Essential Oils of Some Potential Medicinal Plants and their Wound Healing Activities
- Authors: Bahadur S.1, Fatima S.1
-
Affiliations:
- Institute of Pharmaceutical Research, GLA University
- Issue: Vol 25, No 14 (2024)
- Pages: 1818-1834
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644566
- DOI: https://doi.org/10.2174/0113892010282605231218064053
- ID: 644566
Cite item
Full Text
Abstract
:The wound has been recognised as a deep cut or tearing of the epidermis, which is also referred to as trauma and harm to the body tissues. Healing of wounds requires a coordinated series of cellular processes, including cell attraction, proliferation, differentiation, and angiogenesis. These processes involve interactions between various cells, such as macrophages, endothelial cells, keratinocytes, fibroblasts, growth hormones, and proteases. The outcome of wounds can be fatal if not treated properly, resulting in chronic wounds, chronic pain, and even death. Wound healing is replacing missing tissue with tissue repairs and regeneration. Some local variables are the presence of tissue maceration, foreign objects, biofilm, hypoxia, ischemia, and wound infection. Sustained growth factor delivery, siRNA delivery, micro-RNA targeting, and stem cell therapy are all emerging possible therapeutic approaches for wound healing. Traditional approaches, such as Ayurveda, Siddha, and Unani medicines, are also being used for treatment. The therapeutic application of nanoformulations in wound infections has shown various beneficial effects. Several herbal medicines, especially essential oils have shown potential wound healing activities, such as lavender, tea tree, sesame, olive, etc. Various nanoparticles and their nanoformulations have been explored in wound healing therapy. The present review article highlights several aspects of essential oils for wound healing activity through a novel drug delivery system. Further, some patents on wound healing through herbal medicine have been listed.
About the authors
Shiv Bahadur
Institute of Pharmaceutical Research, GLA University
Author for correspondence.
Email: info@benthamscience.net
Sana Fatima
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
References
- Ahmadian, Z. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol., 2022, 73, 103458.
- Bhatnagar, P. Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. J. Drug Deliv. Sci. Technol., 2022, 71, 103270. doi: 10.1016/j.jddst.2022.103270
- Li, Y. Advanced electrospun hydrogel fibers for wound healing. Composit. Part B: Eng., 2021, 223, 109101. doi: 10.1016/j.compositesb.2021.109101
- Liu, W-S. Biomembrane-based nanostructure- and microstructure-loaded hydrogels for promoting chronic wound healing. Int. J. Nanomedicine, 2023, 18, 385-411. doi: 10.2147/IJN.S387382
- Hazrati, R. Bioactive functional scaffolds for stem cells delivery in wound healing and skin regeneration. React. Funct. Poly., 2022, 174, 105233.
- Luo, M. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Appl. Mater., 2022, 26, 101304. doi: 10.1016/j.apmt.2021.101304
- Zhu, J. Smart bioadhesives for wound healing and closure. Bioactive. Mater., 2023, 19, 360-375. doi: 10.1016/j.bioactmat.2022.04.020
- Ullah, S.; Mansoor, S.; Ayub, A.; Ejaz, M.; Zafar, H.; Feroz, F.; Khan, A.; Ali, M. An update on stem cells applications in burn wound healing. Tissue Cell, 2021, 72, 101527. doi: 10.1016/j.tice.2021.101527 PMID: 33756272
- Prasathkumar, M.; Sadhasivam, S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healingKnow-how. Int. J. Biol. Macromol., 2021, 186, 656-685. doi: 10.1016/j.ijbiomac.2021.07.067 PMID: 34271047
- Pan, L.; Zhang, X.; Gao, Q. Effects and mechanisms of histatins as novel skin wound-healing agents. J. Tissue Viability, 2021, 30(2), 190-195. doi: 10.1016/j.jtv.2021.01.005 PMID: 33551241
- Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C, 2020, 114, 110994. doi: 10.1016/j.msec.2020.110994 PMID: 32993991
- Ali-Seyed, M.; Ayesha, S.J.B.; Biotechnology, A. Calotropis-A multi-potential plant to humankind: Special focus on its wound healing efficacy. Biocatal. Agric. Biotechnol., 2020, 28, 101725. doi: 10.1016/j.bcab.2020.101725
- Habibi, Z.; Hoormand, M.; Banimohammad, M.; Ajami, M.; Amin, G.; Amin, M.; Pazoki-Toroudi, H. The Novel Role of Crocus sativus L. in enhancing skin flap survival by affecting apoptosis independent of mTOR: A data-virtualized study. Aesthetic Plast. Surg., 2022, 46(6), 3047-3062. doi: 10.1007/s00266-022-03048-6 PMID: 36044060
- Menke, N.B.; Cain, J.W.; Reynolds, A.; Chan, D.M.; Segal, R.A.; Witten, T.M.; Bonchev, D.G.; Diegelmann, R.F.; Ward, K.R. An in silico approach to the analysis of acute wound healing. Wound Repair Regen., 2010, 18(1), 105-113. doi: 10.1111/j.1524-475X.2009.00549.x PMID: 20002899
- García-Salinas, S.; Evangelopoulos, M.; Gámez-Herrera, E.; Arruebo, M.; Irusta, S.; Taraballi, F.; Mendoza, G.; Tasciotti, E. Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int. J. Pharm., 2020, 577, 119067. doi: 10.1016/j.ijpharm.2020.119067 PMID: 31981705
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils A review. Food Chem. Toxicol., 2008, 46(2), 446-475. doi: 10.1016/j.fct.2007.09.106 PMID: 17996351
- De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci. , 2021, 11(4), 1713. doi: 10.3390/app11041713
- Jaramillo, V.; Díaz, E.; Muñoz, L.N.; González-Barrios, A.F.; Rodríguez-Cortina, J.; Cruz, J.C.; Muñoz-Camargo, C. Enhancing wound healing: A novel topical emulsion combining CW49 peptide and lavender essential oil for accelerated regeneration and antibacterial protection. Pharmaceutics, 2023, 15(6), 1739. doi: 10.3390/pharmaceutics15061739 PMID: 37376187
- Salas-Oropeza, J.; Jimenez-Estrada, M.; Perez-Torres, A.; Castell-Rodriguez, A.E.; Becerril-Millan, R.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Wound healing activity of the essential oil of bursera morelensis, in mice. Molecules, 2020, 25(8), 1795. doi: 10.3390/molecules25081795 PMID: 32295241
- Woollard, A.C.; Tatham, K.C.; Barker, S. The influence of essential oils on the process of wound healing: A review of the current evidence. J. Wound Care, 2007, 16(6), 255-257. doi: 10.12968/jowc.2007.16.6.27064 PMID: 17722522
- Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.J.R.B.d.F. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Rev. Bras. Farmacogn., 2012, 22(2), 397-403. doi: 10.1590/S0102-695X2011005000183
- Ahmad, W.; Alam, S.S.; Aquil, Z.J.T.J.P.S. Herbo-medicinal formulation; Marham-e-raal: A potent ointment for acute and chronic wounds. Review, 2019, 27(2), 77.
- Oryan, A. Effect of aqueous extract of Aloe vera on experimental cutaneous wound healing in rat. Vet. Arch., 2010, 80(4), 509-522.
- Pirbalouti, A.G.; Koohpayeh, A.; Karimi, I. The wound healing activity of flower extracts of Punica granatum and Achillea kellalensis in Wistar rats. Acta Pol. Pharm., 2010, 67(1), 107-110. PMID: 20210088
- Pugalendhi, V. Effect of heritage sanjeevi (a siddha combination drug) on wound healing in Wistar rats. J. Int. Med. Sci. Acad., 2010, 23(4), 233-234.
- Bhat, V. Effect of Kungiliya vennai and Kalchunna thailam on excision wound healing in albino Wistar rats. Int. J. Pharmacol. Clin. Sci., 2015, 4(3), 52-57.
- Rizg, W.Y.; Hosny, K.M.; Eshmawi, B.A.; Alamoudi, A.J.; Safhi, A.Y.; Murshid, S.S.A.; Sabei, F.Y.; Al Fatease, A. Tailoring of geranium oil-based nanoemulsion loaded with pravastatin as a nanoplatform for wound healing. Polymers , 2022, 14(9), 1912. doi: 10.3390/polym14091912 PMID: 35567079
- Gangopadhyay, K.S.; Khan, M.; Pandit, S.; Chakrabarti, S.; Mondal, T.K.; Biswas, T.K. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity. Int. J. Low. Extrem. Wounds, 2014, 13(1), 41-49. doi: 10.1177/1534734614520705 PMID: 24659625
- Martin, V.; Hoekman, J.; Aurora, S.K.; Shrewsbury, S.B. Nasal delivery of acute medications for migraine: The upper versuslower nasal space. J. Clin. Med., 2021, 10(11), 2468. doi: 10.3390/jcm10112468 PMID: 34199479
- Victor, P.; Sarada, D.; Ramkumar, K.M. Pharmacological activation of Nrf2 promotes wound healing. Eur. J. Pharmacol., 2020, 886, 173395. doi: 10.1016/j.ejphar.2020.173395 PMID: 32710954
- Dubey, S.K. Cold atmospheric plasma therapy in wound healing. Proc. Biochem., 2022, 112, 112-123. doi: 10.1016/j.procbio.2021.11.017
- Abazari, M.; Akbari, T.; Hasani, M.; Sharifikolouei, E.; Raoufi, M.; Foroumadi, A.; Sharifzadeh, M.; Firoozpour, L.; Khoobi, M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr. Polym., 2022, 294, 119808. doi: 10.1016/j.carbpol.2022.119808 PMID: 35868768
- Kublik, H.; Vidgren, M.T. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 157-177. doi: 10.1016/S0169-409X(97)00067-7 PMID: 10837586
- Sinno, H.; Prakash, S. Complements and the wound healing cascade: An updated review. Plast. Surg. Int., 2013, 2013, 1-7. doi: 10.1155/2013/146764 PMID: 23984063
- Romo-Rico, J.; Krishna, S.M.; Bazaka, K.; Golledge, J.; Jacob, M.V. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater., 2022, 147, 34-49. doi: 10.1016/j.actbio.2022.05.043 PMID: 35649506
- Khanam, S.J. A systematic review on wound healing and its promising medicinal plants. IJCAAP, 2021, 5(4), 170-176. doi: 10.18231/j.ijcaap.2020.036
- Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol., 2021, 192, 298-322. doi: 10.1016/j.ijbiomac.2021.10.013 PMID: 34634326
- Zhang, Y. Growth factors, as biological macromolecules in bioactivity enhancing of electrospun wound dressings for diabetic wound healing: A review. Int. J. Biol. Macromol., 2021, 193, 205-218. doi: 10.1016/j.ijbiomac.2021.09.210
- Shamiya, Y.; Ravi, S.P.; Coyle, A.; Chakrabarti, S.; Paul, A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov. Today, 2022, 27(4), 1156-1166. doi: 10.1016/j.drudis.2021.11.024 PMID: 34839040
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6. doi: 10.1126/scitranslmed.3009337 PMID: 25473038
- Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610. doi: 10.1007/s12325-017-0478-y PMID: 28108895
- Pastar, I. Physiology and pathophysiology of wound healing in diabetes. In: The Diabetic Foot; Humana: Cham, 2018. doi: 10.1007/978-3-319-89869-8_7
- Basak, S.; Duttaroy, A.K. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients, 2020, 12(7), 1913.
- Javedan, G.; Shidfar, F.; Davoodi, S.H.; Ajami, M.; Gorjipour, F.; Sureda, A.; Nabavi, S.M.; Daglia, M.; Pazoki-Toroudi, H. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol. Nutr. Food Res., 2016, 60(12), 2665-2677. doi: 10.1002/mnfr.201600112 PMID: 27466783
- Kant, V.; Kumari, P.; Jitendra, D.K.; Ahuja, M.; Kumar, V. Nanomaterials of natural bioactive compounds for wound healing: novel drug delivery approach. Curr. Drug Deliv., 2021, 18(10), 1406-1425. doi: 10.2174/1567201818666210729103712 PMID: 34325636
- Macwan, S.R. Essential oils of herbs and spices: Their antimicrobial activity and application in preservation of food. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(5), 885-901. doi: 10.20546/ijcmas.2016.505.092
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - A review. Curr. Drug Metab., 2018, 19(13), 1100-1110. doi: 10.2174/1389200219666180723144850 PMID: 30039757
- Artiga-Artigas, M. Influence of essential oils and pectin on nanoemulsion formulation: A ternary phase experimental approach. Food Hydrocoll., 2018, 81, 209-219. doi: 10.1016/j.foodhyd.2018.03.001
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 2013, 6(12), 1451-1474. doi: 10.3390/ph6121451 PMID: 24287491
- Dávila-Rodríguez, M. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT, 2019, 112, 108247. doi: 10.1016/j.lwt.2019.06.014
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential oils and antifungal activity. Pharmaceuticals, 2017, 10(4), 86. doi: 10.3390/ph10040086 PMID: 29099084
- Dadkhah, A.; Fatemi, F.; Malayeri, M.R.M.; Ashtiyani, M.H.K.; Noureini, S.K.; Rasooli, A. Considering the effect of rosa damascena mill. Essential oil on oxidative stress and cox-2 gene expression in the liver of septic Rats. Turk. J. Pharmaceut. Sci., 2019, 16(4), 416-424. doi: 10.4274/tjps.galenos.2018.58815 PMID: 32454744
- Jang, M.H.; Piao, X.L.; Kim, J.M.; Kwon, S.W.; Park, J.H. Inhibition of cholinesterase and amyloid‐β aggregation by resveratrol oligomers from Vitis amurensis. Phytother. Res., 2008, 22(4), 544-549. doi: 10.1002/ptr.2406 PMID: 18338769
- Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988. doi: 10.1080/21691401.2019.1582539 PMID: 30857435
- Mori, H.M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med., 2016, 16(1), 144. doi: 10.1186/s12906-016-1128-7 PMID: 27229681
- Nastiti, C.; Ponto, T.; Abd, E.; Grice, J.; Benson, H.; Roberts, M. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4), 37. doi: 10.3390/pharmaceutics9040037 PMID: 28934172
- Aljabeili, H.S. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Nutr. Sci., 2018, 9(5), 14.
- Alam, P.; Shakeel, F.; Anwer, M.K.; Foudah, A.I.; Alqarni, M.H. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci., 2018, 67(8), 957-968. doi: 10.5650/jos.ess18005 PMID: 30012898
- Kehili, S. Peppermint (Mentha piperita L.) essential oil as a potent anti-inflammatory, wound healing and anti-nociceptive drug. Europ. J. Biol. Res., 2020, 10(2), 132-149.
- Chin, K.B.; Cordell, B. The effect of tea tree oil (Melaleuca alternifolia) on wound healing using a dressing model. J. Altern. Complement. Med., 2013, 19(12), 942-945. doi: 10.1089/acm.2012.0787 PMID: 23848210
- Tabatabaei, S.M. The effect of sesame oil and cucurbita on healing wounds caused by third-degree burn; J. Skin Stem Cell, 2017, p. 68333. doi: 10.5812/jssc.68333
- Donato-Trancoso, A.; Monte-Alto-Costa, A.; Romana-Souza, B. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice. J. Dermatol. Sci., 2016, 83(1), 60-69. doi: 10.1016/j.jdermsci.2016.03.012 PMID: 27091748
- Jena, J.; Gupta, A.K. Ricinus communis Linn: A phytopharmacological review. Int. J. Pharma. Pharmaceut. Sci., 2012, 4(4), 25-29.
- Kappally, S.; Shirwaikar, A.; Shirwaikar, A.J.H.J.M. Coconut oil-A review of potential applications. Hygeia. J. D. Med., 2015, 7(2), 34-41.
- Barua, C. Evaluation of the wound healing activity of methanolic extract of Azadirachta Indica (Neem) and Tinospora cordifolia (Guduchi) in rats. Pharmacologyonline, 2010, 1, 70-77.
- Suliman, R.S.; Alghamdi, S.S.; Ali, R.; Aljatli, D.; Aljammaz, N.A.; Huwaizi, S.; Suliman, R.; Kahtani, K.M.; Albadrani, G.M.; Barhoumi, T.; Altolayyan, A.; Rahman, I. The role of myrrh metabolites in cancer, inflammation, and wound healing: Prospects for a multi-targeted drug therapy. Pharmaceuticals, 2022, 15(8), 944. doi: 10.3390/ph15080944 PMID: 36015092
- Yulianti, L.; Kelvin, K.J.J.o.F.; Sciences, P. Effectiveness of helichrysum italicum essential oil on wound healing. J. Food Pharmaceut. Sci., 2022, 10(2), 681-697.
- Seyed Ahmadi, S.G.; Farahpour, M.R.; Hamishehkar, H. Topical application of Cinnamon verum essential oil accelerates infected wound healing process by increasing tissue antioxidant capacity and keratin biosynthesis. Kaohsiung J. Med. Sci., 2019, 35(11), 686-694. doi: 10.1002/kjm2.12120 PMID: 31448873
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234. doi: 10.3746/pnf.2019.24.3.225 PMID: 31608247
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech., 2015, 5(2), 123-127. doi: 10.1007/s13205-014-0214-0
- Shaker, D.S. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci. Pharm., 2019, 87(3), 17. doi: 10.3390/scipharm87030017
- Mittal, K.L.; Shah, D.O. Adsorption and aggregation of surfactants in solution; CRC Press, 2002. doi: 10.1201/9780203910573
- Li, P.; Ghosh, A.; Wagner, R.F.; Krill, S.; Joshi, Y.M.; Serajuddin, A.T.M. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm., 2005, 288(1), 27-34. doi: 10.1016/j.ijpharm.2004.08.024 PMID: 15607255
- Mbela, T.K.M.; Deharo, E.; Haemers, A.; Ludwig, A. Submicron oil-in-water emulsion formulations for mefloquine and halofantrine: effect of electric-charge inducers on antimalarial activity in mice. J. Pharm. Pharmacol., 2011, 50(11), 1221-1225. doi: 10.1111/j.2042-7158.1998.tb03337.x PMID: 9877306
- Bhalani, V.T.; Patel, S.P. Pharmaceutical composition for cyclosporines; Google Patents, 1999.
- Ghosh, P.; Murthy, R.J. Microemulsions: A potential drug delivery system. Curr. Drug Deliv., 2006, 3(2), 167-180. doi: 10.2174/156720106776359168
- Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharmaceut., 1997, 153(1), 41-50. doi: 10.1016/S0378-5173(97)00083-5
- Schwarz, J.S.; Weisspapir, M.R.; Friedman, D.I. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharm. Res., 1995, 12(5), 687-692. doi: 10.1023/A:1016255408348 PMID: 7479554
- Ko, K.T.; Needham, T.E.; Zia, H. Emulsion formulations of testosterone for nasal administration. J. Microencapsul., 1998, 15(2), 197-205. doi: 10.3109/02652049809006849 PMID: 9532525
- Sznitowska, M.; Zurowska-Pryczkowska, K.; Janicki, S.; Järvinen, T. Miotic effect and irritation potential of pilocarpine prodrug incorporated into a submicron emulsion vehicle. Int. J. Pharm., 1999, 184(1), 115-120. doi: 10.1016/S0378-5173(99)00106-4 PMID: 10425357
- Shinoda, K.; Lindman, B.J.L. Organized surfactant systems: Microemulsions. Langmuir, 1987, 3(2), 135-149. doi: 10.1021/la00074a001
- Wagner, J.G.; Gerard, E.S.; Kaiser, D.G. The effect of the dosage form on serum levels of indoxole. Clin. Pharmacol. Ther., 1966, 7(5), 610-619. doi: 10.1002/cpt196675610 PMID: 5957166
- Kim, C.K.; Cho, Y.J.; Gao, Z.G. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J. Control. Release, 2001, 70(1-2), 149-155. doi: 10.1016/S0168-3659(00)00343-6 PMID: 11166415
- Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez dAyala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym., 2020, 233, 115839. doi: 10.1016/j.carbpol.2020.115839 PMID: 32059889
- Foglio, M.J. Pharmaceutical compositions comprising arrabidaea chica extract in controlled release systems, production process and use thereof. W.O. Patent 2013091056A1, 2013.
- Khan, A. Novel approaches for herbal drug delivery in wound healing. RE:view, 2022, 84(2), 247-260.
- WALIA, P.A. A multifunctional natural wound healing matrix; Google Patents, 2014.
- Al-Mutawaa, M.G.M. Ointment for healing burns and wounds; Google Patents, 2014.
- Mirzaei, E. Electro spun nanofibrous wound dressing and a method of synthesizing the same; Google Patents, 2015.
- Weller, K-A.C.; Weller, K.F.; McLoughlin, N.J. A topical herbal healing formulation; Google Patents, 2020.
- Shraibom, N. Herbal combinations for wound healing in fibroblasts; Google Patents, 2018.
- Tomulewicz, M. Herbal preparation for accelerating wounds and skin inflammations healing and its application; Google Patents, 2019.
- Tomulewicz, M. Herbal preparation for accelerating wounds and skin inflammations healing, especially for treatment of herpes and acne, and its application; Google Patents, 2021.
- Ahn, S. Biomimetic pro-regenerative scaffolds and methods of use thereof; Google Patents, 2020.
- Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat. Nanotechnol., 2020, 14(4), 276-293. doi: 10.2174/1872210514666200604145755 PMID: 32496999
- Liubaviciute, A.; Ivaskiene, T.; Biziuleviciene, G.J.B. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals, 2020, 67(1) doi: 10.1016/j.biologicals.2020.08.003
- Zhang, A.; Liu, Y.; Qin, D.; Sun, M.; Wang, T.; Chen, X. Research status of self-healing hydrogel for wound management: A review. Int. J. Biol. Macromol., 2020, 164, 2108-2123. doi: 10.1016/j.ijbiomac.2020.08.109 PMID: 32798548
- Xiang, J.; Shen, L.; Hong, Y.J. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J., 2020, 130, 109609. doi: 10.1016/j.eurpolymj.2020.109609
- Maurya, A.; Singh, V.K.; Das, S.; Prasad, J.; Kedia, A.; Upadhyay, N.; Dubey, N.K.; Dwivedy, A.K. Essential oil nanoemulsion as eco-friendly and safe preservative: Bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Front. Microbiol., 2021, 12, 751062. doi: 10.3389/fmicb.2021.751062 PMID: 34912311
- Ahuja, A.; Gupta, J.; Gupta, R. Miracles of herbal phytomedicines in treatment of skin disorders: natural healthcare perspective. Infect. Disord. Drug Targets, 2021, 21(3), 328-338. doi: 10.2174/1871526520666200622142710 PMID: 32568024
- Garg, A.; Chaturvedi, S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr. Drug Targets, 2022, 23(4), 420-436. doi: 10.2174/1389450122666210824141044 PMID: 34431464
- Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol., 2020, 59(101899), 101899. doi: 10.1016/j.jddst.2020.101899
- Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102355. doi: 10.1016/j.jddst.2021.102355
Supplementary files
