MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products


Cite item

Full Text

Abstract

:Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.

About the authors

Hebatallah Atteia

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk

Author for correspondence.
Email: info@benthamscience.net

References

  1. McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press. Adv. Nutr., 2016, 7(2), 418-419. doi: 10.3945/an.116.012211 PMID: 26980827
  2. World Health Organization Cancer, 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer cited 2020 Sep 8.
  3. Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385. doi: 10.3322/caac.21565 PMID: 31184787
  4. Division of Cancer Prevention and Control C for DC and P. Information for Health Care Providers ⋅ Preventing Infections in Cancer Patients CDC, Available from: https://www.cdc.gov/cancer/ preventinfection s/providers.htm cited 2020 Sep 8.
  5. Hale, K.E. Chapter 95: toxicities of chemotherapy Hall, J.B. ; Schmidt, G.A. ; Kress , J. P. In: Principles of Critical Care, 4th ed; McGraw-Hill Education/Medical: New York City, 2015.
  6. Shanholtz, C. Acute life-threatening toxicity of cancer treatment. Crit. Care Clin., 2001, 17(3), 483-502. doi: 10.1016/S0749-0704(05)70196-2 PMID: 11529252
  7. Shapiro, C.L. Highlights of recent findings on quality-of-life management for patients with cancer and their survivors. JAMA Oncol., 2016, 2(11), 1401-1402. doi: 10.1001/jamaoncol.2016.3620 PMID: 27608189
  8. Turcotte, L.M.; Liu, Q.; Yasui, Y.; Arnold, M.A.; Hammond, S.; Howell, R.M.; Smith, S.A.; Weathers, R.E.; Henderson, T.O.; Gibson, T.M.; Leisenring, W.; Armstrong, G.T.; Robison, L.L.; Neglia, J.P. Temporal trends in treatment and subsequent neoplasm risk Among 5-Year survivors of childhood cancer, 1970-2015. JAMA, 2017, 317(8), 814-824. doi: 10.1001/jama.2017.0693 PMID: 28245323
  9. Horie, T.; Ono, K.; Nishi, H.; Nagao, K.; Kinoshita, M.; Watanabe, S.; Kuwabara, Y.; Nakashima, Y.; Takanabe-Mori, R.; Nishi, E.; Hasegawa, K.; Kita, T.; Kimura, T. Acute doxorubicin cardiotoxicity is associated with miR-146a-induced inhibition of the neuregulin-ErbB pathway. Cardiovasc. Res., 2010, 87(4), 656-664. doi: 10.1093/cvr/cvq148 PMID: 20495188
  10. Fu, J.; Peng, C.; Wang, W.; Jin, H.; Tang, Q.; Wei, X. Let-7g is involved in doxorubicin induced myocardial injury. Environ. Toxicol. Pharmacol., 2012, 33(2), 312-317. doi: 10.1016/j.etap.2011.12.023 PMID: 22301161
  11. Vacchi-Suzzi, C.; Bauer, Y.; Berridge, B.R.; Bongiovanni, S.; Gerrish, K.; Hamadeh, H.K.; Letzkus, M.; Lyon, J.; Moggs, J.; Paules, R.S.; Pognan, F.; Staedtler, F.; Vidgeon-Hart, M.P.; Grenet, O.; Couttet, P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One, 2012, 7(7), e40395. doi: 10.1371/journal.pone.0040395 PMID: 22859947
  12. Desai, V.G.; C Kwekel, J.; Vijay, V.; Moland, C.L.; Herman, E.H.; Lee, T.; Han, T.; Lewis, S.M.; Davis, K.J.; Muskhelishvili, L.; Kerr, S.; Fuscoe, J.C. Early biomarkers of doxorubicin-induced heart injury in a mouse model. Toxicol. Appl. Pharmacol., 2014, 281(2), 221-229. doi: 10.1016/j.taap.2014.10.006 PMID: 25448438
  13. Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416. doi: 10.2119/molmed.2010.00002 PMID: 20386864
  14. Joo, M.S.; Lee, C.G.; Koo, J.H.; Kim, S.G. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis., 2013, 4(10), e899. doi: 10.1038/cddis.2013.427 PMID: 24176857
  15. Kanki, M.; Moriguchi, A.; Sasaki, D.; Mitori, H.; Yamada, A.; Unami, A.; Miyamae, Y. Identification of urinary miRNA biomarkers for detecting cisplatin-induced proximal tubular injury in rats. Toxicology, 2014, 324, 158-168. doi: 10.1016/j.tox.2014.05.004 PMID: 24863737
  16. Pavkovic, M.; Riefke, B.; Ellinger-Ziegelbauer, H. Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology, 2014, 324, 147-157. doi: 10.1016/j.tox.2014.05.005 PMID: 24880025
  17. Pellegrini, K.L.; Han, T.; Bijol, V.; Saikumar, J.; Craciun, F.L.; Chen, W.W.; Fuscoe, J.C.; Vaidya, V.S. MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol. Sci., 2014, 141(2), 484-492. doi: 10.1093/toxsci/kfu143 PMID: 25015656
  18. Mohr, A.; Mott, J. Overview of microRNA biology. Semin. Liver Dis., 2015, 35(1), 003-011. doi: 10.1055/s-0034-1397344 PMID: 25632930
  19. Yu, H.W.; Cho, W.C. The role of microRNAs in toxicology. Arch. Toxicol., 2015, 89(3), 319-325. doi: 10.1007/s00204-014-1440-2 PMID: 25586887
  20. Bushel, P.R.; Caiment, F.; Wu, H.; O’Lone, R.; Day, F.; Calley, J.; Smith, A.; Li, J. RATEmiRs: The rat atlas of tissue-specific and enriched miRNAs database. BMC Genomics, 2018, 19(1), 825. doi: 10.1186/s12864-018-5220-x PMID: 30453895
  21. Marrone, A.K.; Beland, F.A.; Pogribny, I.P. Noncoding RNA response to xenobiotic exposure: An indicator of toxicity and carcinogenicity. Expert Opin. Drug Metab. Toxicol., 2014, 10(10), 1409-1422. doi: 10.1517/17425255.2014.954312 PMID: 25171492
  22. Vrijens, K.; Bollati, V.; Nawrot, T.S. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect., 2015, 123(5), 399-411. doi: 10.1289/ehp.1408459 PMID: 25616258
  23. Lee, C.T.; Risom, T.; Strauss, W.M. Evolutionary conservation of microRNA regulatory circuits: An examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol., 2007, 26(4), 209-218. doi: 10.1089/dna.2006.0545 PMID: 17465887
  24. Hornby, R.J.; Lewis, P.; Dear, J.; Goldring, C.; Park, B.K. MicroRNAs as potential circulating biomarkers of drug-induced liver injury: Key current and future issues for translation to humans. Expert Rev. Clin. Pharmacol., 2014, 7(3), 349-362. doi: 10.1586/17512433.2014.904201 PMID: 24694030
  25. Sohel, M.H. Extracellular/circulating MicroRNAs: Release mechanisms, functions and challenges. Achiev Life Sci, 2016, 10(2), 175-186. doi: 10.1016/j.als.2016.11.007
  26. Harrill, A.H.; McCullough, S.D.; Wood, C.E.; Kahle, J.J.; Chorley, B.N. MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci., 2016, 152(2), 264-272. doi: 10.1093/toxsci/kfw090 PMID: 27462126
  27. Bailey, W.J.; Glaab, W.E. Accessible miRNAs as novel toxicity biomarkers. Int. J. Toxicol., 2018, 37(2), 116-120. doi: 10.1177/1091581817752405 PMID: 29357765
  28. Wang, K.; Zhang, S.; Marzolf, B.; Troisch, P.; Brightman, A.; Hu, Z.; Hood, L.E.; Galas, D.J. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4402-4407. doi: 10.1073/pnas.0813371106 PMID: 19246379
  29. Akai, S.; Oda, S.; Yokoi, T. Establishment of a novel mouse model for pioglitazone-induced skeletal muscle injury. Toxicology, 2017, 382, 1-9. doi: 10.1016/j.tox.2017.03.001 PMID: 28263783
  30. Watanabe, K.; Oda, S.; Matsubara, A.; Akai, S.; Yokoi, T. Establishment and characterization of a mouse model of rhabdomyolysis by coadministration of statin and fibrate. Toxicol. Lett., 2019, 307, 49-58. doi: 10.1016/j.toxlet.2019.03.001 PMID: 30853469
  31. Nishimura, Y.; Kondo, C.; Morikawa, Y.; Tonomura, Y.; Torii, M.; Yamate, J.; Uehara, T. Plasma miR‐208 as a useful biomarker for drug‐induced cardiotoxicity in rats. J. Appl. Toxicol., 2015, 35(2), 173-180. doi: 10.1002/jat.3044 PMID: 25092230
  32. Kakiuchi, D.; Taketa, Y.; Ohta, E.; Fujikawa, Y.; Nakano-Ito, K.; Asakura, S.; Hosokawa, S. Combination of circulating microRNAs as indicators of specific targets of retinal toxicity in rats. Toxicology, 2019, 411, 163-171. doi: 10.1016/j.tox.2018.10.008 PMID: 30336191
  33. Calvano, J.; Edwards, G.; Hixson, C.; Burr, H.; Mangipudy, R.; Tirmenstein, M. Serum microRNAs-217 and −375 as biomarkers of acute pancreatic injury in rats. Toxicology, 2016, 368-369, 1-9. doi: 10.1016/j.tox.2016.08.009 PMID: 27521901
  34. Wang, J.; Huang, W.; Thibault, S.; Brown, T.P.; Bobrowski, W.; Gukasyan, H.J.; Evering, W.; Hu, W.; John-Baptiste, A.; Vitsky, A. Evaluation of miR-216a and miR-217 as potential biomarkers of acute exocrine pancreatic toxicity in rats. Toxicol. Pathol., 2017, 45(2), 321e34. doi: 10.1177/0192623316678090
  35. Erdos, Z.; Barnum, J.E.; Wang, E.; DeMaula, C.; Dey, P.M.; Forest, T.; Bailey, W.J.; Glaab, W.E. Evaluation of the relative performance of pancreas-specific microRNAs in rat plasma as biomarkers of pancreas injury. Toxicol. Sci., 2020, 173(1), 5-18. doi: 10.1093/toxsci/kfz184 PMID: 31504967
  36. Zhang, Q.Y.; Wang, F.X.; Jia, K.K.; Kong, L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol., 2018, 9, 1253. doi: 10.3389/fphar.2018.01253 PMID: 30459615
  37. Ismael, G.F.V.; Rosa, D.D.; Mano, M.S.; Awada, A. Novel cytotoxic drugs: Old challenges, new solutions. Cancer Treat. Rev., 2008, 34(1), 81-91. doi: 10.1016/j.ctrv.2007.08.001 PMID: 17905518
  38. Malarkey, D.E.; Johnson, K.; Ryan, L.; Boorman, G.; Maronpot, R.R. New insights into functional aspects of liver morphology. Toxicol. Pathol., 2005, 33(1), 27-34. doi: 10.1080/01926230590881826 PMID: 15805053
  39. Gu, X.; Manautou, J.E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med., 2012, 14, e4. doi: 10.1017/S1462399411002110 PMID: 22306029
  40. Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171. doi: 10.1016/j.jhep.2018.09.014 PMID: 30266282
  41. Walker, P.A.; Ryder, S.; Lavado, A.; Dilworth, C.; Riley, R.J. The evolution of strategies to minimise the risk of human drug-induced liver injury (DILI) in drug discovery and development. Arch. Toxicol., 2020, 94(8), 2559-2585. doi: 10.1007/s00204-020-02763-w PMID: 32372214
  42. Grigorian, A.; O’Brien, C.B. Hepatotoxicity secondary to chemotherapy. J. Clin. Transl. Hepatol., 2014, 2(2), 95-102. PMID: 26357620
  43. Calistri, L.; Rastrelli, V.; Nardi, C.; Maraghelli, D.; Vidali, S.; Pietragalla, M.; Colagrande, S. Imaging of the chemotherapy-induced hepatic damage: Yellow liver, blue liver, and pseudocirrhosis. World J. Gastroenterol., 2021, 27(46), 7866-7893. doi: 10.3748/wjg.v27.i46.7866 PMID: 35046618
  44. Thatishetty, A.V.; Agresti, N.; O’Brien, C.B. Chemotherapy-induced hepatotoxicity. Clin. Liver Dis., 2013, 17(4), 671-686. ix-x. doi: 10.1016/j.cld.2013.07.010 PMID: 24099024
  45. Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176. doi: 10.1093/toxsci/65.2.166 PMID: 11812920
  46. McWhirter, D.; Kitteringham, N.; Jones, R.P.; Malik, H.; Park, K.; Palmer, D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit. Rev. Oncol. Hematol., 2013, 88(2), 404-415. doi: 10.1016/j.critrevonc.2013.05.011 PMID: 23786843
  47. Hsu, S.; Ghoshal, K. MicroRNAs in liver health and disease. Curr. Pathobiol. Rep., 2013, 1(1), 53-62. doi: 10.1007/s40139-012-0005-4 PMID: 23565350
  48. Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897. doi: 10.1172/JCI63455 PMID: 22820290
  49. Hsu, S.; Wang, B.; Kota, J.; Yu, J.; Costinean, S.; Kutay, H.; Yu, L.; Bai, S.; La Perle, K.; Chivukula, R.R.; Mao, H.; Wei, M.; Clark, K.R.; Mendell, J.R.; Caligiuri, M.A.; Jacob, S.T.; Mendell, J.T.; Ghoshal, K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest., 2012, 122(8), 2871-2883. doi: 10.1172/JCI63539 PMID: 22820288
  50. Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; Subramaniam, A.; Propp, S.; Lollo, B.A.; Freier, S.; Bennett, C.F.; Bhanot, S.; Monia, B.P. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab., 2006, 3(2), 87-98. doi: 10.1016/j.cmet.2006.01.005 PMID: 16459310
  51. Fernández-Hernando, C.; Ramírez, C.M.; Goedeke, L.; Suárez, Y. MicroRNAs in metabolic disease. Arterioscler. Thromb. Vasc. Biol., 2013, 33(2), 178-185. doi: 10.1161/ATVBAHA.112.300144 PMID: 23325474
  52. Castoldi, M.; Vujic Spasic, M.; Altamura, S.; Elmén, J.; Lindow, M.; Kiss, J.; Stolte, J.; Sparla, R.; D’Alessandro, L.A.; Klingmüller, U.; Fleming, R.E.; Longerich, T.; Gröne, H.J.; Benes, V.; Kauppinen, S.; Hentze, M.W.; Muckenthaler, M.U. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest., 2011, 121(4), 1386-1396. doi: 10.1172/JCI44883 PMID: 21364282
  53. Gatfield, D.; Le Martelot, G.; Vejnar, C.E.; Gerlach, D.; Schaad, O.; Fleury-Olela, F.; Ruskeepää, A.L.; Oresic, M.; Esau, C.C.; Zdobnov, E.M.; Schibler, U. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev., 2009, 23(11), 1313-1326. doi: 10.1101/gad.1781009 PMID: 19487572
  54. Sherif, I.O.; Al-Shaalan, N.H. Hepatoprotective effect of Ginkgo biloba extract against methotrexate-induced hepatotoxicity via targeting STAT3/miRNA-21 axis. Drug Chem. Toxicol., 2022, 45(4), 1723-1731. doi: 10.1080/01480545.2020.1862859 PMID: 33349067
  55. Kalantari, H.; Asadmasjedi, N.; Abyaz, M.; Mahdavinia, M.; Mohammadtaghvaei, N. Protective effect of inulin on methotrexate-induced liver toxicity in mice. Biomed. Pharmacother., 2019, 110, 943-950.
  56. Li, Y.; Gao, M.; Yin, L.H.; Xu, L.N.; Qi, Y.; Sun, P.; Peng, J.Y. Dioscin ameliorates methotrexate-induced liver and kidney damages via adjusting miRNA-145-5p-mediated oxidative stress. Free Radic. Biol. Med., 2021, 169, 99-109.
  57. Abd El-Haleim, E.A.; Sallam, N.A. Vitamin D modulates hepatic microRNAs and mitigates tamoxifen-induced steatohepatitis in female rats. Fundam. Clin. Pharmacol., 2022, 36(2), 338-349. doi: 10.1111/fcp.12720 PMID: 34312906
  58. El Shaffei, I.; Abdel-Latif, G.A.; Farag, D.B.; Schaalan, M.; Salama, R.M. Ameliorative effect of betanin on experimental cisplatin-induced liver injury: The novel impact of miRNA‐34a onthe SIRT1/PGC‐1α signaling pathway. J. Biochem. Mol. Toxicol., 2021, 35(6), 1-14.
  59. Khedr, L.H.; Rahmo, R.M.; Farag, D.B.; Schaalan, M.F.; El Magdoub, H.M. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem. Toxicol., 2020, 140, 111307.
  60. Zhang, Y.; Wang, D.; Shen, D.; Luo, Y.; Che, Y.Q. Identification of exosomal miRNAs associated with the anthracycline-induced liver injury in postoperative breast cancer patients by small RNA sequencing. PeerJ, 2020, 8, e9021. doi: 10.7717/peerj.9021 PMID: 32355577
  61. Zhao, X.; Jin, Y.; Li, L.; Xu, L.; Tang, Z.; Qi, Y.; Yin, L.; Peng, J. MicroRNA-128-3p aggravates doxorubicin-induced liver injury by promoting oxidative stress via targeting Sirtuin-1. Pharmacol. Res., 2019, 146, 104276. doi: 10.1016/j.phrs.2019.104276 PMID: 31112750
  62. Björnsson, E. Hepatotoxicity by drugs: The most common implicated agents. Int. J. Mol. Sci., 2016, 17(2), 224. doi: 10.3390/ijms17020224 PMID: 26861310
  63. Kumari, S.; Kumari, S.; Sharma, A.K.; Kaur, I. Methotrexate induced hepatotoxicity and its management. Int. J. Sci. Res., 2016, 5, 1477-1481.
  64. Tag, H.M. Hepatoprotective effect of mulberry (Morus nigra) leaves extract against methotrexate induced hepatotoxicity in male albino rat. BMC Complement. Altern. Med., 2015, 15(1), 252. doi: 10.1186/s12906-015-0744-y PMID: 26209437
  65. Kelleni, M.T.; Ibrahim, S.A.; Abdelrahman, A.M. Effect of captopril and telmisartan on methotrexate-induced hepatotoxicity in rats: Impact of oxidative stress, inflammation and apoptosis. Toxicol. Mech. Methods, 2016, 26(5), 371-377. doi: 10.1080/15376516.2016.1191576 PMID: 27269004
  66. Khafaga, A.F.; El-Sayed, Y.S. Spirulina ameliorates methotrexate hepatotoxicity via antioxidant, immune stimulation, and proinflammatory cytokines and apoptotic proteins modulation. Life Sci., 2018, 196, 9-17. doi: 10.1016/j.lfs.2018.01.010 PMID: 29339102
  67. Fouad, A.A.; Hafez, H.M.; Hamouda, A.A.H. Hydrogen sulphide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum. Exp. Toxicol., 2020, 39(1), 77-85. doi: 10.1177/0960327119877437 PMID: 31542963
  68. Hafez, M.M.; Al-Harbi, N.O.; Al-Hoshani, A.R.; Al-hosaini, K.A.; Al Shrari, S.D.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biol. Res., 2015, 48(1), 30. doi: 10.1186/s40659-015-0022-y PMID: 26062544
  69. Calo, N.; Ramadori, P.; Sobolewski, C.; Romero, Y.; Maeder, C.; Fournier, M.; Rantakari, P.; Zhang, F.P.; Poutanen, M.; Dufour, J.F.; Humar, B.; Nef, S.; Foti, M. Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut, 2016, 65(11), 1871-1881. doi: 10.1136/gutjnl-2015-310822 PMID: 27222533
  70. Loyer, X.; Paradis, V.; Hénique, C.; Vion, A.C.; Colnot, N.; Guerin, C.L.; Devue, C.; On, S.; Scetbun, J.; Romain, M.; Paul, J.L.; Rothenberg, M.E.; Marcellin, P.; Durand, F.; Bedossa, P.; Prip-Buus, C.; Baugé, E.; Staels, B.; Boulanger, C.M.; Tedgui, A.; Rautou, P.E. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression. Gut, 2016, 65(11), 1882-1894. doi: 10.1136/gutjnl-2014-308883 PMID: 26338827
  71. Dippold, R.P.; Vadigepalli, R.; Gonye, G.E.; Hoek, J.B. Chronic ethanol feeding enhances miR-21 induction during liver regeneration while inhibiting proliferation in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303(6), G733-G743. doi: 10.1152/ajpgi.00019.2012 PMID: 22790595
  72. Zhao, J.; Tang, N.; Wu, K.; Dai, W.; Ye, C.; Shi, J.; Zhang, J.; Ning, B.; Zeng, X.; Lin, Y. MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis. PLoS One, 2014, 9(10), e108005. doi: 10.1371/journal.pone.0108005 PMID: 25303175
  73. Wang, F.; Liu, W.; Jin, Y.; Wang, F.; Ma, J. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in aberrant changes in miRNA expression profile and levels in developing rat livers. Environ. Toxicol., 2015, 30(6), 712-723. a doi: 10.1002/tox.21949 PMID: 24420840
  74. Afonso, M.B.; Rodrigues, P.M.; Simão, A.L.; Gaspar, M.M.; Carvalho, T.; Borralho, P.; Bañales, J.M.; Castro, R.E.; Rodrigues, C.M.P. miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death Differ., 2018, 25(5), 857-872. doi: 10.1038/s41418-017-0019-x PMID: 29229992
  75. Zhu, C.; Zhang, M.; Hu, J.; Li, H.; Liu, S.; Li, T.; Wu, L.; Han, B. Prognostic effect of IL-6/JAK2/STAT3 signal-induced microRNA-21-5p expression on short term recurrence of hepatocellular carcinoma after hepatectomy. Int. J. Clin. Exp. Pathol., 2018, 11(8), 4169-4178. PMID: 31949811
  76. Lin, C.J.F.; Gong, H.Y.; Tseng, H.C.; Wang, W.L.; Wu, J.L. miR- 122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun., 2008, 375(3), 315-320. doi: 10.1016/j.bbrc.2008.07.154 PMID: 18692484
  77. Lima, R.T.; Busacca, S.; Almeida, G.M.; Gaudino, G.; Fennell, D.A.; Vasconcelos, M.H. MicroRNA regulation of core apoptosis pathways in cancer. Eur. J. Cancer, 2011, 47(2), 163-174. doi: 10.1016/j.ejca.2010.11.005 PMID: 21145728
  78. Zhang, Y.; Jia, Y.; Zheng, R.; Guo, Y.; Wang, Y.; Guo, H.; Fei, M.; Sun, S. Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin. Chem., 2010, 56(12), 1830-1838. doi: 10.1373/clinchem.2010.147850 PMID: 20930130
  79. Starkey Lewis, P.J.; Dear, J.; Platt, V.; Simpson, K.J.; Craig, D.G.N.; Antoine, D.J.; French, N.S.; Dhaun, N.; Webb, D.J.; Costello, E.M.; Neoptolemos, J.P.; Moggs, J.; Goldring, C.E.; Park, B.K. Circulating microRNAs as potential markers of human druginduced liver injury. Hepatology, 2011, 54(5), 1767-1776. doi: 10.1002/hep.24538 PMID: 22045675
  80. Yuan, M.; Zhang, L.; You, F.; Zhou, J.; Ma, Y.; Yang, F.; Tao, L. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol. Cell. Biochem., 2017, 431(1-2), 123-131. doi: 10.1007/s11010-017-2982-4 PMID: 28281187
  81. Hui, Y.; Yin, Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling. Life Sci., 2018, 207, 212-218. doi: 10.1016/j.lfs.2018.06.005 PMID: 29883722
  82. Wu, J.; He, Y.; Luo, Y.; Zhang, L.; Lin, H.; Liu, X.; Liu, B.; Liang, C.; Zhou, Y.; Zhou, J. MiR‐145‐5p inhibits proliferation and inflammatory responses of RMC through regulating AKT/GSK pathway by targeting CXCL16. J. Cell. Physiol., 2018, 233(4), 3648-3659. doi: 10.1002/jcp.26228 PMID: 29030988
  83. Addo, R.; Haas, M.; Goodall, S. The cost-effectiveness of adjuvant tamoxifen treatment of hormone receptor–positive early breast cancer among premenopausal and perimenopausal Ghanaian women. Value Health Reg. Issues, 2021, 25, 196-205. doi: 10.1016/j.vhri.2021.05.005 PMID: 34428695
  84. Condorelli, R.; Vaz-Luis, I. Managing side effects in adjuvant endocrine therapy for breast cancer. Expert Rev. Anticancer Ther., 2018, 18(11), 1101-1112. doi: 10.1080/14737140.2018.1520096 PMID: 30188738
  85. Lee, B.; Jung, E.A.; Yoo, J.J.; Kim, S.G.; Lee, C.B.; Kim, Y.S.; Jeong, S.W.; Jang, J.Y.; Lee, S.H.; Kim, H.S.; Jun, B.G.; Kim, Y.D.; Cheon, G.J.; Kim, Y.D.; Cheon, G.J. Prevalence, incidence and risk factors of tamoxifen‐related non-alcoholic fatty liver disease: A systematic review and meta‐analysis. Liver Int., 2020, 40(6), 1344-1355. doi: 10.1111/liv.14434 PMID: 32170895
  86. Cole, L.K.; Jacobs, R.L.; Vance, D.E. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology, 2010, 52(4), 1258-1265. doi: 10.1002/hep.23813 PMID: 20658461
  87. Zhao, F.; Xie, P.; Jiang, J.; Zhang, L.; An, W.; Zhan, Y. The effect and mechanism of tamoxifen-induced hepatocyte steatosis in vitro. Int. J. Mol. Sci., 2014, 15(3), 4019-4030. doi: 10.3390/ijms15034019 PMID: 24603540
  88. Birzniece, V.; Barrett, P.H.R.; Ho, K.K.Y. Tamoxifen reduces hepatic VLDL production and GH secretion in women: A possible mechanism for steatosis development. Eur. J. Endocrinol., 2017, 177(2), 137-143. doi: 10.1530/EJE-17-0151 PMID: 28500244
  89. Ribeiro, M.P.C.; Santos, A.E.; Custódio, J.B.A. Mitochondria: The gateway for tamoxifen-induced liver injury. Toxicology, 2014, 323, 10-18. doi: 10.1016/j.tox.2014.05.009 PMID: 24881593
  90. Hochreuter, M.Y.; Dall, M.; Treebak, J.T.; Barrès, R. MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol. Metab., 2022, 65, 101581. doi: 10.1016/j.molmet.2022.101581 PMID: 36028120
  91. Miyaaki, H.; Ichikawa, T.; Kamo, Y.; Taura, N.; Honda, T.; Shibata, H.; Milazzo, M.; Fornari, F.; Gramantieri, L.; Bolondi, L.; Nakao, K. Significance of serum and hepatic micro RNA-122 levels in patients with non-alcoholic fatty liver disease. Liver Int., 2014, 34(7), e302-e307. doi: 10.1111/liv.12429 PMID: 24313922
  92. Yamada, H.; Ohashi, K.; Suzuki, K.; Munetsuna, E.; Ando, Y.; Yamazaki, M.; Ishikawa, H.; Ichino, N.; Teradaira, R.; Hashimoto, S. Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin. Chim. Acta, 2015, 446, 267-271. doi: 10.1016/j.cca.2015.05.002 PMID: 25958847
  93. Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol., 2012, 13(4), 239-250. doi: 10.1038/nrm3313 PMID: 22436747
  94. Rayner, K.J.; Esau, C.C.; Hussain, F.N.; McDaniel, A.L.; Marshall, S.M.; van Gils, J.M.; Ray, J.M.; Sheedy, T.D.; Goedeke, F.J.; Liu, L.; Khatsenko, X.; Kaimal, O.G.; Lees, V.; Fernandez-Hernando, C.J.; Fisher, C.; Temel, E.A.; Moore, K.J. Inhibition of miR-33a/b in non-human primates raises plasma HDL and reduces VLDL triglycerides. Nature, 2012, 478, 404-407. doi: 10.1038/nature10486 PMID: 22012398
  95. Jin, X.; Ye, Y.F.; Chen, S.H.; Yu, C.H.; Liu, J.; Li, Y.M. MicroRNA expression pattern in different stages of nonalcoholic fatty liver disease. Dig. Liver Dis., 2009, 41(4), 289-297. doi: 10.1016/j.dld.2008.08.008 PMID: 18922750
  96. López-Riera, M.; Conde, I.; Tolosa, L.; Zaragoza, Á.; Castell, J.V.; Gómez-Lechón, M.J.; Jover, R. New microRNA biomarkers for drug-induced steatosis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease. Front. Pharmacol., 2017, 8, 3. doi: 10.3389/fphar.2017.00003 PMID: 28179883
  97. Nam, H.S.; Hwang, K.S.; Jeong, Y.M.; Ryu, J.I.; Choi, T.Y.; Bae, M.A.; Son, W.C.; You, K.H.; Son, H.Y.; Kim, C.H. Expression of miRNA-122 induced by liver toxicants in Zebrafish. BioMed Res. Int., 2016, 2016, 1-7. doi: 10.1155/2016/1473578 PMID: 27563662
  98. Moore, K.J.; Rayner, K.J.; Suárez, Y.; Fernández-Hernando, C. The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu. Rev. Nutr., 2011, 31(1), 49-63. doi: 10.1146/annurev-nutr-081810-160756 PMID: 21548778
  99. Dasari, S.; Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
  100. Shu, X.L.; Fan, C.B.; Long, B.; Zhou, X.; Wang, Y. The anticancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(21), 4459-4465. PMID: 27874954
  101. Omar, H.A.; Mohamed, W.R.; Arab, H.H.; Arafa, E.S.A. Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PLoS One, 2016, 11(3), e0151649. doi: 10.1371/journal.pone.0151649 PMID: 27031695
  102. Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-induced gastrointestinal toxicity: An update on possible mechanisms and on available gastroprotective strategies. Eur. J. Pharmacol., 2018, 827, 49-57. doi: 10.1016/j.ejphar.2018.03.009 PMID: 29530589
  103. Yamakuchi, M. MicroRNA regulation of SIRT1. Front. Physiol., 2012, 3, 68. doi: 10.3389/fphys.2012.00068 PMID: 22479251
  104. Akbari, G.; Mard, S.A.; Dianat, M.; Mansouri, E. The hepatoprotective and microRNAs downregulatory effects of crocin following hepatic ischemia-reperfusion injury in rats. Oxid. Med. Cell. Longev., 2017, 2017, 1-11. doi: 10.1155/2017/1702967 PMID: 28367266
  105. Cheng, X.; Ku, C.H.; Siow, R.C.M. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic. Biol. Med., 2013, 64, 4-11. doi: 10.1016/j.freeradbiomed.2013.07.025 PMID: 23880293
  106. Seki, E.; De Minicis, S.; Österreicher, C.H.; Kluwe, J.; Osawa, Y.; Brenner, D.A.; Schwabe, R.F. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med., 2007, 13(11), 1324-1332. doi: 10.1038/nm1663 PMID: 17952090
  107. El-Shitany, N.A.; Eid, B. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway. Environ. Toxicol., 2017, 32(7), 1952-1963. doi: 10.1002/tox.22418 PMID: 28371137
  108. Guo, J.; Friedman, S.L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair, 2010, 3(1), 21. doi: 10.1186/1755-1536-3-21 PMID: 20964825
  109. Nakamoto, N.; Kanai, T. Role of toll-like receptors in immune activation and tolerance in the liver. Front. Immunol., 2014, 5, 221. doi: 10.3389/fimmu.2014.00221 PMID: 24904576
  110. Yang, L.; Seki, E. Toll-like receptors in liver fibrosis: Cellular crosstalk and mechanisms. Front. Physiol., 2012, 3, 138. doi: 10.3389/fphys.2012.00138 PMID: 22661952
  111. Liu, C.; Chen, X.; Yang, L.; Kisseleva, T.; Brenner, D.A.; Seki, E. Transcriptional repression of the transforming growth factor β (TGF-β) Pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by Nuclear Factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J. Biol. Chem., 2014, 289(10), 7082-7091. doi: 10.1074/jbc.M113.543769 PMID: 24448807
  112. O’Neill, L.A.; Sheedy, F.J.; McCoy, C.E. MicroRNAs: the fine tuners of Toll-like receptor signalling. Nat. Rev. Immunol., 2011, 11(3), 163-175. doi: 10.1038/nri2957 PMID: 21331081
  113. Bazzoni, F.; Rossato, M.; Fabbri, M.; Gaudiosi, D.; Mirolo, M.; Mori, L.; Tamassia, N.; Mantovani, A.; Cassatella, M.A.; Locati, M. Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc. Natl. Acad. Sci. USA, 2009, 106(13), 5282-5287. doi: 10.1073/pnas.0810909106 PMID: 19289835
  114. Roderburg, C.; Urban, G.W.; Bettermann, K.; Vucur, M.; Zimmermann, H.; Schmidt, S.; Janssen, J.; Koppe, C.; Knolle, P.; Castoldi, M.; Tacke, F.; Trautwein, C.; Luedde, T. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 2011, 53(1), 209-218. doi: 10.1002/hep.23922 PMID: 20890893
  115. Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300. doi: 10.1001/jama.2018.19323 PMID: 30667505
  116. Wu, J.; Xue, X.; Zhang, B.; Jiang, W.; Cao, H.; Wang, R.; Sun, D.; Guo, R. The protective effects of paeonol against epirubicininduced hepatotoxicity in 4T1-tumor bearing mice via inhibition of the PI3K/Akt/NF-kB pathway. Chem. Biol. Interact., 2016, 244, 1-8. doi: 10.1016/j.cbi.2015.11.025 PMID: 26646421
  117. Masyuk, A.I.; Masyuk, T.V.; LaRusso, N.F. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J. Hepatol., 2013, 59(3), 621-625. doi: 10.1016/j.jhep.2013.03.028 PMID: 23557871
  118. Kagawa, T.; Shirai, Y.; Oda, S.; Yokoi, T. Identification of specific MicroRNA biomarkers in early stages of hepatocellular injury, cholestasis, and steatosis in rats. Toxicol. Sci., 2018, 166(1), 228-239. doi: 10.1093/toxsci/kfy200 PMID: 30125006
  119. Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2012, 65(2), 157-170. doi: 10.1111/j.2042-7158.2012.01567.x PMID: 23278683
  120. Zhou, S.; Palmeira, C.M.; Wallace, K.B. Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol. Lett., 2001, 121(3), 151-157. doi: 10.1016/S0378-4274(01)00329-0 PMID: 11369469
  121. Panis, C.; Herrera, A.C.S.A.; Victorino, V.J.; Campos, F.C.; Freitas, L.F.; De Rossi, T.; Simão, A.N.; Cecchini, A.L.; Cecchini, R. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res. Treat., 2012, 133(1), 89-97. doi: 10.1007/s10549-011-1693-x PMID: 21811816
  122. Wang, Z.; Wang, J.; Xie, R.; Liu, R.; Lu, Y. Mitochondria-derived reactive oxygen species play an important role in Doxorubicininduced platelet apoptosis. Int. J. Mol. Sci., 2015, 16(12), 11087-11100. doi: 10.3390/ijms160511087 PMID: 25988386
  123. Gao, J-P.; Wu, R.; Wang, H.L.; Gao, Y.; Wu, Q.; Cui, X.H. Effects of fermented Cordyceps sinensis on oxidative stress in doxorubicin treated rats. Pharmacogn. Mag., 2015, 11(44), 724-731. doi: 10.4103/0973-1296.165562 PMID: 26600716
  124. Damodar, G.; Smitha, T.; Gopinath, S.; Vijayakumar, S.; Rao, Y.A. An evaluation of hepatotoxicity in breast cancer patients receiving injection doxorubicin. Ann. Med. Health Sci. Res., 2014, 4(1), 74-79. doi: 10.4103/2141-9248.126619 PMID: 24669335
  125. Wided, K.; Hassiba, R.; Mesbah, L. Polyphenolic fraction of Algerian propolis reverses doxorubicin induced oxidative stress in liver cells and mitochondria. Pak. J. Pharm. Sci., 2014, 27(6), 1891-1897. PMID: 25362594
  126. Stanimirov, B.; Stankov, K.; Pavlovic, N.; Stojancevic, M.; Vukmirovic, S.; Mikov, M. The amelioration of doxorubicin-induced oxidative liver injury by ursodeoxycholic acid. Value Health, 2015, 18(3), A222. doi: 10.1016/j.jval.2015.03.1291
  127. Povero, D.; Panera, N.; Eguchi, A.; Johnson, C.D.; Papouchado, B.G.; de Araujo Horcel, L.; Pinatel, E.M.; Alisi, A.; Nobili, V.; Feldstein, A.E. Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-γ. Cell. Mol. Gastroenterol. Hepatol., 2015, 1(6), 646-663.e4. doi: 10.1016/j.jcmgh.2015.07.007 PMID: 26783552
  128. Chen, G.; Xu, C.; Zhang, J.; Li, Q.; Cui, H.; Li, X.; Chang, L.; Tang, R.; Xu, J.; Tian, X.; Huang, P.; Xu, J.; Jin, C.; Yang, Y. Inhibition of miR-128-3p by tongxinluo protects human cardiomyocytes from ischemia/reperfusion injury via upregulation of p70s6k1/p-p70s6k1. Front. Pharmacol., 2017, 8, 775. doi: 10.3389/fphar.2017.00775 PMID: 29163161
  129. Sanjay, S.; Girish, C. Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury. Eur. J. Clin. Pharmacol., 2017, 73(4), 399-407. doi: 10.1007/s00228-016-2183-1 PMID: 28028586
  130. Lin, H.; Ewing, L.E.; Koturbash, I.; Gurley, B.J.; Miousse, I.R. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem. Toxicol., 2017, 110, 229-239. doi: 10.1016/j.fct.2017.10.026 PMID: 29042291
  131. Murakami, Y.; Toyoda, H.; Tanahashi, T.; Tanaka, J.; Kumada, T.; Yoshioka, Y.; Kosaka, N.; Ochiya, T.; Taguchi, Y. Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PLoS One, 2012, 7(10), e48366. doi: 10.1371/journal.pone.0048366 PMID: 23152743
  132. Bala, S.; Marcos, M.; Szabo, G. Emerging role of microRNAs in liver diseases. World J. Gastroenterol., 2009, 15(45), 5633-5640. doi: 10.3748/wjg.15.5633 PMID: 19960558
  133. Marquez, R.T.; Bandyopadhyay, S.; Wendlandt, E.B.; Keck, K.; Hoffer, B.A.; Icardi, M.S.; Christensen, R.N.; Schmidt, W.N.; McCaffrey, A.P. Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab. Invest., 2010, 90(12), 1727-1736. doi: 10.1038/labinvest.2010.126 PMID: 20625373
  134. Yang, X.; Salminen, W.F.; Shi, Q.; Greenhaw, J.; Gill, P.S.; Bhattacharyya, S.; Beger, R.D.; Mendrick, D.L.; Mattes, W.B.; James, L.P. Potential of extracellular microRNAs as biomarkers of acetaminophen toxicity in children. Toxicol. Appl. Pharmacol., 2015, 284(2), 180-187. doi: 10.1016/j.taap.2015.02.013 PMID: 25708609
  135. Mosedale, M.; Eaddy, J.S.; Trask, O.J., Jr; Holman, N.S.; Wolf, K.K.; LeCluyse, E.; Ware, B.R.; Khetani, S.R.; Lu, J.; Brock, W.J.; Roth, S.E.; Watkins, P.B. miR-122 release in exosomes precedes overt tolvaptan-induced necrosis in a primary human hepatocyte micropatterned coculture model. Toxicol. Sci., 2018, 161(1), 149-158. doi: 10.1093/toxsci/kfx206 PMID: 29029277
  136. Yucel, Y.; Oguz, E.; Kocarslan, S.; Tatli, F.; Gozeneli, O.; Seker, A.; Sezen, H.; Buyukaslan, H.; Aktumen, A.; Ozgonul, A.; Uzunkoy, A.; Aksoy, N. The effects of lycopene on methotrexate-induced liver injury in rats. Bratisl. Med. J., 2017, 118(4), 212-216. doi: 10.4149/BLL_2017_042 PMID: 28471231
  137. Cao, Y.; Shi, H.; Sun, Z.; Wu, J.; Xia, Y.; Wang, Y.; Wu, Y.; Li, X.; Chen, W.; Wang, A.; Lu, Y. Protective effects of magnesium glycyrrhizinate on methotrexate-induced hepatotoxicity and intestinal toxicity may be by reducing COX-2. Front. Pharmacol., 2019, 10, 119. doi: 10.3389/fphar.2019.00119 PMID: 30971913
  138. Bu, T.; Wang, C.; Meng, Q.; Huo, X.; Sun, H.; Sun, P.; Zheng, S.; Ma, X.; Liu, Z.; Liu, K. Hepatoprotective effect of rhein against methotrexate-induced liver toxicity. Eur. J. Pharmacol., 2018, 834, 266-273. doi: 10.1016/j.ejphar.2018.07.031 PMID: 30031796
  139. Mahmoud, A.M.; Hozayen, W.G.; Ramadan, S.M. Berberine ameliorates methotrexate-induced liver injury by activating Nrf2/HO-1 pathway and PPARγ, and suppressing oxidative stress and apoptosis in rats. Biomed. Pharmacother., 2017, 94, 280-291. doi: 10.1016/j.biopha.2017.07.101 PMID: 28763751
  140. Mehrzadi, S.; Fatemi, I.; Esmaeilizadeh, M.; Ghaznavi, H.; Kalantar, H.; Goudarzi, M. Hepatoprotective effect of berberine against methotrexate induced liver toxicity in rats. Biomed. Pharmacother., 2018, 97, 233-239. doi: 10.1016/j.biopha.2017.10.113 PMID: 29091871
  141. Li, Y.; Zhu, X.; Wang, K.; Zhu, L.; Murray, M.; Zhou, F. The potential of Ginkgo biloba in the treatment of human diseases and the relationship to Nrf2–mediated antioxidant protection. J. Pharm. Pharmacol., 2022, 74(12), 1689-1699. doi: 10.1093/jpp/rgac036 PMID: 36173884
  142. Dubber, M-J.; Kanfer, I. High-performance liquid chromatographic determination of selected flavonols in Ginkgo biloba solid oral dosage forms. J. Pharm. Pharm. Sci., 2004, 7(3), 303-309. PMID: 15576009
  143. Luo, Y.; Smith, J.V. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol., 2004, 64(4), 465-472. doi: 10.1007/s00253-003-1527-9 PMID: 14740187
  144. Wang, Y.; Wang, R.; Wang, Y.; Peng, R.; Wu, Y.; Yuan, Y. Ginkgo biloba extract mitigates liver fibrosis and apoptosis by regulating p38 MAPK, NF-κB/IκBα, and Bcl-2/Bax signaling. Drug Des. Devel. Ther., 2015, 9, 6303-6317. c PMID: 26664050
  145. Tousson, E.; Atteya, Z.; El-Atrash, E.; Jeweely, O.I. Abrogation by Ginkgo byloba leaf extract on hepatic and renal toxicity induced by methotrexate in rats. J Cancer Res Treat, 2014, 2(3), 44-51.
  146. Al Kury, L.T.; Dayyan, F.; Ali Shah, F.; Malik, Z.; Khalil, A.A.K.; Alattar, A.; Alshaman, R.; Ali, A.; Khan, Z. Ginkgo biloba extract protects against methotrexate-induced hepatotoxicity: A computational and pharmacological approach. Molecules, 2020, 25(11), 2540. doi: 10.3390/molecules25112540 PMID: 32486047
  147. Abd El-Maksoud, E.M.; Lebda, M.A.; Hashem, A.E.; Taha, N.M.; Kamel, M.A. Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environ. Sci. Pollut. Res. Int., 2019, 26(25), 25844-25854. doi: 10.1007/s11356-019-05835-2 PMID: 31267406
  148. Apolinário, A.C.; de Lima Damasceno, B.P.G.; de Macêdo Beltrão, N.E.; Pessoa, A.; Converti, A.; da Silva, J.A. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr. Polym., 2014, 101, 368-378. doi: 10.1016/j.carbpol.2013.09.081 PMID: 24299785
  149. Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol., 2013, 61, 1-6. doi: 10.1016/j.ijbiomac.2013.06.044 PMID: 23831534
  150. Sugatani, J.; Wada, T.; Osabe, M.; Yamakawa, K.; Yoshinari, K.; Miwa, M. Dietary inulin alleviates hepatic steatosis and xenobiotics-induced liver injury in rats fed a high-fat and high-sucrose diet: Association with the suppression of hepatic cytochrome P450 and hepatocyte nuclear factor 4α expression. Drug Metab. Dispos., 2006, 34(10), 1677-1687. doi: 10.1124/dmd.106.010645 PMID: 16815962
  151. Pasqualetti, V.; Altomare, A.; Guarino, M.P.L.; Locato, V.; Cocca, S.; Cimini, S.; Palma, R.; Alloni, R.; De Gara, L.; Cicala, M. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS One, 2014, 9(5), e98031. doi: 10.1371/journal.pone.0098031 PMID: 24837182
  152. Yao, H.; Tao, X.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Xu, Y.; Zheng, L.; Peng, J. Dioscin alleviates non-alcoholic fatty liver disease through adjusting lipid metabolism via SIRT1/AMPK signaling pathway. Pharmacol. Res., 2018, 131, 51-60. doi: 10.1016/j.phrs.2018.03.017 PMID: 29574225
  153. Tao, X.; Wan, X.; Xu, Y.; Xu, L.; Qi, Y.; Yin, L.; Han, X.; Lin, Y.; Peng, J. Dioscin attenuates hepatic ischemia-reperfusion injury in rats through inhibition of oxidative-nitrative stress, inflammation and apoptosis. Transplantation, 2014, 98(6), 604-611. doi: 10.1097/TP.0000000000000262 PMID: 25083618
  154. Song, S.; Chu, L.; Liang, H.; Chen, J.; Liang, J.; Huang, Z.; Zhang, B.; Chen, X. Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Front. Pharmacol., 2019, 10, 1030. doi: 10.3389/fphar.2019.01030 PMID: 31572199
  155. Khammissa, R.A.G.; Fourie, J.; Motswaledi, M.H.; Ballyram, R.; Lemmer, J.; Feller, L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. BioMed Res. Int., 2018, 2018, 1-9. doi: 10.1155/2018/9276380 PMID: 29951549
  156. Wang, Y.; Zhu, J.; DeLuca, H.F. Where is the vitamin D receptor? Arch. Biochem. Biophys., 2012, 523(1), 123-133. doi: 10.1016/j.abb.2012.04.001 PMID: 22503810
  157. Montecino, M.; Stein, G.; Stein, J.L.; Lian, J.B.; van Wijnen, A.J.; Carvallo, L.; Marcellini, S.; Cruzat, F.; Arriagada, G. Vitamin D control of gene expression: Temporal and spatial parameters for organization of the regulatory machinery. Crit. Rev. Eukaryot. Gene Expr., 2008, 18(2), 163-172. doi: 10.1615/CritRevEukarGeneExpr.v18.i2.50 PMID: 18304030
  158. Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.M.; Watson, C.T.; Morahan, J.M.; Giovannoni, G.; Ponting, C.P.; Ebers, G.C.; Knight, J.C. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res., 2010, 20(10), 1352-1360. doi: 10.1101/gr.107920.110 PMID: 20736230
  159. Eliassen, A.H.; Warner, E.T.; Rosner, B.; Collins, L.C.; Beck, A.H.; Quintana, L.M.; Tamimi, R.M.; Hankinson, S.E. Plasma 25-Hydroxyvitamin D and risk of breast cancer in women followed over 20 years. Cancer Res., 2016, 76(18), 5423-5430. doi: 10.1158/0008-5472.CAN-16-0353 PMID: 27530324
  160. Wang, X.; Li, W.; Zhang, Y.; Yang, Y.; Qin, G. Association between vitamin D and non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: Results from a meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(10), 17221-17234. d PMID: 26770315
  161. de La Puente-Yagüe, M.; Cuadrado-Cenzual, M.A.; Ciudad-Cabañas, M.J.; Hernández-Cabria, M.; Collado-Yurrita, L.; Vitamin, D. And its role in breast cancer. Kaohsiung J. Med. Sci., 2018, 34(8), 423-427. doi: 10.1016/j.kjms.2018.03.004 PMID: 30041759
  162. Wang, H.; Zhang, Q.; Chai, Y.; Liu, Y.; Li, F.; Wang, B.; Zhu, C.; Cui, J.; Qu, H.; Zhu, M. 1,25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J. Endocrinol. Invest., 2015, 38(10), 1083-1091. e doi: 10.1007/s40618-015-0287-6 PMID: 25906757
  163. Yin, Y.; Yu, Z.; Xia, M.; Luo, X.; Lu, X.; Ling, W. Vitamin D attenuates high fat diet–induced hepatic steatosis in rats by modulating lipid metabolism. Eur. J. Clin. Invest., 2012, 42(11), 1189-1196. doi: 10.1111/j.1365-2362.2012.02706.x PMID: 22958216
  164. Asano, L.; Watanabe, M.; Ryoden, Y.; Usuda, K.; Yamaguchi, T.; Khambu, B.; Takashima, M.; Sato, S.; Sakai, J.; Nagasawa, K.; Uesugi, M.; Vitamin, D. Vitamin D metabolite, 25-hydroxyvitamin D, regulates lipid metabolism by inducing degradation of SREBP/SCAP. Cell Chem. Biol., 2017, 24(2), 207-217. doi: 10.1016/j.chembiol.2016.12.017 PMID: 28132894
  165. Li, R.; Guo, E.; Yang, J.; Li, A.; Yang, Y.; Liu, S.; Liu, A.; Jiang, X. 1,25(OH) 2 D 3 attenuates hepatic steatosis by inducing autophagy in mice. Obesity, 2017, 25(3), 561-571. doi: 10.1002/oby.21757 PMID: 28145056
  166. Geier, A.; Eichinger, M.; Stirnimann, G.; Semela, D.; Tay, F.; Seifert, B.; Tschopp, O.; Bantel, H.; Jahn, D.; Marques Maggio, E.; Saleh, L.; Bischoff-Ferrari, H.A.; Müllhaupt, B.; Dufour, J.F. Treatment of non-alcoholic steatohepatitis patients with vitamin D: A double-blinded, randomized, placebo-controlled pilot study. Scand. J. Gastroenterol., 2018, 53(9), 1114-1120. doi: 10.1080/00365521.2018.1501091 PMID: 30270688
  167. Hariri, M.; Zohdi, S. Effect of vitamin D on non-alcoholic fatty liver disease: A systematic review of randomized controlled clinical trials. Int. J. Prev. Med., 2019, 10(1), 14. doi: 10.4103/ijpvm.IJPVM_499_17 PMID: 30774848
  168. Jahn, D.; Dorbath, D.; Kircher, S.; Nier, A.; Bergheim, I.; Lenaerts, K.; Hermanns, H.M.; Geier, A. Beneficial effects of vitamin D treatment in an obese mouse model of non-alcoholic steatohepatitis. Nutrients, 2019, 11(1), 77. doi: 10.3390/nu11010077 PMID: 30609782
  169. Ahmadian, E.; Khosroushahi, A.Y.; Eghbal, M.A.; Eftekhari, A. Betanin reduces organophosphate induced cytotoxicity in primary hepatocyte via an anti-oxidative and mitochondrial dependent pathway. Pestic. Biochem. Physiol., 2018, 144, 71-78. doi: 10.1016/j.pestbp.2017.11.009 PMID: 29463411
  170. Krajka-Kuźniak, V.; Paluszczak, J.; Szaefer, H.; Baer-Dubowska, W. Betanin, a beetroot component, induces nuclear factor erythroid-2-related factor 2-mediated expression of detoxifying/antioxidant enzymes in human liver cell lines. Br. J. Nutr., 2013, 110(12), 2138-2149. doi: 10.1017/S0007114513001645 PMID: 23769299
  171. Hosseinzadeh, H.; Nassiri-Asl, M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): A review. Phytother. Res., 2013, 27(4), 475-483. doi: 10.1002/ptr.4784 PMID: 22815242
  172. Hassani, F.; Mehri, S.; Abnous, K.; Birner-Gruenberger, R.; Hosseinzadeh, H. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression. Food Chem. Toxicol., 2017, 107(Pt A), 395-405. doi: 10.1016/j.fct.2017.07.007 PMID: 28689058
  173. Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in cancer (review of literature). Int. J. Mol. Sci., 2022, 23(5), 2805. doi: 10.3390/ijms23052805 PMID: 35269947
  174. Abolghasemi, M.; Tehrani, S.S.; Yousefi, T.; Karimian, A.; Mahmoodpoor, A.; Ghamari, A.; Jadidi-Niaragh, F.; Yousefi, M.; Kafil, H.S.; Bastami, M.; Edalati, M.; Eyvazi, S.; Naghizadeh, M.; Targhazeh, N.; Yousefi, B.; Safa, A.; Majidinia, M.; Rameshknia, V. MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. J. Cell. Physiol., 2020, 235(6), 5008-5029. doi: 10.1002/jcp.29396 PMID: 31724738
  175. Cui, Y.; Wang, J.; Liu, S.; Qu, D.; Jin, H.; Zhu, L.; Yang, J.; Zhang, J.; Li, Q.; Zhang, Y.; Yao, Y. miR‐216a promotes breast cancer cell apoptosis by targeting PKC α. Fundam. Clin. Pharmacol., 2019, 33(4), 397-404. doi: 10.1111/fcp.12481 PMID: 31119784
  176. Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/804510 PMID: 25254214
  177. Giangreco, A.A.; Nonn, L. The sum of many small changes: MicroRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J. Steroid Biochem. Mol. Biol., 2013, 136, 86-93. doi: 10.1016/j.jsbmb.2013.01.001 PMID: 23333596
  178. Elbaz, E.M.; Ahmed, K.A.; Abdelmonem, M. Resveratrol mitigates diclofenac‐induced hepatorenal toxicity in rats via modulation of miR‐144/Nrf2/GSH axis. J. Biochem. Mol. Toxicol., 2022, 36(9), e23129. doi: 10.1002/jbt.23129 PMID: 35673973
  179. El Gizawy, H.A.; El-Haddad, A.E.; Saadeldeen, A.M.; Boshra, S.A. Tentatively identified (UPLC/T-TOF–MS/MS) compounds in the extract of saussurea costus roots exhibit in vivo hepatoprotection via modulation of HNF-1α, Sirtuin-1, C/ebpα, miRNA-34a and miRNA-223. Molecules, 2022, 27(9), 2802. doi: 10.3390/molecules27092802 PMID: 35566153
  180. Fu, R.; Zhou, J.; Wang, R.; Sun, R.; Feng, D.; Wang, Z.; Zhao, Y.; Lv, L.; Tian, X.; Yao, J. Protocatechuic acid-mediated miR-219a-5p activation inhibits the p66shc oxidant pathway to alleviate alcoholic liver injury. Oxid. Med. Cell. Longev., 2019, 2019, 1-15. doi: 10.1155/2019/3527809 PMID: 31428222
  181. Ekici Günay, N.; Muhtaroğlu, S.; Bedirli, A. Administration of Ginkgo biloba extract (EGb761) alone and in combination with FK506 promotes liver regeneration in a rat model of partial hepatectomy. Balkan Med. J., 2018, 35(2), 174-180. doi: 10.4274/balkanmedj.2016.1830 PMID: 29553465
  182. Welsh, J. Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens. Biochem. Cell Biol., 1994, 72(11-12), 537-545. doi: 10.1139/o94-072 PMID: 7654327
  183. Wigington, D.P.; Urben, C.M.; Strugnell, S.A.; Knutson, J.C. Combination study of 1,24(S)-dihydroxyvitamin D2 and chemotherapeutic agents on human breast and prostate cancer cell lines. Anticancer Res., 2004, 24(5A), 2905-2912. PMID: 15517895
  184. Zheng, W.; Duan, B.; Zhang, Q.; Ouyang, L.; Peng, W.; Qian, F.; Wang, Y.; Huang, S. Vitamin D-induced vitamin D receptor expression induces tamoxifen sensitivity in MCF-7 stem cells via suppression of Wnt/β-catenin signaling. Biosci. Rep., 2018, 38(6), BSR20180595. doi: 10.1042/BSR20180595 PMID: 30314996
  185. Oda, S.; Yokoi, T. Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metab. Pharmacokinet., 2021, 37, 100372. doi: 10.1016/j.dmpk.2020.11.007 PMID: 33461055

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers