MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products
- Authors: Atteia H.1
-
Affiliations:
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk
- Issue: Vol 25, No 14 (2024)
- Pages: 1791-1806
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644558
- DOI: https://doi.org/10.2174/0113892010282155231222071903
- ID: 644558
Cite item
Full Text
Abstract
:Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Keywords
About the authors
Hebatallah Atteia
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk
Author for correspondence.
Email: info@benthamscience.net
References
- McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press. Adv. Nutr., 2016, 7(2), 418-419. doi: 10.3945/an.116.012211 PMID: 26980827
- World Health Organization Cancer, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer cited 2020 Sep 8.
- Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
- Division of Cancer Prevention and Control C for DC and P. Information for Health Care Providers ⋅ Preventing Infections in Cancer Patients CDC, Available from: https://www.cdc.gov/cancer/ preventinfection s/providers.htm cited 2020 Sep 8.
- Hale, K.E. Chapter 95: toxicities of chemotherapy Hall, J.B. ; Schmidt, G.A. ; Kress , J. P. In: Principles of Critical Care, 4th ed; McGraw-Hill Education/Medical: New York City, 2015.
- Shanholtz, C. Acute life-threatening toxicity of cancer treatment. Crit. Care Clin., 2001, 17(3), 483-502. doi: 10.1016/S0749-0704(05)70196-2 PMID: 11529252
- Shapiro, C.L. Highlights of recent findings on quality-of-life management for patients with cancer and their survivors. JAMA Oncol., 2016, 2(11), 1401-1402. doi: 10.1001/jamaoncol.2016.3620 PMID: 27608189
- Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; Leisenring, W.; Armstrong, G.T.; Robison, L.L.; Neglia, J.P. Temporal trends in treatment and subsequent neoplasm risk Among 5-Year survivors of childhood cancer, 1970-2015. JAMA, 2017, 317(8), 814-824. doi: 10.1001/jama.2017.0693 PMID: 28245323
- Horie, T.; Ono, K.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Kuwabara, Y.; Nakashima, Y.; Takanabe-Mori, R.; Nishi, E.; Hasegawa, K.; Kita, T.; Kimura, T. Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc. Res., 2010, 87(4), 656-664. doi: 10.1093/cvr/cvq148 PMID: 20495188
- Fu, J.; Peng, C.; Wang, W.; Jin, H.; Tang, Q.; Wei, X. Let-7g is involved in doxorubicin induced myocardial injury. Environ. Toxicol. Pharmacol., 2012, 33(2), 312-317. doi: 10.1016/j.etap.2011.12.023 PMID: 22301161
- Vacchi-Suzzi, C.; Bauer, Y.; Berridge, B.R.; Bongiovanni, S.; Gerrish, K.; Hamadeh, H.K.; Letzkus, M.; Lyon, J.; Moggs, J.; Paules, R.S.; Pognan, F.; Staedtler, F.; Vidgeon-Hart, M.P.; Grenet, O.; Couttet, P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One, 2012, 7(7), e40395. doi: 10.1371/journal.pone.0040395 PMID: 22859947
- Desai, V.G.; C Kwekel, J.; Vijay, V.; Moland, C.L.; Herman, E.H.; Lee, T.; Han, T.; Lewis, S.M.; Davis, K.J.; Muskhelishvili, L.; Kerr, S.; Fuscoe, J.C. Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol. Appl. Pharmacol., 2014, 281(2), 221-229. doi: 10.1016/j.taap.2014.10.006 PMID: 25448438
- Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416. doi: 10.2119/molmed.2010.00002 PMID: 20386864
- Joo, M.S.; Lee, C.G.; Koo, J.H.; Kim, S.G. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis., 2013, 4(10), e899. doi: 10.1038/cddis.2013.427 PMID: 24176857
- Kanki, M.; Moriguchi, A.; Sasaki, D.; Mitori, H.; Yamada, A.; Unami, A.; Miyamae, Y. Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats. Toxicology, 2014, 324, 158-168. doi: 10.1016/j.tox.2014.05.004 PMID: 24863737
- Pavkovic, M.; Riefke, B.; Ellinger-Ziegelbauer, H. Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology, 2014, 324, 147-157. doi: 10.1016/j.tox.2014.05.005 PMID: 24880025
- Pellegrini, K.L.; Han, T.; Bijol, V.; Saikumar, J.; Craciun, F.L.; Chen, W.W.; Fuscoe, J.C.; Vaidya, V.S. MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol. Sci., 2014, 141(2), 484-492. doi: 10.1093/toxsci/kfu143 PMID: 25015656
- Mohr, A.; Mott, J. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 003-011. doi: 10.1055/s-0034-1397344 PMID: 25632930
- Yu, H.W.; Cho, W.C. The role of microRNAs in toxicology. Arch. Toxicol., 2015, 89(3), 319-325. doi: 10.1007/s00204-014-1440-2 PMID: 25586887
- Bushel, P.R.; Caiment, F.; Wu, H.; OLone, R.; Day, F.; Calley, J.; Smith, A.; Li, J. RATEmiRs: The rat atlas of tissue-specific and enriched miRNAs database. BMC Genomics, 2018, 19(1), 825. doi: 10.1186/s12864-018-5220-x PMID: 30453895
- Marrone, A.K.; Beland, F.A.; Pogribny, I.P. Noncoding RNA response to xenobiotic exposure: An indicator of toxicity and carcinogenicity. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1409-1422. doi: 10.1517/17425255.2014.954312 PMID: 25171492
- Vrijens, K.; Bollati, V.; Nawrot, T.S. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect., 2015, 123(5), 399-411. doi: 10.1289/ehp.1408459 PMID: 25616258
- Lee, C.T.; Risom, T.; Strauss, W.M. Evolutionary conservation of microRNA regulatory circuits: An examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol., 2007, 26(4), 209-218. doi: 10.1089/dna.2006.0545 PMID: 17465887
- Hornby, R.J.; Lewis, P.; Dear, J.; Goldring, C.; Park, B.K. MicroRNAs as potential circulating biomarkers of drug-induced liver injury: Key current and future issues for translation to humans. Expert Rev. Clin. Pharmacol., 2014, 7(3), 349-362. doi: 10.1586/17512433.2014.904201 PMID: 24694030
- Sohel, M.H. Extracellular/circulating MicroRNAs: Release mechanisms, functions and challenges. Achiev Life Sci, 2016, 10(2), 175-186. doi: 10.1016/j.als.2016.11.007
- Harrill, A.H.; McCullough, S.D.; Wood, C.E.; Kahle, J.J.; Chorley, B.N. MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci., 2016, 152(2), 264-272. doi: 10.1093/toxsci/kfw090 PMID: 27462126
- Bailey, W.J.; Glaab, W.E. Accessible miRNAs as novel toxicity biomarkers. Int. J. Toxicol., 2018, 37(2), 116-120. doi: 10.1177/1091581817752405 PMID: 29357765
- Wang, K.; Zhang, S.; Marzolf, B.; Troisch, P.; Brightman, A.; Hu, Z.; Hood, L.E.; Galas, D.J. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4402-4407. doi: 10.1073/pnas.0813371106 PMID: 19246379
- Akai, S.; Oda, S.; Yokoi, T. Establishment of a novel mouse model for pioglitazone-induced skeletal muscle injury. Toxicology, 2017, 382, 1-9. doi: 10.1016/j.tox.2017.03.001 PMID: 28263783
- Watanabe, K.; Oda, S.; Matsubara, A.; Akai, S.; Yokoi, T. Establishment and characterization of a mouse model of rhabdomyolysis by coadministration of statin and fibrate. Toxicol. Lett., 2019, 307, 49-58. doi: 10.1016/j.toxlet.2019.03.001 PMID: 30853469
- Nishimura, Y.; Kondo, C.; Morikawa, Y.; Tonomura, Y.; Torii, M.; Yamate, J.; Uehara, T. Plasma miR‐208 as a useful biomarker for drug‐induced cardiotoxicity in rats. J. Appl. Toxicol., 2015, 35(2), 173-180. doi: 10.1002/jat.3044 PMID: 25092230
- Kakiuchi, D.; Taketa, Y.; Ohta, E.; Fujikawa, Y.; Nakano-Ito, K.; Asakura, S.; Hosokawa, S. Combination of circulating microRNAs as indicators of specific targets of retinal toxicity in rats. Toxicology, 2019, 411, 163-171. doi: 10.1016/j.tox.2018.10.008 PMID: 30336191
- Calvano, J.; Edwards, G.; Hixson, C.; Burr, H.; Mangipudy, R.; Tirmenstein, M. Serum microRNAs-217 and −375 as biomarkers of acute pancreatic injury in rats. Toxicology, 2016, 368-369, 1-9. doi: 10.1016/j.tox.2016.08.009 PMID: 27521901
- Wang, J.; Huang, W.; Thibault, S.; Brown, T.P.; Bobrowski, W.; Gukasyan, H.J.; Evering, W.; Hu, W.; John-Baptiste, A.; Vitsky, A. Evaluation of miR-216a and miR-217 as potential biomarkers of acute exocrine pancreatic toxicity in rats. Toxicol. Pathol., 2017, 45(2), 321e34. doi: 10.1177/0192623316678090
- Erdos, Z.; Barnum, J.E.; Wang, E.; DeMaula, C.; Dey, P.M.; Forest, T.; Bailey, W.J.; Glaab, W.E. Evaluation of the relative performance of pancreas-specific microRNAs in rat plasma as biomarkers of pancreas injury. Toxicol. Sci., 2020, 173(1), 5-18. doi: 10.1093/toxsci/kfz184 PMID: 31504967
- Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol., 2018, 9, 1253. doi: 10.3389/fphar.2018.01253 PMID: 30459615
- Ismael, G.F.V.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat. Rev., 2008, 34(1), 81-91. doi: 10.1016/j.ctrv.2007.08.001 PMID: 17905518
- Malarkey, D.E.; Johnson, K.; Ryan, L.; Boorman, G.; Maronpot, R.R. New insights into functional aspects of liver morphology. Toxicol. Pathol., 2005, 33(1), 27-34. doi: 10.1080/01926230590881826 PMID: 15805053
- Gu, X.; Manautou, J.E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med., 2012, 14, e4. doi: 10.1017/S1462399411002110 PMID: 22306029
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171. doi: 10.1016/j.jhep.2018.09.014 PMID: 30266282
- Walker, P.A.; Ryder, S.; Lavado, A.; Dilworth, C.; Riley, R.J. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch. Toxicol., 2020, 94(8), 2559-2585. doi: 10.1007/s00204-020-02763-w PMID: 32372214
- Grigorian, A.; OBrien, C.B. Hepatotoxicity secondary to chemotherapy. J. Clin. Transl. Hepatol., 2014, 2(2), 95-102. PMID: 26357620
- Calistri, L.; Rastrelli, V.; Nardi, C.; Maraghelli, D.; Vidali, S.; Pietragalla, M.; Colagrande, S. Imaging of the chemotherapy-induced hepatic damage: Yellow liver, blue liver, and pseudocirrhosis. World J. Gastroenterol., 2021, 27(46), 7866-7893. doi: 10.3748/wjg.v27.i46.7866 PMID: 35046618
- Thatishetty, A.V.; Agresti, N.; OBrien, C.B. Chemotherapy-induced hepatotoxicity. Clin. Liver Dis., 2013, 17(4), 671-686. ix-x. doi: 10.1016/j.cld.2013.07.010 PMID: 24099024
- Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176. doi: 10.1093/toxsci/65.2.166 PMID: 11812920
- McWhirter, D.; Kitteringham, N.; Jones, R.P.; Malik, H.; Park, K.; Palmer, D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit. Rev. Oncol. Hematol., 2013, 88(2), 404-415. doi: 10.1016/j.critrevonc.2013.05.011 PMID: 23786843
- Hsu, S.; Ghoshal, K. MicroRNAs in liver health and disease. Curr. Pathobiol. Rep., 2013, 1(1), 53-62. doi: 10.1007/s40139-012-0005-4 PMID: 23565350
- Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897. doi: 10.1172/JCI63455 PMID: 22820290
- Hsu, S.; Wang, B.; Kota, J.; Yu, J.; Costinean, S.; Kutay, H.; Yu, L.; Bai, S.; La Perle, K.; Chivukula, R.R.; Mao, H.; Wei, M.; Clark, K.R.; Mendell, J.R.; Caligiuri, M.A.; Jacob, S.T.; Mendell, J.T.; Ghoshal, K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest., 2012, 122(8), 2871-2883. doi: 10.1172/JCI63539 PMID: 22820288
- Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98. doi: 10.1016/j.cmet.2006.01.005 PMID: 16459310
- Fernández-Hernando, C.; Ramírez, C.M.; Goedeke, L.; Suárez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 178-185. doi: 10.1161/ATVBAHA.112.300144 PMID: 23325474
- Castoldi, M.; Vujic Spasic, M.; Altamura, S.; Elmén, J.; Lindow, M.; Kiss, J.; Stolte, J.; Sparla, R.; DAlessandro, L.A.; Klingmüller, U.; Fleming, R.E.; Longerich, T.; Gröne, H.J.; Benes, V.; Kauppinen, S.; Hentze, M.W.; Muckenthaler, M.U. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest., 2011, 121(4), 1386-1396. doi: 10.1172/JCI44883 PMID: 21364282
- Gatfield, D.; Le Martelot, G.; Vejnar, C.E.; Gerlach, D.; Schaad, O.; Fleury-Olela, F.; Ruskeepää, A.L.; Oresic, M.; Esau, C.C.; Zdobnov, E.M.; Schibler, U. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev., 2009, 23(11), 1313-1326. doi: 10.1101/gad.1781009 PMID: 19487572
- Sherif, I.O.; Al-Shaalan, N.H. Hepatoprotective effect of Ginkgo biloba extract against methotrexate-induced hepatotoxicity via targeting STAT3/miRNA-21 axis. Drug Chem. Toxicol., 2022, 45(4), 1723-1731. doi: 10.1080/01480545.2020.1862859 PMID: 33349067
- Kalantari, H.; Asadmasjedi, N.; Abyaz, M.; Mahdavinia, M.; Mohammadtaghvaei, N. Protective effect of inulin on methotrexate-induced liver toxicity in mice. Biomed. Pharmacother., 2019, 110, 943-950.
- Li, Y.; Gao, M.; Yin, L.H.; Xu, L.N.; Qi, Y.; Sun, P.; Peng, J.Y. Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic. Biol. Med., 2021, 169, 99-109.
- Abd El-Haleim, E.A.; Sallam, N.A. Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam. Clin. Pharmacol., 2022, 36(2), 338-349. doi: 10.1111/fcp.12720 PMID: 34312906
- El Shaffei, I.; Abdel-Latif, G.A.; Farag, D.B.; Schaalan, M.; Salama, R.M. Ameliorative effect of betanin on experimental cisplatin-induced liver injury: The novel impact of miRNA‐34a onthe SIRT1/PGC‐1α signaling pathway. J. Biochem. Mol. Toxicol., 2021, 35(6), 1-14.
- Khedr, L.H.; Rahmo, R.M.; Farag, D.B.; Schaalan, M.F.; El Magdoub, H.M. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem. Toxicol., 2020, 140, 111307.
- Zhang, Y.; Wang, D.; Shen, D.; Luo, Y.; Che, Y.Q. Identification of exosomal miRNAs associated with the anthracycline-induced liver injury in postoperative breast cancer patients by small RNA sequencing. PeerJ, 2020, 8, e9021. doi: 10.7717/peerj.9021 PMID: 32355577
- Zhao, X.; Jin, Y.; Li, L.; Xu, L.; Tang, Z.; Qi, Y.; Yin, L.; Peng, J. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol. Res., 2019, 146, 104276. doi: 10.1016/j.phrs.2019.104276 PMID: 31112750
- Björnsson, E. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci., 2016, 17(2), 224. doi: 10.3390/ijms17020224 PMID: 26861310
- Kumari, S.; Kumari, S.; Sharma, A.K.; Kaur, I. Methotrexate induced hepatotoxicity and its management. Int. J. Sci. Res., 2016, 5, 1477-1481.
- Tag, H.M. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Complement. Altern. Med., 2015, 15(1), 252. doi: 10.1186/s12906-015-0744-y PMID: 26209437
- Kelleni, M.T.; Ibrahim, S.A.; Abdelrahman, A.M. Effect of captopril and telmisartan on methotrexate-induced hepatotoxicity in rats: Impact of oxidative stress, inflammation and apoptosis. Toxicol. Mech. Methods, 2016, 26(5), 371-377. doi: 10.1080/15376516.2016.1191576 PMID: 27269004
- Khafaga, A.F.; El-Sayed, Y.S. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci., 2018, 196, 9-17. doi: 10.1016/j.lfs.2018.01.010 PMID: 29339102
- Fouad, A.A.; Hafez, H.M.; Hamouda, A.A.H. Hydrogen sulphide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum. Exp. Toxicol., 2020, 39(1), 77-85. doi: 10.1177/0960327119877437 PMID: 31542963
- Hafez, M.M.; Al-Harbi, N.O.; Al-Hoshani, A.R.; Al-hosaini, K.A.; Al Shrari, S.D.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biol. Res., 2015, 48(1), 30. doi: 10.1186/s40659-015-0022-y PMID: 26062544
- Calo, N.; Ramadori, P.; Sobolewski, C.; Romero, Y.; Maeder, C.; Fournier, M.; Rantakari, P.; Zhang, F.P.; Poutanen, M.; Dufour, J.F.; Humar, B.; Nef, S.; Foti, M. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut, 2016, 65(11), 1871-1881. doi: 10.1136/gutjnl-2015-310822 PMID: 27222533
- Loyer, X.; Paradis, V.; Hénique, C.; Vion, A.C.; Colnot, N.; Guerin, C.L.; Devue, C.; On, S.; Scetbun, J.; Romain, M.; Paul, J.L.; Rothenberg, M.E.; Marcellin, P.; Durand, F.; Bedossa, P.; Prip-Buus, C.; Baugé, E.; Staels, B.; Boulanger, C.M.; Tedgui, A.; Rautou, P.E. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut, 2016, 65(11), 1882-1894. doi: 10.1136/gutjnl-2014-308883 PMID: 26338827
- Dippold, R.P.; Vadigepalli, R.; Gonye, G.E.; Hoek, J.B. Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(6), G733-G743. doi: 10.1152/ajpgi.00019.2012 PMID: 22790595
- Zhao, J.; Tang, N.; Wu, K.; Dai, W.; Ye, C.; Shi, J.; Zhang, J.; Ning, B.; Zeng, X.; Lin, Y. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One, 2014, 9(10), e108005. doi: 10.1371/journal.pone.0108005 PMID: 25303175
- Wang, F.; Liu, W.; Jin, Y.; Wang, F.; Ma, J. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers. Environ. Toxicol., 2015, 30(6), 712-723. a doi: 10.1002/tox.21949 PMID: 24420840
- Afonso, M.B.; Rodrigues, P.M.; Simão, A.L.; Gaspar, M.M.; Carvalho, T.; Borralho, P.; Bañales, J.M.; Castro, R.E.; Rodrigues, C.M.P. miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death Differ., 2018, 25(5), 857-872. doi: 10.1038/s41418-017-0019-x PMID: 29229992
- Zhu, C.; Zhang, M.; Hu, J.; Li, H.; Liu, S.; Li, T.; Wu, L.; Han, B. Prognostic effect of IL-6/JAK2/STAT3 signal-induced microRNA-21-5p expression on short term recurrence of hepatocellular carcinoma after hepatectomy. Int. J. Clin. Exp. Pathol., 2018, 11(8), 4169-4178. PMID: 31949811
- Lin, C.J.F.; Gong, H.Y.; Tseng, H.C.; Wang, W.L.; Wu, J.L. miR- 122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun., 2008, 375(3), 315-320. doi: 10.1016/j.bbrc.2008.07.154 PMID: 18692484
- Lima, R.T.; Busacca, S.; Almeida, G.M.; Gaudino, G.; Fennell, D.A.; Vasconcelos, M.H. MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer, 2011, 47(2), 163-174. doi: 10.1016/j.ejca.2010.11.005 PMID: 21145728
- Zhang, Y.; Jia, Y.; Zheng, R.; Guo, Y.; Wang, Y.; Guo, H.; Fei, M.; Sun, S. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin. Chem., 2010, 56(12), 1830-1838. doi: 10.1373/clinchem.2010.147850 PMID: 20930130
- Starkey Lewis, P.J.; Dear, J.; Platt, V.; Simpson, K.J.; Craig, D.G.N.; Antoine, D.J.; French, N.S.; Dhaun, N.; Webb, D.J.; Costello, E.M.; Neoptolemos, J.P.; Moggs, J.; Goldring, C.E.; Park, B.K. Circulating microRNAs as potential markers of human druginduced liver injury. Hepatology, 2011, 54(5), 1767-1776. doi: 10.1002/hep.24538 PMID: 22045675
- Yuan, M.; Zhang, L.; You, F.; Zhou, J.; Ma, Y.; Yang, F.; Tao, L. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol. Cell. Biochem., 2017, 431(1-2), 123-131. doi: 10.1007/s11010-017-2982-4 PMID: 28281187
- Hui, Y.; Yin, Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling. Life Sci., 2018, 207, 212-218. doi: 10.1016/j.lfs.2018.06.005 PMID: 29883722
- Wu, J.; He, Y.; Luo, Y.; Zhang, L.; Lin, H.; Liu, X.; Liu, B.; Liang, C.; Zhou, Y.; Zhou, J. MiR‐145‐5p inhibits proliferation and inflammatory responses of RMC through regulating AKT/GSK pathway by targeting CXCL16. J. Cell. Physiol., 2018, 233(4), 3648-3659. doi: 10.1002/jcp.26228 PMID: 29030988
- Addo, R.; Haas, M.; Goodall, S. The cost-effectiveness of adjuvant tamoxifen treatment of hormone receptorpositive early breast cancer among premenopausal and perimenopausal Ghanaian women. Value Health Reg. Issues, 2021, 25, 196-205. doi: 10.1016/j.vhri.2021.05.005 PMID: 34428695
- Condorelli, R.; Vaz-Luis, I. Managing side effects in adjuvant endocrine therapy for breast cancer. Expert Rev. Anticancer Ther., 2018, 18(11), 1101-1112. doi: 10.1080/14737140.2018.1520096 PMID: 30188738
- Lee, B.; Jung, E.A.; Yoo, J.J.; Kim, S.G.; Lee, C.B.; Kim, Y.S.; Jeong, S.W.; Jang, J.Y.; Lee, S.H.; Kim, H.S.; Jun, B.G.; Kim, Y.D.; Cheon, G.J.; Kim, Y.D.; Cheon, G.J. Prevalence, incidence and risk factors of tamoxifen‐related non-alcoholic fatty liver disease: A systematic review and meta‐analysis. Liver Int., 2020, 40(6), 1344-1355. doi: 10.1111/liv.14434 PMID: 32170895
- Cole, L.K.; Jacobs, R.L.; Vance, D.E. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology, 2010, 52(4), 1258-1265. doi: 10.1002/hep.23813 PMID: 20658461
- Zhao, F.; Xie, P.; Jiang, J.; Zhang, L.; An, W.; Zhan, Y. The effect and mechanism of tamoxifen-induced hepatocyte steatosis in vitro. Int. J. Mol. Sci., 2014, 15(3), 4019-4030. doi: 10.3390/ijms15034019 PMID: 24603540
- Birzniece, V.; Barrett, P.H.R.; Ho, K.K.Y. Tamoxifen reduces hepatic VLDL production and GH secretion in women: A possible mechanism for steatosis development. Eur. J. Endocrinol., 2017, 177(2), 137-143. doi: 10.1530/EJE-17-0151 PMID: 28500244
- Ribeiro, M.P.C.; Santos, A.E.; Custódio, J.B.A. Mitochondria: The gateway for tamoxifen-induced liver injury. Toxicology, 2014, 323, 10-18. doi: 10.1016/j.tox.2014.05.009 PMID: 24881593
- Hochreuter, M.Y.; Dall, M.; Treebak, J.T.; Barrès, R. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol. Metab., 2022, 65, 101581. doi: 10.1016/j.molmet.2022.101581 PMID: 36028120
- Miyaaki, H.; Ichikawa, T.; Kamo, Y.; Taura, N.; Honda, T.; Shibata, H.; Milazzo, M.; Fornari, F.; Gramantieri, L.; Bolondi, L.; Nakao, K. Significance of serum and hepatic micro RNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int., 2014, 34(7), e302-e307. doi: 10.1111/liv.12429 PMID: 24313922
- Yamada, H.; Ohashi, K.; Suzuki, K.; Munetsuna, E.; Ando, Y.; Yamazaki, M.; Ishikawa, H.; Ichino, N.; Teradaira, R.; Hashimoto, S. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin. Chim. Acta, 2015, 446, 267-271. doi: 10.1016/j.cca.2015.05.002 PMID: 25958847
- Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 239-250. doi: 10.1038/nrm3313 PMID: 22436747
- Rayner, K.J.; Esau, C.C.; Hussain, F.N.; McDaniel, A.L.; Marshall, S.M.; van Gils, J.M.; Ray, J.M.; Sheedy, T.D.; Goedeke, F.J.; Liu, L.; Khatsenko, X.; Kaimal, O.G.; Lees, V.; Fernandez-Hernando, C.J.; Fisher, C.; Temel, E.A.; Moore, K.J. Inhibition of miR-33a/b in non-human primates raises plasma HDL and reduces VLDL triglycerides. Nature, 2012, 478, 404-407. doi: 10.1038/nature10486 PMID: 22012398
- Jin, X.; Ye, Y.F.; Chen, S.H.; Yu, C.H.; Liu, J.; Li, Y.M. MicroRNA expression pattern in different stages of nonalcoholic fatty liver disease. Dig. Liver Dis., 2009, 41(4), 289-297. doi: 10.1016/j.dld.2008.08.008 PMID: 18922750
- López-Riera, M.; Conde, I.; Tolosa, L.; Zaragoza, Á.; Castell, J.V.; Gómez-Lechón, M.J.; Jover, R. New microRNA biomarkers for drug-induced steatosis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease. Front. Pharmacol., 2017, 8, 3. doi: 10.3389/fphar.2017.00003 PMID: 28179883
- Nam, H.S.; Hwang, K.S.; Jeong, Y.M.; Ryu, J.I.; Choi, T.Y.; Bae, M.A.; Son, W.C.; You, K.H.; Son, H.Y.; Kim, C.H. Expression of miRNA-122 induced by liver toxicants in Zebrafish. BioMed Res. Int., 2016, 2016, 1-7. doi: 10.1155/2016/1473578 PMID: 27563662
- Moore, K.J.; Rayner, K.J.; Suárez, Y.; Fernández-Hernando, C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu. Rev. Nutr., 2011, 31(1), 49-63. doi: 10.1146/annurev-nutr-081810-160756 PMID: 21548778
- Dasari, S.; Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
- Shu, X.L.; Fan, C.B.; Long, B.; Zhou, X.; Wang, Y. The anticancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(21), 4459-4465. PMID: 27874954
- Omar, H.A.; Mohamed, W.R.; Arab, H.H.; Arafa, E.S.A. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PLoS One, 2016, 11(3), e0151649. doi: 10.1371/journal.pone.0151649 PMID: 27031695
- Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur. J. Pharmacol., 2018, 827, 49-57. doi: 10.1016/j.ejphar.2018.03.009 PMID: 29530589
- Yamakuchi, M. MicroRNA regulation of SIRT1. Front. Physiol., 2012, 3, 68. doi: 10.3389/fphys.2012.00068 PMID: 22479251
- Akbari, G.; Mard, S.A.; Dianat, M.; Mansouri, E. The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxid. Med. Cell. Longev., 2017, 2017, 1-11. doi: 10.1155/2017/1702967 PMID: 28367266
- Cheng, X.; Ku, C.H.; Siow, R.C.M. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic. Biol. Med., 2013, 64, 4-11. doi: 10.1016/j.freeradbiomed.2013.07.025 PMID: 23880293
- Seki, E.; De Minicis, S.; Österreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med., 2007, 13(11), 1324-1332. doi: 10.1038/nm1663 PMID: 17952090
- El-Shitany, N.A.; Eid, B. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway. Environ. Toxicol., 2017, 32(7), 1952-1963. doi: 10.1002/tox.22418 PMID: 28371137
- Guo, J.; Friedman, S.L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair, 2010, 3(1), 21. doi: 10.1186/1755-1536-3-21 PMID: 20964825
- Nakamoto, N.; Kanai, T. Role of toll-like receptors in immune activation and tolerance in the liver. Front. Immunol., 2014, 5, 221. doi: 10.3389/fimmu.2014.00221 PMID: 24904576
- Yang, L.; Seki, E. Toll-like receptors in liver fibrosis: Cellular crosstalk and mechanisms. Front. Physiol., 2012, 3, 138. doi: 10.3389/fphys.2012.00138 PMID: 22661952
- Liu, C.; Chen, X.; Yang, L.; Kisseleva, T.; Brenner, D.A.; Seki, E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J. Biol. Chem., 2014, 289(10), 7082-7091. doi: 10.1074/jbc.M113.543769 PMID: 24448807
- ONeill, L.A.; Sheedy, F.J.; McCoy, C.E. MicroRNAs: the fine tuners of Toll-like receptor signalling. Nat. Rev. Immunol., 2011, 11(3), 163-175. doi: 10.1038/nri2957 PMID: 21331081
- Bazzoni, F.; Rossato, M.; Fabbri, M.; Gaudiosi, D.; Mirolo, M.; Mori, L.; Tamassia, N.; Mantovani, A.; Cassatella, M.A.; Locati, M. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5282-5287. doi: 10.1073/pnas.0810909106 PMID: 19289835
- Roderburg, C.; Urban, G.W.; Bettermann, K.; Vucur, M.; Zimmermann, H.; Schmidt, S.; Janssen, J.; Koppe, C.; Knolle, P.; Castoldi, M.; Tacke, F.; Trautwein, C.; Luedde, T. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 2011, 53(1), 209-218. doi: 10.1002/hep.23922 PMID: 20890893
- Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300. doi: 10.1001/jama.2018.19323 PMID: 30667505
- Wu, J.; Xue, X.; Zhang, B.; Jiang, W.; Cao, H.; Wang, R.; Sun, D.; Guo, R. The protective effects of paeonol against epirubicininduced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chem. Biol. Interact., 2016, 244, 1-8. doi: 10.1016/j.cbi.2015.11.025 PMID: 26646421
- Masyuk, A.I.; Masyuk, T.V.; LaRusso, N.F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol., 2013, 59(3), 621-625. doi: 10.1016/j.jhep.2013.03.028 PMID: 23557871
- Kagawa, T.; Shirai, Y.; Oda, S.; Yokoi, T. Identification of specific MicroRNA biomarkers in early stages of hepatocellular injury, cholestasis, and steatosis in rats. Toxicol. Sci., 2018, 166(1), 228-239. doi: 10.1093/toxsci/kfy200 PMID: 30125006
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2012, 65(2), 157-170. doi: 10.1111/j.2042-7158.2012.01567.x PMID: 23278683
- Zhou, S.; Palmeira, C.M.; Wallace, K.B. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol. Lett., 2001, 121(3), 151-157. doi: 10.1016/S0378-4274(01)00329-0 PMID: 11369469
- Panis, C.; Herrera, A.C.S.A.; Victorino, V.J.; Campos, F.C.; Freitas, L.F.; De Rossi, T.; Simão, A.N.; Cecchini, A.L.; Cecchini, R. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res. Treat., 2012, 133(1), 89-97. doi: 10.1007/s10549-011-1693-x PMID: 21811816
- Wang, Z.; Wang, J.; Xie, R.; Liu, R.; Lu, Y. Mitochondria-derived reactive oxygen species play an important role in Doxorubicininduced platelet apoptosis. Int. J. Mol. Sci., 2015, 16(12), 11087-11100. doi: 10.3390/ijms160511087 PMID: 25988386
- Gao, J-P.; Wu, R.; Wang, H.L.; Gao, Y.; Wu, Q.; Cui, X.H. Effects of fermented Cordyceps sinensis on oxidative stress in doxorubicin treated rats. Pharmacogn. Mag., 2015, 11(44), 724-731. doi: 10.4103/0973-1296.165562 PMID: 26600716
- Damodar, G.; Smitha, T.; Gopinath, S.; Vijayakumar, S.; Rao, Y.A. An evaluation of hepatotoxicity in breast cancer patients receiving injection doxorubicin. Ann. Med. Health Sci. Res., 2014, 4(1), 74-79. doi: 10.4103/2141-9248.126619 PMID: 24669335
- Wided, K.; Hassiba, R.; Mesbah, L. Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria. Pak. J. Pharm. Sci., 2014, 27(6), 1891-1897. PMID: 25362594
- Stanimirov, B.; Stankov, K.; Pavlovic, N.; Stojancevic, M.; Vukmirovic, S.; Mikov, M. The amelioration of doxorubicin-induced oxidative liver injury by ursodeoxycholic acid. Value Health, 2015, 18(3), A222. doi: 10.1016/j.jval.2015.03.1291
- Povero, D.; Panera, N.; Eguchi, A.; Johnson, C.D.; Papouchado, B.G.; de Araujo Horcel, L.; Pinatel, E.M.; Alisi, A.; Nobili, V.; Feldstein, A.E. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell. Mol. Gastroenterol. Hepatol., 2015, 1(6), 646-663.e4. doi: 10.1016/j.jcmgh.2015.07.007 PMID: 26783552
- Chen, G.; Xu, C.; Zhang, J.; Li, Q.; Cui, H.; Li, X.; Chang, L.; Tang, R.; Xu, J.; Tian, X.; Huang, P.; Xu, J.; Jin, C.; Yang, Y. Inhibition of miR-128-3p by tongxinluo protects human cardiomyocytes from ischemia/reperfusion injury via upregulation of p70s6k1/p-p70s6k1. Front. Pharmacol., 2017, 8, 775. doi: 10.3389/fphar.2017.00775 PMID: 29163161
- Sanjay, S.; Girish, C. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury. Eur. J. Clin. Pharmacol., 2017, 73(4), 399-407. doi: 10.1007/s00228-016-2183-1 PMID: 28028586
- Lin, H.; Ewing, L.E.; Koturbash, I.; Gurley, B.J.; Miousse, I.R. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem. Toxicol., 2017, 110, 229-239. doi: 10.1016/j.fct.2017.10.026 PMID: 29042291
- Murakami, Y.; Toyoda, H.; Tanahashi, T.; Tanaka, J.; Kumada, T.; Yoshioka, Y.; Kosaka, N.; Ochiya, T.; Taguchi, Y. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS One, 2012, 7(10), e48366. doi: 10.1371/journal.pone.0048366 PMID: 23152743
- Bala, S.; Marcos, M.; Szabo, G. Emerging role of microRNAs in liver diseases. World J. Gastroenterol., 2009, 15(45), 5633-5640. doi: 10.3748/wjg.15.5633 PMID: 19960558
- Marquez, R.T.; Bandyopadhyay, S.; Wendlandt, E.B.; Keck, K.; Hoffer, B.A.; Icardi, M.S.; Christensen, R.N.; Schmidt, W.N.; McCaffrey, A.P. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab. Invest., 2010, 90(12), 1727-1736. doi: 10.1038/labinvest.2010.126 PMID: 20625373
- Yang, X.; Salminen, W.F.; Shi, Q.; Greenhaw, J.; Gill, P.S.; Bhattacharyya, S.; Beger, R.D.; Mendrick, D.L.; Mattes, W.B.; James, L.P. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol. Appl. Pharmacol., 2015, 284(2), 180-187. doi: 10.1016/j.taap.2015.02.013 PMID: 25708609
- Mosedale, M.; Eaddy, J.S.; Trask, O.J., Jr; Holman, N.S.; Wolf, K.K.; LeCluyse, E.; Ware, B.R.; Khetani, S.R.; Lu, J.; Brock, W.J.; Roth, S.E.; Watkins, P.B. miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model. Toxicol. Sci., 2018, 161(1), 149-158. doi: 10.1093/toxsci/kfx206 PMID: 29029277
- Yucel, Y.; Oguz, E.; Kocarslan, S.; Tatli, F.; Gozeneli, O.; Seker, A.; Sezen, H.; Buyukaslan, H.; Aktumen, A.; Ozgonul, A.; Uzunkoy, A.; Aksoy, N. The effects of lycopene on methotrexate-induced liver injury in rats. Bratisl. Med. J., 2017, 118(4), 212-216. doi: 10.4149/BLL_2017_042 PMID: 28471231
- Cao, Y.; Shi, H.; Sun, Z.; Wu, J.; Xia, Y.; Wang, Y.; Wu, Y.; Li, X.; Chen, W.; Wang, A.; Lu, Y. Protective effects of magnesium glycyrrhizinate on methotrexate-induced hepatotoxicity and intestinal toxicity may be by reducing COX-2. Front. Pharmacol., 2019, 10, 119. doi: 10.3389/fphar.2019.00119 PMID: 30971913
- Bu, T.; Wang, C.; Meng, Q.; Huo, X.; Sun, H.; Sun, P.; Zheng, S.; Ma, X.; Liu, Z.; Liu, K. Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur. J. Pharmacol., 2018, 834, 266-273. doi: 10.1016/j.ejphar.2018.07.031 PMID: 30031796
- Mahmoud, A.M.; Hozayen, W.G.; Ramadan, S.M. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomed. Pharmacother., 2017, 94, 280-291. doi: 10.1016/j.biopha.2017.07.101 PMID: 28763751
- Mehrzadi, S.; Fatemi, I.; Esmaeilizadeh, M.; Ghaznavi, H.; Kalantar, H.; Goudarzi, M. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed. Pharmacother., 2018, 97, 233-239. doi: 10.1016/j.biopha.2017.10.113 PMID: 29091871
- Li, Y.; Zhu, X.; Wang, K.; Zhu, L.; Murray, M.; Zhou, F. The potential of Ginkgo biloba in the treatment of human diseases and the relationship to Nrf2mediated antioxidant protection. J. Pharm. Pharmacol., 2022, 74(12), 1689-1699. doi: 10.1093/jpp/rgac036 PMID: 36173884
- Dubber, M-J.; Kanfer, I. High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J. Pharm. Pharm. Sci., 2004, 7(3), 303-309. PMID: 15576009
- Luo, Y.; Smith, J.V. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol., 2004, 64(4), 465-472. doi: 10.1007/s00253-003-1527-9 PMID: 14740187
- Wang, Y.; Wang, R.; Wang, Y.; Peng, R.; Wu, Y.; Yuan, Y. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling. Drug Des. Devel. Ther., 2015, 9, 6303-6317. c PMID: 26664050
- Tousson, E.; Atteya, Z.; El-Atrash, E.; Jeweely, O.I. Abrogation by Ginkgo byloba leaf extract on hepatic and renal toxicity induced by methotrexate in rats. J Cancer Res Treat, 2014, 2(3), 44-51.
- Al Kury, L.T.; Dayyan, F.; Ali Shah, F.; Malik, Z.; Khalil, A.A.K.; Alattar, A.; Alshaman, R.; Ali, A.; Khan, Z. Ginkgo biloba extract protects against methotrexate-induced hepatotoxicity: A computational and pharmacological approach. Molecules, 2020, 25(11), 2540. doi: 10.3390/molecules25112540 PMID: 32486047
- Abd El-Maksoud, E.M.; Lebda, M.A.; Hashem, A.E.; Taha, N.M.; Kamel, M.A. Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environ. Sci. Pollut. Res. Int., 2019, 26(25), 25844-25854. doi: 10.1007/s11356-019-05835-2 PMID: 31267406
- Apolinário, A.C.; de Lima Damasceno, B.P.G.; de Macêdo Beltrão, N.E.; Pessoa, A.; Converti, A.; da Silva, J.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym., 2014, 101, 368-378. doi: 10.1016/j.carbpol.2013.09.081 PMID: 24299785
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol., 2013, 61, 1-6. doi: 10.1016/j.ijbiomac.2013.06.044 PMID: 23831534
- Sugatani, J.; Wada, T.; Osabe, M.; Yamakawa, K.; Yoshinari, K.; Miwa, M. Dietary inulin alleviates hepatic steatosis and xenobiotics-induced liver injury in rats fed a high-fat and high-sucrose diet: Association with the suppression of hepatic cytochrome P450 and hepatocyte nuclear factor 4α expression. Drug Metab. Dispos., 2006, 34(10), 1677-1687. doi: 10.1124/dmd.106.010645 PMID: 16815962
- Pasqualetti, V.; Altomare, A.; Guarino, M.P.L.; Locato, V.; Cocca, S.; Cimini, S.; Palma, R.; Alloni, R.; De Gara, L.; Cicala, M. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS One, 2014, 9(5), e98031. doi: 10.1371/journal.pone.0098031 PMID: 24837182
- Yao, H.; Tao, X.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Xu, Y.; Zheng, L.; Peng, J. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacol. Res., 2018, 131, 51-60. doi: 10.1016/j.phrs.2018.03.017 PMID: 29574225
- Tao, X.; Wan, X.; Xu, Y.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Lin, Y.; Peng, J. Dioscin attenuates hepatic ischemia-reperfusion injury in rats through inhibition of oxidative-nitrative stress, inflammation and apoptosis. Transplantation, 2014, 98(6), 604-611. doi: 10.1097/TP.0000000000000262 PMID: 25083618
- Song, S.; Chu, L.; Liang, H.; Chen, J.; Liang, J.; Huang, Z.; Zhang, B.; Chen, X. Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol., 2019, 10, 1030. doi: 10.3389/fphar.2019.01030 PMID: 31572199
- Khammissa, R.A.G.; Fourie, J.; Motswaledi, M.H.; Ballyram, R.; Lemmer, J.; Feller, L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. BioMed Res. Int., 2018, 2018, 1-9. doi: 10.1155/2018/9276380 PMID: 29951549
- Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys., 2012, 523(1), 123-133. doi: 10.1016/j.abb.2012.04.001 PMID: 22503810
- Montecino, M.; Stein, G.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Carvallo, L.; Marcellini, S.; Cruzat, F.; Arriagada, G. Vitamin D control of gene expression: Temporal and spatial parameters for organization of the regulatory machinery. Crit. Rev. Eukaryot. Gene Expr., 2008, 18(2), 163-172. doi: 10.1615/CritRevEukarGeneExpr.v18.i2.50 PMID: 18304030
- Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.M.; Watson, C.T.; Morahan, J.M.; Giovannoni, G.; Ponting, C.P.; Ebers, G.C.; Knight, J.C. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res., 2010, 20(10), 1352-1360. doi: 10.1101/gr.107920.110 PMID: 20736230
- Eliassen, A.H.; Warner, E.T.; Rosner, B.; Collins, L.C.; Beck, A.H.; Quintana, L.M.; Tamimi, R.M.; Hankinson, S.E. Plasma 25-Hydroxyvitamin D and risk of breast cancer in women followed over 20 years. Cancer Res., 2016, 76(18), 5423-5430. doi: 10.1158/0008-5472.CAN-16-0353 PMID: 27530324
- Wang, X.; Li, W.; Zhang, Y.; Yang, Y.; Qin, G. Association between vitamin D and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Results from a meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(10), 17221-17234. d PMID: 26770315
- de La Puente-Yagüe, M.; Cuadrado-Cenzual, M.A.; Ciudad-Cabañas, M.J.; Hernández-Cabria, M.; Collado-Yurrita, L.; Vitamin, D. And its role in breast cancer. Kaohsiung J. Med. Sci., 2018, 34(8), 423-427. doi: 10.1016/j.kjms.2018.03.004 PMID: 30041759
- Wang, H.; Zhang, Q.; Chai, Y.; Liu, Y.; Li, F.; Wang, B.; Zhu, C.; Cui, J.; Qu, H.; Zhu, M. 1,25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J. Endocrinol. Invest., 2015, 38(10), 1083-1091. e doi: 10.1007/s40618-015-0287-6 PMID: 25906757
- Yin, Y.; Yu, Z.; Xia, M.; Luo, X.; Lu, X.; Ling, W. Vitamin D attenuates high fat dietinduced hepatic steatosis in rats by modulating lipid metabolism. Eur. J. Clin. Invest., 2012, 42(11), 1189-1196. doi: 10.1111/j.1365-2362.2012.02706.x PMID: 22958216
- Asano, L.; Watanabe, M.; Ryoden, Y.; Usuda, K.; Yamaguchi, T.; Khambu, B.; Takashima, M.; Sato, S.; Sakai, J.; Nagasawa, K.; Uesugi, M.; Vitamin, D. Vitamin D metabolite, 25-hydroxyvitamin D, regulates lipid metabolism by inducing degradation of SREBP/SCAP. Cell Chem. Biol., 2017, 24(2), 207-217. doi: 10.1016/j.chembiol.2016.12.017 PMID: 28132894
- Li, R.; Guo, E.; Yang, J.; Li, A.; Yang, Y.; Liu, S.; Liu, A.; Jiang, X. 1,25(OH) 2 D 3 attenuates hepatic steatosis by inducing autophagy in mice. Obesity, 2017, 25(3), 561-571. doi: 10.1002/oby.21757 PMID: 28145056
- Geier, A.; Eichinger, M.; Stirnimann, G.; Semela, D.; Tay, F.; Seifert, B.; Tschopp, O.; Bantel, H.; Jahn, D.; Marques Maggio, E.; Saleh, L.; Bischoff-Ferrari, H.A.; Müllhaupt, B.; Dufour, J.F. Treatment of non-alcoholic steatohepatitis patients with vitamin D: A double-blinded, randomized, placebo-controlled pilot study. Scand. J. Gastroenterol., 2018, 53(9), 1114-1120. doi: 10.1080/00365521.2018.1501091 PMID: 30270688
- Hariri, M.; Zohdi, S. Effect of vitamin D on non-alcoholic fatty liver disease: A systematic review of randomized controlled clinical trials. Int. J. Prev. Med., 2019, 10(1), 14. doi: 10.4103/ijpvm.IJPVM_499_17 PMID: 30774848
- Jahn, D.; Dorbath, D.; Kircher, S.; Nier, A.; Bergheim, I.; Lenaerts, K.; Hermanns, H.M.; Geier, A. Beneficial effects of vitamin D treatment in an obese mouse model of non-alcoholic steatohepatitis. Nutrients, 2019, 11(1), 77. doi: 10.3390/nu11010077 PMID: 30609782
- Ahmadian, E.; Khosroushahi, A.Y.; Eghbal, M.A.; Eftekhari, A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. Pestic. Biochem. Physiol., 2018, 144, 71-78. doi: 10.1016/j.pestbp.2017.11.009 PMID: 29463411
- Krajka-Kuźniak, V.; Paluszczak, J.; Szaefer, H.; Baer-Dubowska, W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br. J. Nutr., 2013, 110(12), 2138-2149. doi: 10.1017/S0007114513001645 PMID: 23769299
- Hosseinzadeh, H.; Nassiri-Asl, M. Avicennas (Ibn Sina) the canon of medicine and saffron (Crocus sativus): A review. Phytother. Res., 2013, 27(4), 475-483. doi: 10.1002/ptr.4784 PMID: 22815242
- Hassani, F.; Mehri, S.; Abnous, K.; Birner-Gruenberger, R.; Hosseinzadeh, H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem. Toxicol., 2017, 107(Pt A), 395-405. doi: 10.1016/j.fct.2017.07.007 PMID: 28689058
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in cancer (review of literature). Int. J. Mol. Sci., 2022, 23(5), 2805. doi: 10.3390/ijms23052805 PMID: 35269947
- Abolghasemi, M.; Tehrani, S.S.; Yousefi, T.; Karimian, A.; Mahmoodpoor, A.; Ghamari, A.; Jadidi-Niaragh, F.; Yousefi, M.; Kafil, H.S.; Bastami, M.; Edalati, M.; Eyvazi, S.; Naghizadeh, M.; Targhazeh, N.; Yousefi, B.; Safa, A.; Majidinia, M.; Rameshknia, V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J. Cell. Physiol., 2020, 235(6), 5008-5029. doi: 10.1002/jcp.29396 PMID: 31724738
- Cui, Y.; Wang, J.; Liu, S.; Qu, D.; Jin, H.; Zhu, L.; Yang, J.; Zhang, J.; Li, Q.; Zhang, Y.; Yao, Y. miR‐216a promotes breast cancer cell apoptosis by targeting PKC α. Fundam. Clin. Pharmacol., 2019, 33(4), 397-404. doi: 10.1111/fcp.12481 PMID: 31119784
- Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/804510 PMID: 25254214
- Giangreco, A.A.; Nonn, L. The sum of many small changes: MicroRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J. Steroid Biochem. Mol. Biol., 2013, 136, 86-93. doi: 10.1016/j.jsbmb.2013.01.001 PMID: 23333596
- Elbaz, E.M.; Ahmed, K.A.; Abdelmonem, M. Resveratrol mitigates diclofenac‐induced hepatorenal toxicity in rats via modulation of miR‐144/Nrf2/GSH axis. J. Biochem. Mol. Toxicol., 2022, 36(9), e23129. doi: 10.1002/jbt.23129 PMID: 35673973
- El Gizawy, H.A.; El-Haddad, A.E.; Saadeldeen, A.M.; Boshra, S.A. Tentatively identified (UPLC/T-TOFMS/MS) compounds in the extract of saussurea costus roots exhibit in vivo hepatoprotection via modulation of HNF-1α, Sirtuin-1, C/ebpα, miRNA-34a and miRNA-223. Molecules, 2022, 27(9), 2802. doi: 10.3390/molecules27092802 PMID: 35566153
- Fu, R.; Zhou, J.; Wang, R.; Sun, R.; Feng, D.; Wang, Z.; Zhao, Y.; Lv, L.; Tian, X.; Yao, J. Protocatechuic acid-mediated miR-219a-5p activation inhibits the p66shc oxidant pathway to alleviate alcoholic liver injury. Oxid. Med. Cell. Longev., 2019, 2019, 1-15. doi: 10.1155/2019/3527809 PMID: 31428222
- Ekici Günay, N.; Muhtaroğlu, S.; Bedirli, A. Administration of Ginkgo biloba extract (EGb761) alone and in combination with FK506 promotes liver regeneration in a rat model of partial hepatectomy. Balkan Med. J., 2018, 35(2), 174-180. doi: 10.4274/balkanmedj.2016.1830 PMID: 29553465
- Welsh, J. Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens. Biochem. Cell Biol., 1994, 72(11-12), 537-545. doi: 10.1139/o94-072 PMID: 7654327
- Wigington, D.P.; Urben, C.M.; Strugnell, S.A.; Knutson, J.C. Combination study of 1,24(S)-dihydroxyvitamin D2 and chemotherapeutic agents on human breast and prostate cancer cell lines. Anticancer Res., 2004, 24(5A), 2905-2912. PMID: 15517895
- Zheng, W.; Duan, B.; Zhang, Q.; Ouyang, L.; Peng, W.; Qian, F.; Wang, Y.; Huang, S. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci. Rep., 2018, 38(6), BSR20180595. doi: 10.1042/BSR20180595 PMID: 30314996
- Oda, S.; Yokoi, T. Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metab. Pharmacokinet., 2021, 37, 100372. doi: 10.1016/j.dmpk.2020.11.007 PMID: 33461055
Supplementary files
