Essential Oils of Some Potential Medicinal Plants and their Wound Healing Activities


Cite item

Full Text

Abstract

:The wound has been recognised as a deep cut or tearing of the epidermis, which is also referred to as trauma and harm to the body tissues. Healing of wounds requires a coordinated series of cellular processes, including cell attraction, proliferation, differentiation, and angiogenesis. These processes involve interactions between various cells, such as macrophages, endothelial cells, keratinocytes, fibroblasts, growth hormones, and proteases. The outcome of wounds can be fatal if not treated properly, resulting in chronic wounds, chronic pain, and even death. Wound healing is replacing missing tissue with tissue repairs and regeneration. Some local variables are the presence of tissue maceration, foreign objects, biofilm, hypoxia, ischemia, and wound infection. Sustained growth factor delivery, siRNA delivery, micro-RNA targeting, and stem cell therapy are all emerging possible therapeutic approaches for wound healing. Traditional approaches, such as Ayurveda, Siddha, and Unani medicines, are also being used for treatment. The therapeutic application of nanoformulations in wound infections has shown various beneficial effects. Several herbal medicines, especially essential oils have shown potential wound healing activities, such as lavender, tea tree, sesame, olive, etc. Various nanoparticles and their nanoformulations have been explored in wound healing therapy. The present review article highlights several aspects of essential oils for wound healing activity through a novel drug delivery system. Further, some patents on wound healing through herbal medicine have been listed.

About the authors

Shiv Bahadur

Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

Sana Fatima

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

References

  1. Ahmadian, Z. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol., 2022, 73, 103458.
  2. Bhatnagar, P. Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. J. Drug Deliv. Sci. Technol., 2022, 71, 103270. doi: 10.1016/j.jddst.2022.103270
  3. Li, Y. Advanced electrospun hydrogel fibers for wound healing. Composit. Part B: Eng., 2021, 223, 109101. doi: 10.1016/j.compositesb.2021.109101
  4. Liu, W-S. Biomembrane-based nanostructure- and microstructure-loaded hydrogels for promoting chronic wound healing. Int. J. Nanomedicine, 2023, 18, 385-411. doi: 10.2147/IJN.S387382
  5. Hazrati, R. Bioactive functional scaffolds for stem cells delivery in wound healing and skin regeneration. React. Funct. Poly., 2022, 174, 105233.
  6. Luo, M. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Appl. Mater., 2022, 26, 101304. doi: 10.1016/j.apmt.2021.101304
  7. Zhu, J. Smart bioadhesives for wound healing and closure. Bioactive. Mater., 2023, 19, 360-375. doi: 10.1016/j.bioactmat.2022.04.020
  8. Ullah, S.; Mansoor, S.; Ayub, A.; Ejaz, M.; Zafar, H.; Feroz, F.; Khan, A.; Ali, M. An update on stem cells applications in burn wound healing. Tissue Cell, 2021, 72, 101527. doi: 10.1016/j.tice.2021.101527 PMID: 33756272
  9. Prasathkumar, M.; Sadhasivam, S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol., 2021, 186, 656-685. doi: 10.1016/j.ijbiomac.2021.07.067 PMID: 34271047
  10. Pan, L.; Zhang, X.; Gao, Q. Effects and mechanisms of histatins as novel skin wound-healing agents. J. Tissue Viability, 2021, 30(2), 190-195. doi: 10.1016/j.jtv.2021.01.005 PMID: 33551241
  11. Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C, 2020, 114, 110994. doi: 10.1016/j.msec.2020.110994 PMID: 32993991
  12. Ali-Seyed, M.; Ayesha, S.J.B.; Biotechnology, A. Calotropis-A multi-potential plant to humankind: Special focus on its wound healing efficacy. Biocatal. Agric. Biotechnol., 2020, 28, 101725. doi: 10.1016/j.bcab.2020.101725
  13. Habibi, Z.; Hoormand, M.; Banimohammad, M.; Ajami, M.; Amin, G.; Amin, M.; Pazoki-Toroudi, H. The Novel Role of Crocus sativus L. in enhancing skin flap survival by affecting apoptosis independent of mTOR: A data-virtualized study. Aesthetic Plast. Surg., 2022, 46(6), 3047-3062. doi: 10.1007/s00266-022-03048-6 PMID: 36044060
  14. Menke, N.B.; Cain, J.W.; Reynolds, A.; Chan, D.M.; Segal, R.A.; Witten, T.M.; Bonchev, D.G.; Diegelmann, R.F.; Ward, K.R. An in silico approach to the analysis of acute wound healing. Wound Repair Regen., 2010, 18(1), 105-113. doi: 10.1111/j.1524-475X.2009.00549.x PMID: 20002899
  15. García-Salinas, S.; Evangelopoulos, M.; Gámez-Herrera, E.; Arruebo, M.; Irusta, S.; Taraballi, F.; Mendoza, G.; Tasciotti, E. Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int. J. Pharm., 2020, 577, 119067. doi: 10.1016/j.ijpharm.2020.119067 PMID: 31981705
  16. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils – A review. Food Chem. Toxicol., 2008, 46(2), 446-475. doi: 10.1016/j.fct.2007.09.106 PMID: 17996351
  17. De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci. , 2021, 11(4), 1713. doi: 10.3390/app11041713
  18. Jaramillo, V.; Díaz, E.; Muñoz, L.N.; González-Barrios, A.F.; Rodríguez-Cortina, J.; Cruz, J.C.; Muñoz-Camargo, C. Enhancing wound healing: A novel topical emulsion combining CW49 peptide and lavender essential oil for accelerated regeneration and antibacterial protection. Pharmaceutics, 2023, 15(6), 1739. doi: 10.3390/pharmaceutics15061739 PMID: 37376187
  19. Salas-Oropeza, J.; Jimenez-Estrada, M.; Perez-Torres, A.; Castell-Rodriguez, A.E.; Becerril-Millan, R.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Wound healing activity of the essential oil of bursera morelensis, in mice. Molecules, 2020, 25(8), 1795. doi: 10.3390/molecules25081795 PMID: 32295241
  20. Woollard, A.C.; Tatham, K.C.; Barker, S. The influence of essential oils on the process of wound healing: A review of the current evidence. J. Wound Care, 2007, 16(6), 255-257. doi: 10.12968/jowc.2007.16.6.27064 PMID: 17722522
  21. Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.J.R.B.d.F. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Rev. Bras. Farmacogn., 2012, 22(2), 397-403. doi: 10.1590/S0102-695X2011005000183
  22. Ahmad, W.; Alam, S.S.; Aquil, Z.J.T.J.P.S. Herbo-medicinal formulation; Marham-e-raal: A potent ointment for acute and chronic wounds. Review, 2019, 27(2), 77.
  23. Oryan, A. Effect of aqueous extract of Aloe vera on experimental cutaneous wound healing in rat. Vet. Arch., 2010, 80(4), 509-522.
  24. Pirbalouti, A.G.; Koohpayeh, A.; Karimi, I. The wound healing activity of flower extracts of Punica granatum and Achillea kellalensis in Wistar rats. Acta Pol. Pharm., 2010, 67(1), 107-110. PMID: 20210088
  25. Pugalendhi, V. Effect of heritage sanjeevi (a siddha combination drug) on wound healing in Wistar rats. J. Int. Med. Sci. Acad., 2010, 23(4), 233-234.
  26. Bhat, V. Effect of Kungiliya vennai and Kalchunna thailam on excision wound healing in albino Wistar rats. Int. J. Pharmacol. Clin. Sci., 2015, 4(3), 52-57.
  27. Rizg, W.Y.; Hosny, K.M.; Eshmawi, B.A.; Alamoudi, A.J.; Safhi, A.Y.; Murshid, S.S.A.; Sabei, F.Y.; Al Fatease, A. Tailoring of geranium oil-based nanoemulsion loaded with pravastatin as a nanoplatform for wound healing. Polymers , 2022, 14(9), 1912. doi: 10.3390/polym14091912 PMID: 35567079
  28. Gangopadhyay, K.S.; Khan, M.; Pandit, S.; Chakrabarti, S.; Mondal, T.K.; Biswas, T.K. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity. Int. J. Low. Extrem. Wounds, 2014, 13(1), 41-49. doi: 10.1177/1534734614520705 PMID: 24659625
  29. Martin, V.; Hoekman, J.; Aurora, S.K.; Shrewsbury, S.B. Nasal delivery of acute medications for migraine: The upper versuslower nasal space. J. Clin. Med., 2021, 10(11), 2468. doi: 10.3390/jcm10112468 PMID: 34199479
  30. Victor, P.; Sarada, D.; Ramkumar, K.M. Pharmacological activation of Nrf2 promotes wound healing. Eur. J. Pharmacol., 2020, 886, 173395. doi: 10.1016/j.ejphar.2020.173395 PMID: 32710954
  31. Dubey, S.K. Cold atmospheric plasma therapy in wound healing. Proc. Biochem., 2022, 112, 112-123. doi: 10.1016/j.procbio.2021.11.017
  32. Abazari, M.; Akbari, T.; Hasani, M.; Sharifikolouei, E.; Raoufi, M.; Foroumadi, A.; Sharifzadeh, M.; Firoozpour, L.; Khoobi, M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr. Polym., 2022, 294, 119808. doi: 10.1016/j.carbpol.2022.119808 PMID: 35868768
  33. Kublik, H.; Vidgren, M.T. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 157-177. doi: 10.1016/S0169-409X(97)00067-7 PMID: 10837586
  34. Sinno, H.; Prakash, S. Complements and the wound healing cascade: An updated review. Plast. Surg. Int., 2013, 2013, 1-7. doi: 10.1155/2013/146764 PMID: 23984063
  35. Romo-Rico, J.; Krishna, S.M.; Bazaka, K.; Golledge, J.; Jacob, M.V. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater., 2022, 147, 34-49. doi: 10.1016/j.actbio.2022.05.043 PMID: 35649506
  36. Khanam, S.J. A systematic review on wound healing and its promising medicinal plants. IJCAAP, 2021, 5(4), 170-176. doi: 10.18231/j.ijcaap.2020.036
  37. Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol., 2021, 192, 298-322. doi: 10.1016/j.ijbiomac.2021.10.013 PMID: 34634326
  38. Zhang, Y. Growth factors, as biological macromolecules in bioactivity enhancing of electrospun wound dressings for diabetic wound healing: A review. Int. J. Biol. Macromol., 2021, 193, 205-218. doi: 10.1016/j.ijbiomac.2021.09.210
  39. Shamiya, Y.; Ravi, S.P.; Coyle, A.; Chakrabarti, S.; Paul, A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov. Today, 2022, 27(4), 1156-1166. doi: 10.1016/j.drudis.2021.11.024 PMID: 34839040
  40. Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6. doi: 10.1126/scitranslmed.3009337 PMID: 25473038
  41. Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610. doi: 10.1007/s12325-017-0478-y PMID: 28108895
  42. Pastar, I. Physiology and pathophysiology of wound healing in diabetes. In: The Diabetic Foot; Humana: Cham, 2018. doi: 10.1007/978-3-319-89869-8_7
  43. Basak, S.; Duttaroy, A.K. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients, 2020, 12(7), 1913.
  44. Javedan, G.; Shidfar, F.; Davoodi, S.H.; Ajami, M.; Gorjipour, F.; Sureda, A.; Nabavi, S.M.; Daglia, M.; Pazoki-Toroudi, H. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol. Nutr. Food Res., 2016, 60(12), 2665-2677. doi: 10.1002/mnfr.201600112 PMID: 27466783
  45. Kant, V.; Kumari, P.; Jitendra, D.K.; Ahuja, M.; Kumar, V. Nanomaterials of natural bioactive compounds for wound healing: novel drug delivery approach. Curr. Drug Deliv., 2021, 18(10), 1406-1425. doi: 10.2174/1567201818666210729103712 PMID: 34325636
  46. Macwan, S.R. Essential oils of herbs and spices: Their antimicrobial activity and application in preservation of food. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(5), 885-901. doi: 10.20546/ijcmas.2016.505.092
  47. Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - A review. Curr. Drug Metab., 2018, 19(13), 1100-1110. doi: 10.2174/1389200219666180723144850 PMID: 30039757
  48. Artiga-Artigas, M. Influence of essential oils and pectin on nanoemulsion formulation: A ternary phase experimental approach. Food Hydrocoll., 2018, 81, 209-219. doi: 10.1016/j.foodhyd.2018.03.001
  49. Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 2013, 6(12), 1451-1474. doi: 10.3390/ph6121451 PMID: 24287491
  50. Dávila-Rodríguez, M. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT, 2019, 112, 108247. doi: 10.1016/j.lwt.2019.06.014
  51. Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential oils and antifungal activity. Pharmaceuticals, 2017, 10(4), 86. doi: 10.3390/ph10040086 PMID: 29099084
  52. Dadkhah, A.; Fatemi, F.; Malayeri, M.R.M.; Ashtiyani, M.H.K.; Noureini, S.K.; Rasooli, A. Considering the effect of rosa damascena mill. Essential oil on oxidative stress and cox-2 gene expression in the liver of septic Rats. Turk. J. Pharmaceut. Sci., 2019, 16(4), 416-424. doi: 10.4274/tjps.galenos.2018.58815 PMID: 32454744
  53. Jang, M.H.; Piao, X.L.; Kim, J.M.; Kwon, S.W.; Park, J.H. Inhibition of cholinesterase and amyloid‐β aggregation by resveratrol oligomers from Vitis amurensis. Phytother. Res., 2008, 22(4), 544-549. doi: 10.1002/ptr.2406 PMID: 18338769
  54. Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988. doi: 10.1080/21691401.2019.1582539 PMID: 30857435
  55. Mori, H.M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med., 2016, 16(1), 144. doi: 10.1186/s12906-016-1128-7 PMID: 27229681
  56. Nastiti, C.; Ponto, T.; Abd, E.; Grice, J.; Benson, H.; Roberts, M. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4), 37. doi: 10.3390/pharmaceutics9040037 PMID: 28934172
  57. Aljabeili, H.S. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Nutr. Sci., 2018, 9(5), 14.
  58. Alam, P.; Shakeel, F.; Anwer, M.K.; Foudah, A.I.; Alqarni, M.H. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci., 2018, 67(8), 957-968. doi: 10.5650/jos.ess18005 PMID: 30012898
  59. Kehili, S. Peppermint (Mentha piperita L.) essential oil as a potent anti-inflammatory, wound healing and anti-nociceptive drug. Europ. J. Biol. Res., 2020, 10(2), 132-149.
  60. Chin, K.B.; Cordell, B. The effect of tea tree oil (Melaleuca alternifolia) on wound healing using a dressing model. J. Altern. Complement. Med., 2013, 19(12), 942-945. doi: 10.1089/acm.2012.0787 PMID: 23848210
  61. Tabatabaei, S.M. The effect of sesame oil and cucurbita on healing wounds caused by third-degree burn; J. Skin Stem Cell, 2017, p. 68333. doi: 10.5812/jssc.68333
  62. Donato-Trancoso, A.; Monte-Alto-Costa, A.; Romana-Souza, B. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice. J. Dermatol. Sci., 2016, 83(1), 60-69. doi: 10.1016/j.jdermsci.2016.03.012 PMID: 27091748
  63. Jena, J.; Gupta, A.K. Ricinus communis Linn: A phytopharmacological review. Int. J. Pharma. Pharmaceut. Sci., 2012, 4(4), 25-29.
  64. Kappally, S.; Shirwaikar, A.; Shirwaikar, A.J.H.J.M. Coconut oil-A review of potential applications. Hygeia. J. D. Med., 2015, 7(2), 34-41.
  65. Barua, C. Evaluation of the wound healing activity of methanolic extract of Azadirachta Indica (Neem) and Tinospora cordifolia (Guduchi) in rats. Pharmacologyonline, 2010, 1, 70-77.
  66. Suliman, R.S.; Alghamdi, S.S.; Ali, R.; Aljatli, D.; Aljammaz, N.A.; Huwaizi, S.; Suliman, R.; Kahtani, K.M.; Albadrani, G.M.; Barhoumi, T.; Altolayyan, A.; Rahman, I. The role of myrrh metabolites in cancer, inflammation, and wound healing: Prospects for a multi-targeted drug therapy. Pharmaceuticals, 2022, 15(8), 944. doi: 10.3390/ph15080944 PMID: 36015092
  67. Yulianti, L.; Kelvin, K.J.J.o.F.; Sciences, P. Effectiveness of helichrysum italicum essential oil on wound healing. J. Food Pharmaceut. Sci., 2022, 10(2), 681-697.
  68. Seyed Ahmadi, S.G.; Farahpour, M.R.; Hamishehkar, H. Topical application of Cinnamon verum essential oil accelerates infected wound healing process by increasing tissue antioxidant capacity and keratin biosynthesis. Kaohsiung J. Med. Sci., 2019, 35(11), 686-694. doi: 10.1002/kjm2.12120 PMID: 31448873
  69. Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234. doi: 10.3746/pnf.2019.24.3.225 PMID: 31608247
  70. Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech., 2015, 5(2), 123-127. doi: 10.1007/s13205-014-0214-0
  71. Shaker, D.S. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci. Pharm., 2019, 87(3), 17. doi: 10.3390/scipharm87030017
  72. Mittal, K.L.; Shah, D.O. Adsorption and aggregation of surfactants in solution; CRC Press, 2002. doi: 10.1201/9780203910573
  73. Li, P.; Ghosh, A.; Wagner, R.F.; Krill, S.; Joshi, Y.M.; Serajuddin, A.T.M. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm., 2005, 288(1), 27-34. doi: 10.1016/j.ijpharm.2004.08.024 PMID: 15607255
  74. Mbela, T.K.M.; Deharo, E.; Haemers, A.; Ludwig, A. Submicron oil-in-water emulsion formulations for mefloquine and halofantrine: effect of electric-charge inducers on antimalarial activity in mice. J. Pharm. Pharmacol., 2011, 50(11), 1221-1225. doi: 10.1111/j.2042-7158.1998.tb03337.x PMID: 9877306
  75. Bhalani, V.T.; Patel, S.P. Pharmaceutical composition for cyclosporines; Google Patents, 1999.
  76. Ghosh, P.; Murthy, R.J. Microemulsions: A potential drug delivery system. Curr. Drug Deliv., 2006, 3(2), 167-180. doi: 10.2174/156720106776359168
  77. Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharmaceut., 1997, 153(1), 41-50. doi: 10.1016/S0378-5173(97)00083-5
  78. Schwarz, J.S.; Weisspapir, M.R.; Friedman, D.I. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharm. Res., 1995, 12(5), 687-692. doi: 10.1023/A:1016255408348 PMID: 7479554
  79. Ko, K.T.; Needham, T.E.; Zia, H. Emulsion formulations of testosterone for nasal administration. J. Microencapsul., 1998, 15(2), 197-205. doi: 10.3109/02652049809006849 PMID: 9532525
  80. Sznitowska, M.; Zurowska-Pryczkowska, K.; Janicki, S.; Järvinen, T. Miotic effect and irritation potential of pilocarpine prodrug incorporated into a submicron emulsion vehicle. Int. J. Pharm., 1999, 184(1), 115-120. doi: 10.1016/S0378-5173(99)00106-4 PMID: 10425357
  81. Shinoda, K.; Lindman, B.J.L. Organized surfactant systems: Microemulsions. Langmuir, 1987, 3(2), 135-149. doi: 10.1021/la00074a001
  82. Wagner, J.G.; Gerard, E.S.; Kaiser, D.G. The effect of the dosage form on serum levels of indoxole. Clin. Pharmacol. Ther., 1966, 7(5), 610-619. doi: 10.1002/cpt196675610 PMID: 5957166
  83. Kim, C.K.; Cho, Y.J.; Gao, Z.G. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J. Control. Release, 2001, 70(1-2), 149-155. doi: 10.1016/S0168-3659(00)00343-6 PMID: 11166415
  84. Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’Ayala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym., 2020, 233, 115839. doi: 10.1016/j.carbpol.2020.115839 PMID: 32059889
  85. Foglio, M.J. Pharmaceutical compositions comprising arrabidaea chica extract in controlled release systems, production process and use thereof. W.O. Patent 2013091056A1, 2013.
  86. Khan, A. Novel approaches for herbal drug delivery in wound healing. RE:view, 2022, 84(2), 247-260.
  87. WALIA, P.A. A multifunctional natural wound healing matrix; Google Patents, 2014.
  88. Al-Mutawaa, M.G.M. Ointment for healing burns and wounds; Google Patents, 2014.
  89. Mirzaei, E. Electro spun nanofibrous wound dressing and a method of synthesizing the same; Google Patents, 2015.
  90. Weller, K-A.C.; Weller, K.F.; McLoughlin, N.J. A topical herbal healing formulation; Google Patents, 2020.
  91. Shraibom, N. Herbal combinations for wound healing in fibroblasts; Google Patents, 2018.
  92. Tomulewicz, M. Herbal preparation for accelerating wounds and skin inflammations healing and its application; Google Patents, 2019.
  93. Tomulewicz, M. Herbal preparation for accelerating wounds and skin inflammations healing, especially for treatment of herpes and acne, and its application; Google Patents, 2021.
  94. Ahn, S. Biomimetic pro-regenerative scaffolds and methods of use thereof; Google Patents, 2020.
  95. Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat. Nanotechnol., 2020, 14(4), 276-293. doi: 10.2174/1872210514666200604145755 PMID: 32496999
  96. Liubaviciute, A.; Ivaskiene, T.; Biziuleviciene, G.J.B. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals, 2020, 67(1) doi: 10.1016/j.biologicals.2020.08.003
  97. Zhang, A.; Liu, Y.; Qin, D.; Sun, M.; Wang, T.; Chen, X. Research status of self-healing hydrogel for wound management: A review. Int. J. Biol. Macromol., 2020, 164, 2108-2123. doi: 10.1016/j.ijbiomac.2020.08.109 PMID: 32798548
  98. Xiang, J.; Shen, L.; Hong, Y.J. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J., 2020, 130, 109609. doi: 10.1016/j.eurpolymj.2020.109609
  99. Maurya, A.; Singh, V.K.; Das, S.; Prasad, J.; Kedia, A.; Upadhyay, N.; Dubey, N.K.; Dwivedy, A.K. Essential oil nanoemulsion as eco-friendly and safe preservative: Bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Front. Microbiol., 2021, 12, 751062. doi: 10.3389/fmicb.2021.751062 PMID: 34912311
  100. Ahuja, A.; Gupta, J.; Gupta, R. Miracles of herbal phytomedicines in treatment of skin disorders: natural healthcare perspective. Infect. Disord. Drug Targets, 2021, 21(3), 328-338. doi: 10.2174/1871526520666200622142710 PMID: 32568024
  101. Garg, A.; Chaturvedi, S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr. Drug Targets, 2022, 23(4), 420-436. doi: 10.2174/1389450122666210824141044 PMID: 34431464
  102. Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol., 2020, 59(101899), 101899. doi: 10.1016/j.jddst.2020.101899
  103. Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102355. doi: 10.1016/j.jddst.2021.102355

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers