutin intended for the treatment of inflammatory bowel disease: in vitrocharacteristics and in vivo evaluation. Int. J. Pharm., 2012, 422(1-2), 151-159. doi: 10.1016/j.ijpharm.2011.10.045 PMID: 22079717
  96. Sareen, R.; Nath, K.; Jain, N.; Dhar, K.L. Curcumin loaded microsponges for colon targeting in inflammatory bowel disease: Fabrication, optimization, and in vitroand pharmacodynamic evaluation. BioMed Res. Int., 2014, 2014, 1-7. doi: 10.1155/2014/340701 PMID: 25093165
  97. Varshosaz, J.; Minaiyan, M.; Khaleghi, N. Eudragit nanoparticles loaded with silybin: a detailed study of preparation, freeze-drying condition and in vitro/in vivo evaluation. J. Microencapsul., 2015, 32(3), 211-223. doi: 10.3109/02652048.2014.995728 PMID: 25561026
  98. Gugulothu, D.; Kulkarni, A.; Patravale, V.; Dandekar, P. pH-sensitive nanoparticles of curcumin-celecoxib combination: Evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci., 2014, 103(2), 687-696. doi: 10.1002/jps.23828 PMID: 24375287
  99. Zhang, M.; Merlin, D. Nanoparticle-based oral drug delivery systems targeting the colon for treatment of ulcerative colitis. Inflamm. Bowel Dis., 2018, 24(7), 1401-1415. doi: 10.1093/ibd/izy123 PMID: 29788186
  100. Zhao, L.; Du, X.; Tian, J.; Kang, X.; Li, Y.; Dai, W.; Li, D.; Zhang, S.; Li, C. Berberine-loaded carboxylmethyl chitosan nanoparticles ameliorate DSS-induced colitis and remodel gut microbiota in mice. Front. Pharmacol., 2021, 12, 644387. doi: 10.3389/fphar.2021.644387 PMID: 33959013
  101. Li, Z.; Gu, L. Fabrication of self-assembled (-)-epigallocatechin gallate (EGCG) ovalbumin-dextran conjugate nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells. J. Agric. Food Chem., 2014, 62(6), 1301-1309. doi: 10.1021/jf404621f PMID: 24446922
  102. Yen, C.C.; Chen, Y.C.; Wu, M.T.; Wang, C.C.; Wu, Y.T. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int. J. Nanomedicine, 2018, 13, 669-680. doi: 10.2147/IJN.S154824 PMID: 29440893
  103. Peng, J.; Cai, Z.; Wang, Q.; Zhou, J.; Xu, J.; Pan, D.; Chen, T.; Zhang, G.; Tao, L.; Chen, Y.; Shen, X. Carboxymethyl chitosan modified oxymatrine liposomes for the alleviation of emphysema in mice via pulmonary administration. Molecules, 2022, 27(11), 3610. doi: 10.3390/molecules27113610 PMID: 35684546
  104. Alvarado, H.L.; Abrego, G.; Souto, E.B.; Garduño-Ramirez, M.L.; Clares, B.; García, M.L.; Calpena, A.C. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: in vitro, ex vivo and in vivo characterization. Colloids Surf. B Biointerfaces, 2015, 130, 40-47. doi: 10.1016/j.colsurfb.2015.03.062 PMID: 25899842
  105. Kakran, M.; Sahoo, N.; Li, L.; Judeh, Z. Fabrication of quercetin nanoparticles by anti-solvent precipitation method for enhanced dissolution. Powder Technol., 2011, 223.
  106. Naserifar, M.; Hosseinzadeh, H.; Abnous, K.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci., 2020, 262, 118555. doi: 10.1016/j.lfs.2020.118555 PMID: 33035579
  107. Pujara, N.; Wong, K.Y.; Qu, Z.; Wang, R.; Moniruzzaman, M.; Rewatkar, P.; Kumeria, T.; Ross, B.P.; McGuckin, M.; Popat, A. Oral delivery of β-lactoglobulin-nanosphere-encapsulated resveratrol alleviates inflammation in winnie mice with spontaneous ulcerative colitis. Mol. Pharm., 2021, 18(2), 627-640. doi: 10.1021/acs.molpharmaceut.0c00048 PMID: 32437160
  108. Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A.; Gálvez, J.; Lozano-Pérez, A.A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm., 2021, 606, 120935. doi: 10.1016/j.ijpharm.2021.120935 PMID: 34310954
  109. Jeong, Y.I.; Yv̄, R.P.; Ohno, T.; Yoshikawa, Y.; Shibata, N.; Kato, S.; Takeuchi, K.; Takada, K. Application of Eudragit P-4135F for the delivery of ellagic acid to the rat lower small intestine. J. Pharm. Pharmacol., 2010, 53(8), 1079-1085. doi: 10.1211/0022357011776469 PMID: 11518017
  110. Liu, C.S.; Chen, L.; Hu, Y.N.; Dai, J.L.; Ma, B.; Tang, Q.F.; Tan, X.M. Self-microemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid. Int. J. Nanomedicine, 2020, 15, 2059-2070. doi: 10.2147/IJN.S240449 PMID: 32273702
  111. Onoue, S.; Ochi, M.; Yamada, S. Development of (−)-epigallocatechin-3-gallate (EGCG)-loaded enteric microparticles with intestinal mucoadhesive property. Int. J. Pharm., 2011, 410(1-2), 111-113. doi: 10.1016/j.ijpharm.2011.03.020 PMID: 21419204
  112. Filippova, E.V.; Zemaitaitis, B.; Aung, T.; Wolfe, A.J.; Anderson, W.F. Structural basis for DNA recognition by the two-component response regulator RcsB. MBio, 2018, 9(1), e01993-e17. doi: 10.1128/mBio.01993-17 PMID: 29487239
  113. Deng, J.; Wu, Z.; Zhao, Z.; Wu, C.; Yuan, M.; Su, Z.; Wang, Y.; Wang, Z. Berberine-loaded nanostructured lipid carriers enhance the treatment of ulcerative colitis. Int. J. Nanomedicine, 2020, 15, 3937-3951. doi: 10.2147/IJN.S247406 PMID: 32581538

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024