Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method


如何引用文章

全文:

详细

:Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/ peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.

作者简介

Huayan Sun

Department of Pharmacy, Medical Supplies Center, PLA General Hospital

Email: info@benthamscience.net

Weiwei Luo

Department of Pharmacy, Chinese PLA General Hospital

Email: info@benthamscience.net

Xiaowu Huang

Department of Pharmacy, Medical Supplies Center, PLA General Hospital

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Ding, D.; Zhu, Q. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater. Sci. Eng. C, 2018, 92, 1041-1060. doi: 10.1016/j.msec.2017.12.036 PMID: 30184728
  2. Vaishya, R.D.; Mandal, A.; Patel, S.; Mitra, A.K. Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitrorelease. Int. J. Pharm., 2015, 496(2), 676-688. doi: 10.1016/j.ijpharm.2015.11.002 PMID: 26561725
  3. Injamuri, S.; Rahaman, M.N.; Shen, Y.; Huang, Y.W. Relaxin enhances bone regeneration with BMP‐2‐loaded hydroxyapatite microspheres. J. Biomed. Mater. Res. A, 2020, 108(5), 1231-1242. doi: 10.1002/jbm.a.36897 PMID: 32043751
  4. Minardi, S.; Fernandez-Moure, J.S.; Fan, D.; Murphy, M.B.; Yazdi, I.K.; Liu, X.; Weiner, B.K.; Tasciotti, E. Biocompatible PLGA-mesoporous silicon microspheres for the controlled release of BMP-2 for bone augmentation. Pharmaceutics, 2020, 12(2), 118. doi: 10.3390/pharmaceutics12020118 PMID: 32024134
  5. Kudva, A.K.; Dikina, A.D.; Luyten, F.P.; Alsberg, E.; Patterson, J. Gelatin microspheres releasing transforming growth factor drive in vitrochondrogenesis of human periosteum derived cells in micromass culture. Acta Biomater., 2019, 90, 287-299. doi: 10.1016/j.actbio.2019.03.039 PMID: 30905864
  6. Lin, S.J.; Chan, Y.C.; Su, Z.C.; Yeh, W.L.; Lai, P.L.; Chu, I.M. Growth factor‐loaded microspheres in MPEG ‐polypeptide hydrogel system for articular cartilage repair. J. Biomed. Mater. Res. A, 2021, 109(12), 2516-2526. doi: 10.1002/jbm.a.37246 PMID: 34190399
  7. Haney, N.M.; Talwar, S.; Akula, P.K.; Reddy, A.G.; Pema, G.S.; Ninh, T.V.; Rezk, B.M.; Heidari, Z.; Bouljihad, M.T.; Sikka, S.C.; John, V.; Abdel-Mageed, A.B.; Hellstrom, W.J.G. Insulin-like growth factor-1–loaded polymeric poly(Lactic-Co-Glycolic) acid microspheres improved erectile function in a rat model of bilateral cavernous nerve injury. J. Sex. Med., 2019, 16(3), 383-393. doi: 10.1016/j.jsxm.2018.12.018 PMID: 30846112
  8. Whitehead, T.J.; Avila, C.O.C.; Sundararaghavan, H.G. Combining growth factor releasing microspheres within aligned nanofibers enhances neurite outgrowth. J. Biomed. Mater. Res. A, 2018, 106(1), 17-25. doi: 10.1002/jbm.a.36204 PMID: 28879680
  9. Rosellini, E.; Barbani, N.; Frati, C.; Madeddu, D.; Massai, D.; Morbiducci, U.; Lazzeri, L.; Falco, A.; Graiani, G.; Lagrasta, C.; Audenino, A.; Cascone, M.G.; Quaini, F. IGF-1 loaded injectable microspheres for potential repair of the infarcted myocardium. J. Biomater. Appl., 2021, 35(7), 762-775. doi: 10.1177/0885328220948501 PMID: 32772783
  10. Kamimura, H.; Takeda, N.; Owaki, T.; Mizusawa, T.; Iwasawa, T.; Ikarashi, S.; Hashimoto, S.; Takamura, M.; Terai, S. Antiprogramed cell death‐1 therapy with microspheres for metastatic liver tumors. JGH Open, 2019, 3(6), 542-543. doi: 10.1002/jgh3.12213 PMID: 31832559
  11. Chen, G.; Wei, R.; Huang, X.; Wang, F.; Chen, Z. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent. Int. J. Biol. Macromol., 2020, 155, 1450-1459. doi: 10.1016/j.ijbiomac.2019.11.122 PMID: 31734365
  12. Liu, H.; Zou, Y.; Zhu, J.; He, H.; Feng, Y.; Firempong, C.K.; Yu, Y.; Sun, C. Preparation and evaluation of rhINF-α-2b sodium hyaluronate cross-linked porous microspheres: Characterization, sustained-release properties, and antitumor activity. AAPS PharmSciTech, 2022, 23(1), 31. doi: 10.1208/s12249-021-02178-5 PMID: 34931261
  13. Salvador, A.; Sandgren, K.J.; Liang, F.; Thompson, E.A.; Koup, R.A.; Pedraz, J.L.; Hernandez, R.M.; Loré, K.; Igartua, M. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses. Int. J. Pharm., 2015, 496(2), 371-381. doi: 10.1016/j.ijpharm.2015.10.037 PMID: 26475970
  14. Arthanari, S.; Mani, G.; Peng, M.M.; Jang, H.T. Chitosan–HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 517-523. doi: 10.3109/21691401.2014.966193 PMID: 25472756
  15. Taysi, A.; Cevher, E.; Sessevmez, M.; Olgac, V.; Taysi, N.; Atalay, B. The efficacy of sustained-release chitosan microspheres containing recombinant human parathyroid hormone on MRONJ. Braz. Oral Res., 2019, 33, e086. doi: 10.1590/1807-3107bor-2019.vol33.0086 PMID: 31483052
  16. Yu, Z.; Huang, L.; Wen, R.; Li, Y.; Zhang, Q. Preparation and in vivo pharmacokinetics of rhGH-loaded PLGA microspheres. Pharm. Dev. Technol., 2019, 24(4), 395-401. doi: 10.1080/10837450.2018.1502316 PMID: 30422727
  17. Bai, M.; He, J.; Kang, L.; Nie, J.; Yin, R. Regulated basal and bolus insulin release from glucose-responsive core-shell microspheres based on concanavalin A-sugar affinity. Int. J. Biol. Macromol., 2018, 113, 889-899. doi: 10.1016/j.ijbiomac.2018.03.030 PMID: 29524488
  18. Arunkumar, P.; Dougherty, J.A.; Weist, J.; Kumar, N.; Angelos, M.G.; Powell, H.M.; Khan, M. Sustained release of basic fibroblast growth factor (bFGF) encapsulated polycaprolactone (PCL) microspheres promote angiogenesis in vivo. Nanomaterials , 2019, 9(7), 1037. doi: 10.3390/nano9071037 PMID: 31330782
  19. Han, B.; Tang, H.; Liang, Q.; Zhu, M.; Xie, Y.; Chen, J.; Li, Q.; Jia, J.; Li, Y.; Ren, Z.; Cong, D.; Yu, X.; Sui, D.; Pei, J. Preparation of long-acting microspheres loaded with octreotide for the treatment of portal hypertensive. Drug Deliv., 2021, 28(1), 719-732. doi: 10.1080/10717544.2021.1898702 PMID: 33825592
  20. Shi, N.Q.; Zhou, J.; Walker, J.; Li, L.; Hong, J.K.Y.; Olsen, K.F.; Tang, J.; Ackermann, R.; Wang, Y.; Qin, B.; Schwendeman, A.; Schwendeman, S.P. Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying. J. Control. Release, 2020, 321, 756-772. doi: 10.1016/j.jconrel.2020.01.023 PMID: 31935481
  21. Patrício, T.M.; Mumcuoglu, D.; Montesi, M.; Panseri, S.; Witte-Bouma, J.; Garcia, S.F.; Sandri, M.; Tampieri, A.; Farrell, E.; Sprio, S. Bio-inspired polymeric iron-doped hydroxyapatite microspheres as a tunable carrier of rhBMP-2. Mater. Sci. Eng. C, 2021, 119, 111410. doi: 10.1016/j.msec.2020.111410 PMID: 33321577
  22. Wang, P.; Meng, X.; Wang, R.; Yang, W.; Yang, L.; Wang, J.; Wang, D.A.; Fan, C. Biomaterial scaffolds made of chemically cross‐linked gelatin microsphere aggregates (C‐GMSs) promote vascularized bone regeneration. Adv. Healthc. Mater., 2022, 11(13), 2102818. doi: 10.1002/adhm.202102818 PMID: 35306762
  23. Kenechukwu, F.; Momoh, M. Formulation, characterization and evaluation of the effect of polymer concentration on the release behavior of insulin-loaded eudragit ® -entrapped mucoadhesive microspheres. Int. J. Pharm. Investig., 2016, 6(2), 69-77. doi: 10.4103/2230-973X.177806 PMID: 27051626
  24. Pilipenko, N.; Gonçalves, O.H.; Bona, E.; Fernandes, I.P.; Pinto, J.A.; Sorita, G.D.; Leimann, F.V.; Barreiro, M.F. Tailoring swelling of alginate-gelatin hydrogel microspheres by crosslinking with calcium chloride combined with transglutaminase. Carbohydr. Polym., 2019, 223, 115035. doi: 10.1016/j.carbpol.2019.115035 PMID: 31426956
  25. Yang, H.; Yang, Y.; Li, B.Z.; Adhikari, B.; Wang, Y.; Huang, H.L.; Chen, D. Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydr. Polym., 2020, 231, 115692. doi: 10.1016/j.carbpol.2019.115692 PMID: 31888840
  26. Negrini, N.; Lipreri, M.V.; Tanzi, M.C.; Farè, S. in vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. J. Mater. Sci. Mater. Med., 2020, 31(3), 26. doi: 10.1007/s10856-020-6363-2 PMID: 32060637
  27. Cleland, J.L.; Duenas, E.T.; Park, A.; Daugherty, A.; Kahn, J.; Kowalski, J.; Cuthbertson, A. Development of poly-(d,l-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release, 2001, 72(1-3), 13-24. doi: 10.1016/S0168-3659(01)00258-9 PMID: 11389981
  28. Min, Q.; Liu, J.; Li, J.; Wan, Y.; Wu, J. Chitosan-polylactide/hyaluronic acid complex microspheres as carriers for controlled release of bioactive transforming growth factor-β1. Pharmaceutics, 2018, 10(4), 239. doi: 10.3390/pharmaceutics10040239 PMID: 30453642
  29. Zhang, W.; Wang, X.; Wang, J.; Zhang, L. Drugs adsorption and release behavior of collagen/bacterial cellulose porous microspheres. Int. J. Biol. Macromol., 2019, 140, 196-205. doi: 10.1016/j.ijbiomac.2019.08.139 PMID: 31430489
  30. Sato, H.; Tabata, A.; Moritani, T.; Morinaga, T.; Mizumoto, T.; Seto, Y.; Onoue, S. Correction: Sato et al. Design and characterizations of inhalable poly(lactic-co-glycolic acid) microspheres prepared by the fine droplet drying process for a sustained effect of salmon calcitonin. Molecules 2020, 25, 1311. Molecules, 2022, 27(20), 27. doi: 10.3390/molecules27206775 PMID: 36296736
  31. Qu, J.; Wang, L.; Niu, L.; Lin, J.; Huang, Q.; Jiang, X.; Li, M. Porous silk fibroin microspheres sustainably releasing bioactive basic fibroblast growth factor. Materials , 2018, 11(8), 1280. doi: 10.3390/ma11081280 PMID: 30044408
  32. Mashhadian, A.; Afjoul, H.; Shamloo, A. An integrative method to increase the reliability of conventional double emulsion method. Anal. Chim. Acta, 2022, 1197, 339523. doi: 10.1016/j.aca.2022.339523 PMID: 35168721
  33. Wan, B.; Bao, Q.; Burgess, D.J. In vitro-in vivo correlation of PLGA microspheres: Effect of polymer source variation and temperature. J. Control. Release, 2022, 347, 347-355. doi: 10.1016/j.jconrel.2022.05.014 PMID: 35569590
  34. Liu, J.; Xu, Y.; Liu, Z.; Ren, H.; Meng, Z.; Liu, K.; Liu, Z.; Yong, J.; Wang, Y.; Li, X. A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur. J. Pharm. Biopharm., 2019, 144, 217-229. doi: 10.1016/j.ejpb.2019.09.022 PMID: 31563632
  35. Lin, A.; Liu, S.; Xiao, L.; Fu, Y.; Liu, C.; Li, Y. Controllable preparation of bioactive open porous microspheres for tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(34), 6464-6471. doi: 10.1039/D2TB01198K PMID: 35960152
  36. Maciel, V.; Yoshida, C.; Pereira, S.; Goycoolea, F.; Franco, T. Electrostatic self-assembled chitosan-pectin nano- and microparticles for insulin delivery. Molecules, 2017, 22(10), 1707. doi: 10.3390/molecules22101707 PMID: 29023400
  37. Wang, Y.; Sun, T.; Zhang, Y.; Chaurasiya, B.; Huang, L.; Liu, X.; Tu, J.; Xiong, Y.; Sun, C. Exenatide loaded PLGA microspheres for long-acting antidiabetic therapy: preparation, characterization, pharmacokinetics and pharmacodynamics. RSC Advances, 2016, 6(44), 37452-37462. doi: 10.1039/C6RA02994A
  38. Zhou, J.; Walker, J.; Ackermann, R.; Olsen, K.; Hong, J.K.Y.; Wang, Y.; Schwendeman, S.P. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol. Pharm., 2020, 17(5), 1502-1515. doi: 10.1021/acs.molpharmaceut.9b01188 PMID: 32074448
  39. Zhang, J.X.; Zhu, K.J. An improvement of double emulsion technique for preparing bovine serum albumin-loaded PLGA microspheres. J. Microencapsul., 2004, 21(7), 775-785. doi: 10.1080/02652040400008465 PMID: 15799227
  40. Whitely, M.; Rodriguez-Rivera, G.; Waldron, C.; Mohiuddin, S.; Cereceres, S.; Sears, N.; Ray, N.; Cosgriff-Hernandez, E. Porous PolyHIPE microspheres for protein delivery from an injectable bone graft. Acta Biomater., 2019, 93, 169-179. doi: 10.1016/j.actbio.2019.01.044 PMID: 30685476
  41. Jung, S.; Abel, J.H.; Starger, J.L.; Yi, H. Porosity-tuned chitosan–polyacrylamide hydrogel microspheres for improved protein conjugation. Biomacromolecules, 2016, 17(7), 2427-2436. doi: 10.1021/acs.biomac.6b00582 PMID: 27351270
  42. Wei, Y.; Wang, Y.; Zhang, H.; Zhou, W.; Ma, G. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading. J. Colloid Interface Sci., 2016, 478, 46-53. doi: 10.1016/j.jcis.2016.05.045 PMID: 27285778
  43. Ansary, R.H.; Rahman, M.M.; Awang, M.B.; Katas, H.; Hadi, H.; Doolaanea, A.A. Preparation, characterization, and in vitrorelease studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv. Transl. Res., 2016, 6(3), 308-318. doi: 10.1007/s13346-016-0278-y PMID: 26817478
  44. Wu, J.; Williams, G.R.; Branford-White, C.; Li, H.; Li, Y.; Zhu, L.M. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation. Eur. J. Pharm. Sci., 2016, 92, 28-38. doi: 10.1016/j.ejps.2016.06.018 PMID: 27343696
  45. Zhai, P.; Chen, X.B.; Schreyer, D.J. PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater. Sci. Eng. C, 2015, 56, 251-259. doi: 10.1016/j.msec.2015.06.015 PMID: 26249587
  46. Zhu, K.J.; Jiang, H.L.; Du, X.Y.; Wang, J.; Xu, W.X.; Liu, S.F. Preparation and characterization of hCG-loaded polylactide or poly(lactide-co-glycolide) microspheres using a modified water-in-oil-in-water (w/o/w) emulsion solvent evaporation technique. J. Microencapsul., 2001, 18(2), 247-260. doi: 10.1080/02652040010000474 PMID: 11253941
  47. Rui, J.; Dadsetan, M.; Runge, M.B.; Spinner, R.J.; Yaszemski, M.J.; Windebank, A.J.; Wang, H. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitrocharacterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater., 2012, 8(2), 511-518. doi: 10.1016/j.actbio.2011.10.001 PMID: 22019759
  48. Robinson, R.; Bertram, J.P.; Reiter, J.L.; Lavik, E.B. New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres. J. Microencapsul., 2010, 27(3), 263-271. doi: 10.3109/02652040903131285 PMID: 20055747
  49. Yenying, A.; Tangamatakul, K.; Supanchart, C.; Jenvoraphot, T.; Manokruang, K.; Worajittiphon, P.; Punyodom, W.; Daranarong, D. Preparation and characterization of PLG microparticles by the multiple emulsion method for the sustained release of proteins. Micromachines , 2022, 13(10), 1761. doi: 10.3390/mi13101761 PMID: 36296114
  50. Shi, M.; Yang, Y.Y.; Chaw, C.S.; Goh, S.H.; Moochhala, S.M.; Ng, S.; Heller, J. Double walled POE/PLGA microspheres: Encapsulation of water-soluble and water-insoluble proteins and their release properties. J. Control. Release, 2003, 89(2), 167-177. doi: 10.1016/S0168-3659(02)00493-5 PMID: 12711441
  51. Jiang, H.; Hu, X.; Jiang, W.; Guan, X.; Li, Y.; Ngai, T. Water-in-oil pickering emulsions stabilized by hydrophobized protein microspheres. Langmuir, 2022, 38(40), 12273-12280. doi: 10.1021/acs.langmuir.2c01904 PMID: 36172706
  52. van der Kooij, R.S.; Steendam, R.; Frijlink, H.W.; Hinrichs, W.L.J. An overview of the production methods for core–shell microspheres for parenteral controlled drug delivery. Eur. J. Pharm. Biopharm., 2022, 170, 24-42. doi: 10.1016/j.ejpb.2021.11.007 PMID: 34861359
  53. Xia, Y.; Ribeiro, P.F.; Pack, D.W. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. J. Control. Release, 2013, 172(3), 707-714. doi: 10.1016/j.jconrel.2013.08.009 PMID: 23954731
  54. Wei, D.; Qiao, R.; Dao, J.; Su, J.; Jiang, C.; Wang, X.; Gao, M.; Zhong, J. Soybean lecithin‐mediated nanoporous plga microspheres with highly entrapped and controlled released BMP‐2 as a stem cell platform. Small, 2018, 14(22), 1800063. doi: 10.1002/smll.201800063 PMID: 29682876
  55. Mao, S.; Xu, J.; Cai, C.; Germershaus, O.; Schaper, A.; Kissel, T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int. J. Pharm., 2007, 334(1-2), 137-148. doi: 10.1016/j.ijpharm.2006.10.036 PMID: 17196348
  56. Li, L.; Li, Z.; Guo, Y.; Zhang, K.; Mi, W.; Liu, J. Preparation of uniform-sized GeXIVA1,2-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency. Drug Deliv., 2022, 29(1), 2283-2295. doi: 10.1080/10717544.2022.2089297 PMID: 35866254
  57. Gasmi, H.; Siepmann, F.; Hamoudi, M.C.; Danede, F.; Verin, J.; Willart, J.F.; Siepmann, J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int. J. Pharm., 2016, 514(1), 189-199. doi: 10.1016/j.ijpharm.2016.08.032 PMID: 27543353
  58. Acharya, G.; Shin, C.S.; Vedantham, K.; McDermott, M.; Rish, T.; Hansen, K.; Fu, Y.; Park, K. A study of drug release from homogeneous PLGA microstructures. J. Control. Release, 2010, 146(2), 201-206. doi: 10.1016/j.jconrel.2010.03.024 PMID: 20381555
  59. Allison, S.D. Analysis of initial burst in PLGA microparticles. Expert Opin. Drug Deliv., 2008, 5(6), 615-628. doi: 10.1517/17425247.5.6.615 PMID: 18532918
  60. Ruan, S.; Gu, Y.; Liu, B.; Gao, H.; Hu, X.; Hao, H.; Jin, L.; Cai, T. Long-acting release microspheres containing novel GLP-1 analog as an antidiabetic system. Mol. Pharm., 2018, 15(7), 2857-2869. doi: 10.1021/acs.molpharmaceut.8b00344 PMID: 29763559
  61. Bao, Y.; Wang, S.; Li, H.; Wang, Y.; Chen, H.; Yuan, M. Characterization, stability and biological activity in vitroof cathelicidin-BF-30 loaded 4-arm star-shaped PEG-PLGA microspheres. Molecules, 2018, 23(2), 497. doi: 10.3390/molecules23020497 PMID: 29473887
  62. Yang, Y.; Chung, T.S.; Ng, N.P. Morphology, drug distribution, and in vitrorelease profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001, 22(3), 231-241. doi: 10.1016/S0142-9612(00)00178-2 PMID: 11197498
  63. Liu, J.; Ren, H.; Xu, Y.; Wang, Y.; Liu, K.; Zhou, Y.; Wang, Y.; Li, W.; Tang, J.; Huang, H.; Li, X. Mechanistic evaluation of the opposite effects on initial burst induced by two similar hydrophilic additives from octreotide acetate–loaded PLGA microspheres. J. Pharm. Sci., 2019, 108(7), 2367-2376. doi: 10.1016/j.xphs.2019.02.012 PMID: 30802455
  64. Ochi, M.; Wan, B.; Bao, Q.; Burgess, D.J. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int. J. Pharm., 2021, 599, 120450. doi: 10.1016/j.ijpharm.2021.120450 PMID: 33675924
  65. Beig, A.; Ackermann, R.; Wang, Y.; Schutzman, R.; Schwendeman, S.P. Minimizing the initial burst of octreotide acetate from glucose star PLGA microspheres prepared by the solvent evaporation method. Int. J. Pharm., 2022, 624, 121842. doi: 10.1016/j.ijpharm.2022.121842 PMID: 35609832
  66. Ansary, R.; Rahman, M.; Mohamad, N.; Arrif, T.; Latif, A.; Katas, H.; Nik, W.; Awang, M. Controlled release of lysozyme from double-walled poly(lactide-co-glycolide) (plga) microspheres. Polymers , 2017, 9(12), 485. doi: 10.3390/polym9100485 PMID: 30965787
  67. Lopac, S.K.; Torres, M.P.; Wilson-Welder, J.H.; Wannemuehler, M.J.; Narasimhan, B. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 91B(2), 938-947. doi: 10.1002/jbm.b.31478 PMID: 19642209
  68. Lin, S.J.; Chan, Y.C.; Su, Z.C.; Yeh, W.L.; Lai, P.L.; Chu, I.M. Growth factor-loaded microspheres in mPEG-polypeptide hydrogel system for articular cartilage repair. J. Biomed. Mater. Res. A, 2021, 109, 2516-2526.
  69. Scheiner, K.C.; Maas-Bakker, R.F.; Nguyen, T.T.; Duarte, A.M.; Hendriks, G.; Sequeira, L.; Duffy, G.P.; Steendam, R.; Hennink, W.E.; Kok, R.J. Sustained release of vascular endothelial growth factor from poly(ε-caprolactone-PEG-ε-caprolactone)- b -Poly(L -lactide) multiblock copolymer microspheres. ACS Omega, 2019, 4(7), 11481-11492. doi: 10.1021/acsomega.9b01272 PMID: 31460253
  70. Wang, T.; Xue, P.; Wang, A.; Yin, M.; Han, J.; Tang, S.; Liang, R. Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends. Eur. J. Pharm. Sci., 2019, 138, 104990. doi: 10.1016/j.ejps.2019.104990 PMID: 31302216
  71. Sellers, D.L.; Kim, T.H.; Mount, C.W.; Pun, S.H.; Horner, P.J. Poly(lactic-co-glycolic) acid microspheres encapsulated in Pluronic F-127 prolong hirudin delivery and improve functional recovery from a demyelination lesion. Biomaterials, 2014, 35(31), 8895-8902. doi: 10.1016/j.biomaterials.2014.06.051 PMID: 25064804
  72. Liu, G.; Hong, X.; Jiang, M.; Yuan, W. Sustained-release G-CSF microspheres using a novel solid-in-oil-in-oil-in-water emulsion method. Int. J. Nanomedicine, 2012, 7, 4559-4569. PMID: 22923993
  73. Chen, M.M.; Cao, H.; Liu, Y.Y.; Liu, Y.; Song, F.F.; Chen, J.D.; Zhang, Q.Q.; Yang, W.Z. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres. Colloids Surf. B Biointerfaces, 2017, 151, 189-195. doi: 10.1016/j.colsurfb.2016.05.045 PMID: 28012407
  74. Xia, Y.; Xu, Q.; Wang, C.; Pack, D.W. Protein encapsulation in and release from monodisperse double-wall polymer microspheres. J. Pharm. Sci., 2013, 102(5), 1601-1609. doi: 10.1002/jps.23511 PMID: 23529836
  75. Andhariya, J.V.; Jog, R.; Shen, J.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J. In vitro-in vivo correlation of parenteral PLGA microspheres: Effect of variable burst release. J. Control. Release, 2019, 314, 25-37. doi: 10.1016/j.jconrel.2019.10.014 PMID: 31654687
  76. Ye, M.; Duan, H.; Yao, L.; Fang, Y.; Zhang, X.; Dong, L.; Yang, F.; Yang, X.; Pan, W. A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian Journal of Pharmaceutical Sciences, 2019, 14(2), 222-232. doi: 10.1016/j.ajps.2018.05.010 PMID: 32104454
  77. Bazybek, N.; Wei, Y.; Ma, G. Advances in encapsulating gonadotropin-releasing hormone agonists for controlled release: a review. J. Microencapsul., 2022, 39(5), 452-466. doi: 10.1080/02652048.2022.2100934 PMID: 35876729
  78. Perugini, P.; Genta, I.; Pavanetto, F.; Modena, T.; Maculotti, K.; Conti, B. Evaluation of enzyme stability during preparation of polylactide-co-glycolide microspheres. J. Microencapsul., 2002, 19(5), 591-602. doi: 10.1080/02652040210144252 PMID: 12433302
  79. Srinivasan, C.; Katare, Y.K.; Muthukumaran, T.; Panda, A.K. Effect of additives on encapsulation efficiency, stability and bioactivity of entrapped lysozyme from biodegradable polymer particles. J. Microencapsul., 2005, 22(2), 127-138. doi: 10.1080/02652040400026400 PMID: 16019899
  80. Wang, P.; Wang, Q.; Ren, T.; Gong, H.; Gou, J.; Zhang, Y.; Cai, C.; Tang, X. Effects of Pluronic F127-PEG multi-gel-core on the release profile and pharmacodynamics of Exenatide loaded in PLGA microspheres. Colloids Surf. B Biointerfaces, 2016, 147, 360-367. doi: 10.1016/j.colsurfb.2016.08.032 PMID: 27559996
  81. Li, L.; Wang, Q.; Li, H.; Yuan, M.; Yuan, M. Preparation, characterization, in vitrorelease and degradation of cathelicidin-BF-30-PLGA microspheres. PLoS One, 2014, 9(6), e100809. doi: 10.1371/journal.pone.0100809 PMID: 24963652
  82. Sun, H.; Xu, F.; Guo, D.; Liu, G. in vitro evaluation of the effects of various additives and polymers on nerve growth factor microspheres. Drug Dev. Ind. Pharm., 2014, 40(4), 452-457. doi: 10.3109/03639045.2013.767829 PMID: 23565585
  83. Xu, W.; He, J.; Wu, G.; Xiong, F.; Du, H.; Wang, G. Stabilization and immune response of HBsAg encapsulated within poly(lactic-co-glycolic acid) microspheres using HSA as a stabilizer. Int. J. Pharm., 2015, 496(2), 332-341. doi: 10.1016/j.ijpharm.2015.10.004 PMID: 26453785
  84. Ouchi, T.; Saito, T.; Kontani, T.; Ohya, Y. Encapsulation and/or release behavior of bovine serum albumin within and from polylactide-grafted dextran microspheres. Macromol. Biosci., 2004, 4(4), 458-463. doi: 10.1002/mabi.200300106 PMID: 15468238
  85. Ghassemi, A.H.; van Steenbergen, M.J.; Barendregt, A.; Talsma, H.; Kok, R.J.; van Nostrum, C.F.; Crommelin, D.J.A.; Hennink, W.E. Controlled release of octreotide and assessment of peptide acylation from poly(D,L-lactide-co-hydroxymethyl glycolide) compared to PLGA microspheres. Pharm. Res., 2012, 29(1), 110-120. doi: 10.1007/s11095-011-0517-3 PMID: 21744173
  86. Shirangi, M.; Najafi, M.; Rijkers, D.T.S.; Kok, R.J.; Hennink, W.E.; van Nostrum, C.F. Inhibition of octreotide acylation inside PLGA microspheres by derivatization of the amines of the peptide with a self-immolative protecting group. Bioconjug. Chem., 2016, 27(3), 576-585. doi: 10.1021/acs.bioconjchem.5b00598 PMID: 26726953
  87. Agrawal, G.R.; Wakte, P.; Shelke, S.; Shelke, S. Formulation, physicochemical characterization and in vitroevaluation of human insulin-loaded microspheres as potential oral carrier. Prog. Biomater., 2017, 6(3), 125-136. doi: 10.1007/s40204-017-0072-z PMID: 28864917
  88. Turino, L.N.; Mariano, R.N.; Boimvaser, S.; Luna, J.A. In situ-formed microparticles of PLGA from O/W emulsions stabilized with PVA: Encapsulation and controlled release of progesterone. J. Pharm. Innov., 2014, 9(2), 132-140. doi: 10.1007/s12247-014-9180-7
  89. Turino, L.N.; Mariano, R.N.; Mengatto, L.N.; Luna, J.A. In vitro evaluation of suspoemulsions for in situ -forming polymeric microspheres and controlled release of progesterone. J. Microencapsul., 2015, 32(6), 538-546. doi: 10.3109/02652048.2015.1065914 PMID: 26218541
  90. Castellanos, I.J.; Carrasquillo, K.G.; López, J.D.J.; Alvarez, M.; Griebenow, K. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique. J. Pharm. Pharmacol., 2010, 53(2), 167-178. doi: 10.1211/0022357011775361 PMID: 11273012
  91. Baldascini, H.; Janssen, D.B. Interfacial inactivation of epoxide hydrolase in a two-liquid-phase system. Enzyme Microb. Technol., 2005, 36(2-3), 285-293. doi: 10.1016/j.enzmictec.2003.08.007
  92. Singh, P.; Medronho, B.; Miguel, M.G.; Esquena, J. On the encapsulation and viability of probiotic bacteria in edible carboxymethyl cellulose-gelatin water-in-water emulsions. Food Hydrocoll., 2018, 75, 41-50. doi: 10.1016/j.foodhyd.2017.09.014
  93. Zhang, L.; Cai, L.H.; Lienemann, P.S.; Rossow, T.; Polenz, I.; Vallmajo-Martin, Q.; Ehrbar, M.; Na, H.; Mooney, D.J.; Weitz, D.A. One-step microfluidic fabrication of polyelectrolyte microcapsules in aqueous conditions for protein release. Angew. Chem. Int. Ed., 2016, 55(43), 13470-13474. doi: 10.1002/anie.201606960 PMID: 27717141
  94. Ma, C.; Jing, Y.; Sun, H.; Liu, X. Hierarchical nanofibrous microspheres with controlled growth factor delivery for bone regeneration. Adv. Healthc. Mater., 2015, 4(17), 2699-2708. doi: 10.1002/adhm.201500531 PMID: 26462137
  95. Na, D.H.; Lee, J.E.; Jang, S.W.; Lee, K.C. Formation of acylated growth hormone-releasing peptide-6 by poly(lactide-co-glycolide) and its biological activity. AAPS PharmSciTech, 2007, 8(2), E105-E109. doi: 10.1208/pt0802043 PMID: 17622118
  96. Shirangi, M.; Hennink, W.E.; Somsen, G.W.; van Nostrum, C.F. Acylation of arginine in goserelin-loaded PLGA microspheres. Eur. J. Pharm. Biopharm., 2016, 99, 18-23. doi: 10.1016/j.ejpb.2015.11.008 PMID: 26607434
  97. Diwan, M.; Park, T.G. Stabilization of recombinant interferon-α by pegylation for encapsulation in PLGA microspheres. Int. J. Pharm., 2003, 252(1-2), 111-122. doi: 10.1016/S0378-5173(02)00636-1 PMID: 12550786
  98. Flores-Fernández, G.M.; Griebenow, K. Glycosylation improves α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic)acid microspheres. Results Pharma Sci., 2012, 2, 46-51. doi: 10.1016/j.rinphs.2012.08.001 PMID: 23419866
  99. Varcheh, N.; Aboofazeli, R. An approach to the design of a particulate system for oral protein delivery. II. preparation and stability study of rhgh-loaded microspheres in simulated gastrointestinal fluids. Iran. J. Pharm. Res., 2011, 10(2), 183-192. PMID: 24250342
  100. Liu, Y.; Ghassemi, A.H.; Hennink, W.E.; Schwendeman, S.P. The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials, 2012, 33(30), 7584-7593. doi: 10.1016/j.biomaterials.2012.06.013 PMID: 22819499
  101. Delgado-Rivera, R.; Rosario-Meléndez, R.; Yu, W.; Uhrich, K.E. Biodegradable salicylate-based poly(anhydride-ester) microspheres for controlled insulin delivery. J. Biomed. Mater. Res. A, 2014, 102(8), 2736-2742. doi: 10.1002/jbm.a.34949 PMID: 24027012
  102. Chen, X.; Lv, G.; Zhang, J.; Tang, S.; Yan, Y.; Su, J.; Wu, Z.; Wei, J. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery. Int. J. Nanomedicine, 2014, 9, 1957-1965. doi: 10.2147/IJN.S57048 PMID: 24855351
  103. Guo, Z.; Bo, D.; He, Y.; Luo, X.; Li, H. Degradation properties of chitosan microspheres/poly(L-lactic acid) composite in vitroand in vivo. Carbohydr. Polym., 2018, 193, 1-8. doi: 10.1016/j.carbpol.2018.03.067 PMID: 29773361
  104. Guo, N.; Zhang, Q.; Sun, Y.; Yang, H. Separation and identification of acylated leuprorelin inside PLGA microspheres. Int. J. Pharm., 2019, 560, 273-281. doi: 10.1016/j.ijpharm.2019.01.061 PMID: 30731258
  105. Friess, W.; Schlapp, M. Release mechanisms from gentamicin loaded poly(lactic-co-glycolic acid) (PLGA) microparticles. J. Pharm. Sci., 2002, 91(3), 845-855. doi: 10.1002/jps.10012 PMID: 11920769
  106. Residual Solvents, 2016. Available from: https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/generalChapter467Current.pdf
  107. Zhang, J.X.; Zhu, K.J.; Chen, D. Preparation of bovine serum albumin loaded poly (D, L-lactic-co-glycolic acid) microspheres by a modified phase separation technique. J. Microencapsul., 2005, 22(2), 117-126. doi: 10.1080/02652040400026335 PMID: 16019898
  108. Giles, M.B.; Hong, J.K.Y.; Liu, Y.; Tang, J.; Li, T.; Beig, A.; Schwendeman, A.; Schwendeman, S.P. Efficient aqueous remote loading of peptides in poly(lactic-co-glycolic acid). Nat. Commun., 2022, 13(1), 3282. doi: 10.1038/s41467-022-30813-7 PMID: 35676271
  109. Beig, A.; Feng, L.; Walker, J.; Ackermann, R.; Hong, J.K.Y.; Li, T.; Wang, Y.; Schwendeman, S.P. Development and characterization of composition-equivalent formulations to the Sandostatin LAR® by the solvent evaporation method. Drug Deliv. Transl. Res., 2022, 12(3), 695-707. doi: 10.1007/s13346-021-01013-5 PMID: 34215997
  110. Wen, K.; Na, X.; Yuan, M.; Bazybek, N.; Li, X.; Wei, Y.; Ma, G. Preparation of novel ropivacaine hydrochloride-loaded PLGA microspheres based on post-loading mode and efficacy evaluation. Colloids Surf. B Biointerfaces, 2022, 210, 112215. doi: 10.1016/j.colsurfb.2021.112215 PMID: 34839050

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024