An Update to Novel Therapeutic Options for Combating Tuberculosis: Challenges and Future Prospectives


Cite item

Full Text

Abstract

:Drug repurposing is an ongoing and clever strategy that is being developed to eradicate tuberculosis amid challenges, of which one of the major challenges is the resistance developed towards antibiotics used in standard directly observed treatment, short-course regimen. Surpassing the challenges in developing anti-tuberculous drugs, some novel host-directed therapies, repurposed drugs, and drugs with novel targets are being studied, and few are being approved too. After almost 4 decades since the approval of rifampicin as a potent drug for drugsusceptible tuberculosis, the first drug to be approved for drug-resistant tuberculosis is bedaquiline. Ever since the urge to drug discovery has been at a brisk as this milestone in tuberculosis treatment has provoked the hunt for novel targets in tuberculosis. Host-directed therapy and repurposed drugs are in trend as their pharmacological and toxicological properties have already been researched for some other diseases making the trial facile. This review discusses the remonstrance faced by researchers in developing a drug candidate with a novel target, the furtherance in tuberculosis research, novel anti-tuberculosis agents approved so far, and candidates on trial including the host-directed therapy, repurposed drug and drug combinations that may prove to be potential in treating tuberculosis soon, aiming to augment the awareness in this context to the imminent researchers.

About the authors

Swathi Suresh

Department of Pharmacology, RM College of Pharmacy, SRMIST

Email: info@benthamscience.net

Rukaiah Fatma Begum

Department of Pharmacology, RM College of Pharmacy, SRMIST

Email: info@benthamscience.net

Ankul S.

Department of Pharmacology,, RM College of Pharmacy, SRMIST

Author for correspondence.
Email: info@benthamscience.net

Chitra Vellapandian

Department of Pharmacology, RM College of Pharmacy, SRMIST

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bagcchi, S. WHO’s global tuberculosis report 2022. Lancet Microbe, 2023, 4(1), e20. doi: 10.1016/S2666-5247(22)00359-7 PMID: 36521512
  2. Harding, E. WHO global progress report on tuberculosis elimination. Lancet Respir. Med., 2020, 8(1), 19. doi: 10.1016/S2213-2600(19)30418-7 PMID: 31706931
  3. Pradipta, I.S.; Houtsma, D.; van Boven, J.F.M.; Alffenaar, J-W.C.; Hak, E. Interventions to improve medication adherence in tuberculosis patients: A systematic review of randomized controlled studies. npj Prim Care. Respir. Med., 2020, 30(1), 21. Available from: https://www.nature.com/articles/s41533-020-0179-x
  4. Espinal, M.A.; Laszlo, A.; Simonsen, L.; Boulahbal, F.; Kim, S.J.; Reniero, A.; Hoffner, S.; Rieder, H.L.; Binkin, N.; Dye, C.; Williams, R.; Raviglione, M.C. Global trends in resistance to antituberculosis drugs. N. Engl. J. Med., 2001, 344(17), 1294-1303. doi: 10.1056/NEJM200104263441706 PMID: 11320389
  5. D, L.S.; Sabarathinam, S.; S, AS. Inhibition of mycobacterium tuberculosis InhA (Enoyl-acyl carrier protein reductase) by synthetic chalcones: A molecular modelling analysis and in-vitro evidence. J. Biomol. Struct. Dyn., 2022, 1-19.
  6. Arnadottir, T.; Binkin, N.; Cegielski, P.; Espinal, M.; Farmer, P.; Goldfarb, A. Guidelines for establishing dots-plus pilot projects for the management of multidrug-resistant tuberculosis (MDR-TB) scientific panel of the working group on DOTS-Plus for MDR-TB scientific panel of the working group on DOTS-Plus for MDR-TB this document; World Heal Organ, 2000.
  7. Kashyap, S. Management Of Tuberculosis: Indian Guidelines. Medical. 2018. Available from: https://speciality. medicaldialogues.in/management-of-tuberculosis-indian-guidelines?infinitescroll=1
  8. Organization WH. Global tuberculosis report. 2018. Available from: https://apps.who.int/iris/handle/10665/274453
  9. Dadu, A.; Hovhannesyan, A.; Ahmedov, S.; van der Werf, M.J.; Dara, M. Drug-resistant tuberculosis in eastern Europe and central Asia: A time-series analysis of routine surveillance data. Lancet Infect. Dis., 2020, 20(2), 250-258. doi: 10.1016/S1473-3099(19)30568-7 PMID: 31784371
  10. World Health OrganizationWHO consolidated guidelines on drug-resistant tuberculosis treatment; World Health Organization, 2019.
  11. Diacon, A.H.; Donald, P.R.; Pym, A.; Grobusch, M.; Patientia, R.F.; Mahanyele, R.; Bantubani, N.; Narasimooloo, R.; De Marez, T.; van Heeswijk, R.; Lounis, N.; Meyvisch, P.; Andries, K.; McNeeley, D.F. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: Long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob. Agents Chemother., 2012, 56(6), 3271-3276. doi: 10.1128/AAC.06126-11 PMID: 22391540
  12. Dye, C. Doomsday postponed? preventing and reversing epidemics of drug-resistant tuberculosis. Nat. Rev. Microbiol., 2009, 7(1), 81-87. doi: 10.1038/nrmicro2048 PMID: 19079354
  13. Mirsaeidi, M. After 40years, new medicine for combating TB. Int. J. Mycobacteriol., 2013, 2(1), 1-2. doi: 10.1016/j.ijmyco.2013.01.004 PMID: 25045621
  14. World Health Organization. Annual Report of Tuberculosis. Annu Glob TB Rep WHO., 2022, 8(1), 1-68.
  15. Field, S.K.; Fisher, D.; Jarand, J.M.; Cowie, R.L. New treatment options for multidrug-resistant tuberculosis. Ther. Adv. Respir. Dis., 2012, 6(5), 255-268. doi: 10.1177/1753465812452193 PMID: 22763676
  16. Burki, T.K. The global cost of tuberculosis. Lancet Respir. Med., 2018, 6(1), 13. doi: 10.1016/S2213-2600(17)30468-X PMID: 29239796
  17. Keam, S.J. Pretomanid: First Approval. Drugs, 2019, 79(16), 1797-1803. doi: 10.1007/s40265-019-01207-9 PMID: 31583606
  18. Ryan, N.J.; Lo, J.H. Delamanid: First global approval. Drugs, 2014, 74(9), 1041-1045. doi: 10.1007/s40265-014-0241-5 PMID: 24923253
  19. Borisov, S.E.; Dheda, K.; Enwerem, M.; Romero Leyet, R.; D’Ambrosio, L.; Centis, R.; Sotgiu, G.; Tiberi, S.; Alffenaar, J.W.; Maryandyshev, A.; Belilovski, E.; Ganatra, S.; Skrahina, A.; Akkerman, O.; Aleksa, A.; Amale, R.; Artsukevich, J.; Bruchfeld, J.; Caminero, J.A.; Martinez, I.; Codecasa, L.; Dalcolmo, M.; Denholm, J.; Douglas, P.; Duarte, R.; Esmail, A.; Fadul, M.; Filippov, A.; Forsman, L.; Gaga, M.; Garcia-Fuertes, J.A.; García-García, J.M.; Gualano, G.; Jonsson, J.; Kunst, H.; Lau, J.S.; Mastrapa, B.; Troya, J.L.; Manga, S.; Manika, K.; González Montaner, P.; Mullerpattan, J.; Oelofse, S.; Ortelli, M.; Palmero, D.J.; Palmieri, F.; Papalia, A.; Papavasileiou, A.; Payen, M.C.; Pontali, E.; Robalo Cordeiro, C.; Saderi, L.; Sadutshang, T.D.; Sanukevich, T.; Solodovnikova, V.; Spanevello, A.; Topgyal, S.; Toscanini, F.; Tramontana, A.R.; Udwadia, Z.; Viggiani, P.; White, V.; Zumla, A.; Migliori, G.B. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: A multicentre study. Eur. Respir. J., 2017, 49(5), 1700387. doi: 10.1183/13993003.00387-2017 PMID: 28529205
  20. Zhu, T.; Friedrich, S.O.; Diacon, A.; Wallis, R.S. Population pharmacokinetic/pharmacodynamic analysis of the bactericidal activities of sutezolid (PNU-100480) and its major metabolite against intracellular Mycobacterium tuberculosis in ex vivo whole-blood cultures of patients with pulmonary tuberculosis. Antimicrob. Agents Chemother., 2014, 58(6), 3306-3311. doi: 10.1128/AAC.01920-13 PMID: 24687496
  21. de Jager, V.R.; Dawson, R.; van Niekerk, C.; Hutchings, J.; Kim, J.; Vanker, N.; van der Merwe, L.; Choi, J.; Nam, K.; Diacon, A.H. Telacebec (Q203), a new antituberculosis agent. N. Engl. J. Med., 2020, 382(13), 1280-1281. doi: 10.1056/NEJMc1913327 PMID: 32212527
  22. Heinrich, N.; Dawson, R.; du Bois, J.; Narunsky, K.; Horwith, G.; Phipps, A.J.; Nacy, C.A.; Aarnoutse, R.E.; Boeree, M.J.; Gillespie, S.H.; Venter, A.; Henne, S.; Rachow, A.; Phillips, P.P.J.; Hoelscher, M.; Diacon, A.H.; Mekota, A.M.; Heinrich, N.; Rachow, A.; Saathoff, E.; Hoelscher, M.; Gillespie, S.; Colbers, A.; van Balen, G.P.; Aarnoutse, R.; Boeree, M.; Bateson, A.; McHugh, T.; Singh, K.; Hunt, R.; Zumla, A.; Nunn, A.; Phillips, P.; Rehal, S.; Dawson, R.; Narunsky, K.; Diacon, A.; du Bois, J.; Venter, A.; Friedrich, S.; Sanne, I.; Mellet, K.; Churchyard, G.; Charalambous, S.; Mwaba, P.; Elias, N.; Mangu, C.; Rojas-Ponce, G.; Mtafya, B.; Maboko, L.; Minja, L.T.; Sasamalo, M.; Reither, K.; Jugheli, L.; Sam, N.; Kibiki, G.; Semvua, H.; Mpagama, S.; Alabi, A.; Adegnika, A.A.; Amukoye, E.; Okwera, A. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J. Antimicrob. Chemother., 2015, 70(5), 1558-1566. doi: 10.1093/jac/dku553 PMID: 25630641
  23. Furin, J.J.; Du Bois, J.; van Brakel, E.; Chheng, P.; Venter, A.; Peloquin, C.A.; Alsultan, A.; Thiel, B.A.; Debanne, S.M.; Boom, W.H.; Diacon, A.H.; Johnson, J.L. Early bactericidal activity of AZD5847 in patients with pulmonary tuberculosis. Antimicrob. Agents Chemother., 2016, 60(11), 6591-6599. doi: 10.1128/AAC.01163-16 PMID: 27550361
  24. Lewis, J.M.; Sloan, D.J. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther. Clin. Risk Manag., 2015, 11(May), 779-791. PMID: 25999726
  25. Xiao, S.; Guo, H.; Weiner, W.S.; Maddox, C.; Mao, C.; Gunosewoyo, H.; Pelly, S.; White, E.L.; Rasmussen, L.; Schoenen, F.J.; Aubé, J.; Bishai, W.R.; Lun, S. Revisiting the β-lactams for tuberculosis therapy with a compound-compound synthetic lethality approach. Antimicrob. Agents Chemother., 2019, 63(11), e01319-e19. doi: 10.1128/AAC.01319-19 PMID: 31427291
  26. Deshpande, D.; Srivastava, S.; Chapagain, M.; Magombedze, G.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Koeuth, T.; Dheda, K.; Gumbo, T. Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Sci. Adv., 2017, 3(8), e1701102. doi: 10.1126/sciadv.1701102 PMID: 28875168
  27. Deshpande, D.; Srivastava, S.; Bendet, P.; Martin, K.R.; Cirrincione, K.N.; Lee, P.S.; Pasipanodya, J.G.; Dheda, K.; Gumbo, T. Antibacterial and sterilizing effect of benzylpenicillin in tuberculosis. Antimicrob. Agents Chemother., 2018, 62(2), e02232-e17. doi: 10.1128/AAC.02232-17 PMID: 29180526
  28. Levine, S.R.; Beatty, K.E. Investigating β-lactam drug targets in Mycobacterium tuberculosis using chemical probes. ACS Infect. Dis., 2021, 7(2), 461-470. doi: 10.1021/acsinfecdis.0c00809 PMID: 33470787
  29. Barry, V.C.; Conalty, M.L.; Gaffney, E.E. Antituberculosis activity in the phenazine series; isomeric pigments obtained by oxidation of o-phenylenediamine derivatives. J. Pharm. Pharmacol., 1956, 8(12), 1089-1096. PMID: 13385818
  30. Barry, V.C.; Belton, J.G.; Conalty, M.L.; Denneny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179(4568), 1013-1015. doi: 10.1038/1791013a0 PMID: 13430770
  31. Shafran, S.D.; Singer, J.; Zarowny, D.P.; Phillips, P.; Salit, I.; Walmsley, S.L.; Fong, I.W.; Gill, M.J.; Rachlis, A.R.; Lalonde, R.G.; Fanning, M.M.; Tsoukas, C.M. A comparison of two regimens for the treatment of Mycobacterium avium complex bacteremia in AIDS: Rifabutin, ethambutol, and clarithromycin versusrifampin, ethambutol, clofazimine, and ciprofloxacin. Canadian HIV Trials Network Protocol 010 Study Group. N. Engl. J. Med., 1996, 335(6), 377-384. doi: 10.1056/NEJM199608083350602 PMID: 8676931
  32. Chaisson, R.E.; Keiser, P.; Pierce, M.; Fessel, W.J.; Ruskin, J.; Lahart, C.; Benson, C.A.; Meek, K.; Siepman, N.; Craft, J.C. Clarithromycin and ethambutol with or without clofazimine for the treatment of bacteremic. AIDS, 1997, 11(3), 311-317. doi: 10.1097/00002030-199703110-00008 PMID: 9147422
  33. Yu, W.; Yusuf, B.; Wang, S.; Tian, X.; Hameed, H.M.A.; Lu, Z.; Chiwala, G.; Alam, M.S.; Cook, G.M.; Maslov, D.A.; Zhong, N.; Zhang, T. Sterilizing effects of novel regimens containing TB47, clofazimine, and linezolid in a murine model of tuberculosis. Antimicrob. Agents Chemother., 2021, 65(10), e00706-e00721. doi: 10.1128/AAC.00706-21 PMID: 34280022
  34. Gosling, R.D.; Uiso, L.O.; Sam, N.E.; Bongard, E.; Kanduma, E.G.; Nyindo, M.; Morris, R.W.; Gillespie, S.H. The bactericidal activity of moxifloxacin in patients with pulmonary tuberculosis. Am. J. Respir. Crit. Care Med., 2003, 168(11), 1342-1345. doi: 10.1164/rccm.200305-682OC PMID: 12917230
  35. Pletz, M.W.R.; De Roux, A.; Roth, A.; Neumann, K.H.; Mauch, H.; Lode, H. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: A prospective, randomized study. Antimicrob. Agents Chemother., 2004, 48(3), 780-782. doi: 10.1128/AAC.48.3.780-782.2004 PMID: 14982764
  36. Conde, M.B.; Efron, A.; Loredo, C.; De Souza, G.R.M.; Graça, N.P.; Cezar, M.C.; Ram, M.; Chaudhary, M.A.; Bishai, W.R.; Kritski, A.L.; Chaisson, R.E. Moxifloxacin versusethambutol in the initial treatment of tuberculosis: A double-blind, randomised, controlled phase II trial. Lancet, 2009, 373(9670), 1183-1189. doi: 10.1016/S0140-6736(09)60333-0 PMID: 19345831
  37. Shapiro, S.D. Matrix metalloproteinase degradation of extracellular matrix: Biological consequences. Curr. Opin. Cell Biol., 1998, 10(5), 602-608. doi: 10.1016/S0955-0674(98)80035-5 PMID: 9818170
  38. Chernov, A.V.; Strongin, A.Y. Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer. Biomol. Concepts, 2011, 2(3), 135-147. doi: 10.1515/bmc.2011.017 PMID: 21779312
  39. Löffek, S.; Schilling, O.; Franzke, C.W. Biological role of matrix metalloproteinases: A critical balance. Eur. Respir. J., 2011, 38(1), 191-208. doi: 10.1183/09031936.00146510 PMID: 21177845
  40. Tsenova, L.; Singhal, A. Effects of host‐directed therapies on the pathology of tuberculosis. J. Pathol., 2020, 250(5), 636-646. doi: 10.1002/path.5407 PMID: 32108337
  41. Dorhoi, A.; Kaufmann, S.H.E. Perspectives on host adaptation in response to Mycobacterium tuberculosis: Modulation of inflammation. Semin. Immunol., 2014, 26(6), 533-542. doi: 10.1016/j.smim.2014.10.002 PMID: 25453228
  42. Zumla, A.; Rao, M.; Dodoo, E.; Maeurer, M. Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Med., 2016, 14(1), 89. doi: 10.1186/s12916-016-0635-1 PMID: 27301245
  43. Ehlers, S.; Schaible, U.E. The granuloma in tuberculosis: Dynamics of a host-pathogen collusion. Front. Immunol., 2013, 3, 411. doi: 10.3389/fimmu.2012.00411 PMID: 23308075
  44. Davis, J.M.; Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 2009, 136(1), 37-49. doi: 10.1016/j.cell.2008.11.014 PMID: 19135887
  45. van Crevel, R.; Ottenhoff, T.H.M.; van der Meer, J.W.M. Innate immunity to mycobacterium tuberculosis. Adv. Exp. Med. Biol., 2003, 531, 241-247. doi: 10.1007/978-1-4615-0059-9_20
  46. Dorhoi, A.; Kaufmann, S.H.E. Pathology and immune reactivity: Understanding multidimensionality in pulmonary tuberculosis. Semin. Immunopathol., 2016, 38(2), 153-166. doi: 10.1007/s00281-015-0531-3 PMID: 26438324
  47. Flynn, J.L.; Chan, J.; Lin, P.L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol., 2011, 4(3), 271-278. doi: 10.1038/mi.2011.14 PMID: 21430653
  48. Subbian, S.; Tsenova, L.; O’Brien, P.; Yang, G.; Kushner, N.L.; Parsons, S.; Peixoto, B.; Fallows, D.; Kaplan, G. Spontaneous latency in a rabbit model of pulmonary tuberculosis. Am. J. Pathol., 2012, 181(5), 1711-1724. doi: 10.1016/j.ajpath.2012.07.019 PMID: 22960076
  49. Adams, D.O. The structure of mononuclear phagocytes differentiating in vivo. I. Sequential fine and histologic studies of the effect of Bacillus Calmette-Guerin (BCG). Am. J. Pathol., 1974, 76(1), 17-48. PMID: 4601921
  50. Russell, D.G. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol., 2007, 5(1), 39-47. doi: 10.1038/nrmicro1538 PMID: 17160001
  51. Algood, H.M.; Lin, P.L.; Flynn, J.L. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis. Clin. Infect. Dis., 2005, 41(3), S189-S193. doi: 10.1086/429994 PMID: 15983898
  52. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol., 2012, 12(5), 352-366. doi: 10.1038/nri3211 PMID: 22517424
  53. Reece, S.T.; Kaufmann, S.H.E. Floating between the poles of pathology and protection: Can we pin down the granuloma in tuberculosis? Curr. Opin. Microbiol., 2012, 15(1), 63-70. doi: 10.1016/j.mib.2011.10.006 PMID: 22074861
  54. Kim, M.J.; Wainwright, H.C.; Locketz, M.; Bekker, L.G.; Walther, G.B.; Dittrich, C.; Visser, A.; Wang, W.; Hsu, F.F.; Wiehart, U.; Tsenova, L.; Kaplan, G.; Russell, D.G. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med., 2010, 2(7), 258-274. doi: 10.1002/emmm.201000079 PMID: 20597103
  55. Benoit, M.; Desnues, B.; Mege, J.L. Macrophage polarization in bacterial infections. J. Immunol., 2008, 181(6), 3733-3739. doi: 10.4049/jimmunol.181.6.3733 PMID: 18768823
  56. Cooper, A.M.; Khader, S.A. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol. Rev., 2008, 226(1), 191-204. doi: 10.1111/j.1600-065X.2008.00702.x PMID: 19161425
  57. Dannenberg, A.M. Pathogenesis of Human Pulmonary Tuberculosis; ASM Press: Washington, DC, USA, 2006. doi: 10.1128/9781555815684
  58. Kaplan, G.; Post, F.A.; Moreira, A.L.; Wainwright, H.; Kreiswirth, B.N.; Tanverdi, M.; Mathema, B.; Ramaswamy, S.V.; Walther, G.; Steyn, L.M.; Barry, C.E., III; Bekker, L.G. Mycobacterium tuberculosis growth at the cavity surface: A microenvironment with failed immunity. Infect. Immun., 2003, 71(12), 7099-7108. doi: 10.1128/IAI.71.12.7099-7108.2003 PMID: 14638800
  59. Lenaerts, A.; Barry, C.E., III; Dartois, V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev., 2015, 264(1), 288-307. doi: 10.1111/imr.12252 PMID: 25703567
  60. Pennini, M.E.; Pai, R.K.; Schultz, D.C.; Boom, W.H.; Harding, C.V. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-γ-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol., 2006, 176(7), 4323-4330. doi: 10.4049/jimmunol.176.7.4323 PMID: 16547269
  61. Dutta, N.K.; Bruiners, N.; Pinn, M.L.; Zimmerman, M.D.; Prideaux, B.; Dartois, V.; Gennaro, M.L.; Karakousis, P.C. Statin adjunctive therapy shortens the duration of TB treatment in mice. J. Antimicrob. Chemother., 2016, 71(6), 1570-1577. doi: 10.1093/jac/dkw014 PMID: 26903278
  62. Guerra-De-Blas, P.D.C.; Bobadilla-Del-Valle, M.; Sada-Ovalle, I.; Estrada-García, I.; Torres-González, P.; López-Saavedra, A.; Guzmán-Beltrán, S.; Ponce-de-León, A.; Sifuentes-Osornio, J. Simvastatin enhances the immune response against Mycobacterium tuberculosis. Front. Microbiol., 2019, 10(Sep), 2097. doi: 10.3389/fmicb.2019.02097 PMID: 31616387
  63. Miow, Q.H.; Vallejo, A.F.; Wang, Y.; Hong, J.M.; Bai, C.; Teo, F.S.W.; Wang, A.D.Y.; Loh, H.R.; Tan, T.Z.; Ding, Y.; She, H.W.; Gan, S.H.; Paton, N.I.; Lum, J.; Tay, A.; Chee, C.B.E.; Tambyah, P.A.; Polak, M.E.; Wang, Y.T.; Singhal, A.; Elkington, P.T.; Friedland, J.S.; Ong, C.W.M. Doxycycline host-directed therapy in human pulmonary tuberculosis. J. Clin. Invest., 2021, 131(15), e141895. doi: 10.1172/JCI141895 PMID: 34128838
  64. Wallis, R.S.; Ginindza, S.; Beattie, T.; Arjun, N.; Likoti, M.; Edward, V.A.; Rassool, M.; Ahmed, K.; Fielding, K.; Ahidjo, B.A.; Vangu, M.D.T.; Churchyard, G. Adjunctive host-directed therapies for pulmonary tuberculosis: A prospective, open-label, phase 2, randomised controlled trial. Lancet Respir. Med., 2021, 9(8), 897-908. doi: 10.1016/S2213-2600(20)30448-3 PMID: 33740465
  65. Padmapriydarsini, C.; Mamulwar, M.; Mohan, A.; Shanmugam, P.; Gomathy, N.S.; Mane, A.; Singh, U.B.; Pavankumar, N.; Kadam, A.; Kumar, H.; Suresh, C.; Reddy, D.; Devi, P.; Ramesh, P.M.; Sekar, L.; Jawahar, S.; Shandil, R.K.; Singh, M.; Menon, J.; Guleria, R. Randomized trial of metformin with anti-tuberculosis drugs for early sputum conversion in adults with pulmonary tuberculosis. Clin. Infect. Dis., 2022, 75(3), 425-434. doi: 10.1093/cid/ciab964 PMID: 34849651
  66. Ray, K.K.; Seshasai, S.R.; Erqou, S.; Sever, P.; Jukema, J.W.; Ford, I.; Sattar, N. Statins and all-cause mortality in high-risk primary prevention: A meta-analysis of 11 randomized controlled trials involving 65,229 participants. Arch. Intern. Med., 2010, 170(12), 1024-1031. doi: 10.1001/archinternmed.2010.182 PMID: 20585067
  67. Blum, A.; Shamburek, R. The pleiotropic effects of statins on endothelial function, vascular inflammation, immunomodulation and thrombogenesis. Atherosclerosis, 2009, 203(2), 325-330. doi: 10.1016/j.atherosclerosis.2008.08.022 PMID: 18834985
  68. Kwak, B.; Mulhaupt, F.; Myit, S.; Mach, F. Statins as a newly recognized type of immunomodulator. Nat. Med., 2000, 6(12), 1399-1402. doi: 10.1038/82219 PMID: 11100127
  69. Khurana, V.; Bejjanki, H.R.; Caldito, G.; Owens, M.W. Statins reduce the risk of lung cancer in humans: A large case-control study of US veterans. Chest, 2007, 131(5), 1282-1288. doi: 10.1378/chest.06-0931 PMID: 17494779
  70. Rothwell, C.; LeBreton, A.; Young Ng, C.; Lim, J.Y.H.; Liu, W.; Vasudevan, S.; Labow, M.; Gu, F.; Gaither, L.A. Cholesterol biosynthesis modulation regulates dengue viral replication. Virology, 2009, 389(1-2), 8-19. doi: 10.1016/j.virol.2009.03.025 PMID: 19419745
  71. Parihar, S.P.; Guler, R.; Khutlang, R.; Lang, D.M.; Hurdayal, R.; Mhlanga, M.M.; Suzuki, H.; Marais, A.D.; Brombacher, F. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis., 2014, 209(5), 754-763. doi: 10.1093/infdis/jit550 PMID: 24133190
  72. Skerry, C.; Pinn, M.L.; Bruiners, N.; Pine, R.; Gennaro, M.L.; Karakousis, P.C. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother., 2014, 69(9), 2453-2457. doi: 10.1093/jac/dku166 PMID: 24855121
  73. Guerra-De-Blas, P.D.C.; Torres-González, P.; Bobadilla-Del-Valle, M.; Sada-Ovalle, I.; Ponce-De-León-Garduño, A.; Sifuentes-Osornio, J. Potential effect of statins on Mycobacterium tuberculosis Infection. J. Immunol. Res., 2018, 2018, 1-14. doi: 10.1155/2018/7617023 PMID: 30581876
  74. Chen, Y-T.; Kuo, S-C.; Chao, P-W.; Chang, Y-Y. Use of lipid-lowering agents is not associated with improved outcomes for tuberculosis patients on standard-course therapy: A population-based cohort study. PLoS One, 2019, 14(1), e0210479. doi: 10.1371/journal.pone.0210479
  75. Su, V.Y.F.; Su, W.J.; Yen, Y.F.; Pan, S.W.; Chuang, P.H.; Feng, J.Y.; Chou, K.T.; Yang, K.Y.; Lee, Y.C.; Chen, T.J. Statin use is associated with a lower risk of TB. Chest, 2017, 152(3), 598-606. doi: 10.1016/j.chest.2017.04.170 PMID: 28479115
  76. Yavuz, B.; Ertugrul, D.T.; Cil, H.; Ata, N.; Akin, K.O.; Yalcin, A.A.; Kucukazman, M.; Dal, K.; Hokkaomeroglu, M.S.; Yavuz, B.B.; Tutal, E. Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: A novel pleiotropic effect of statins? Cardiovasc. Drugs Ther., 2009, 23(4), 295-299. doi: 10.1007/s10557-009-6181-8 PMID: 19543962
  77. Ertugrul, D.T.; Yavuz, B.; Cil, H.; Ata, N.; Akin, K.O.; Kucukazman, M.; Yalcin, A.A.; Dal, K.; Yavuz, B.B.; Tutal, E. STATIN-D study: Comparison of the influences of rosuvastatin and fluvastatin treatment on the levels of 25 hydroxyvitamin D. Cardiovasc. Ther., 2011, 29(2), 146-152. doi: 10.1111/j.1755-5922.2010.00141.x PMID: 20370794
  78. Adewole, O.O.; Omotoso, B.A.; Ogunsina, M.; Aminu, A.; Odeyemi, A.O.; Awopeju, O.F.; Ayoola, O.; Adedeji, T.; Sogaolu, O.M.; Adewole, T.O.; Jiya, E.; Andero, V.; Obaseki, D.; Akintomide, A.O.; Erhabor, G.E. Atorvastatin accelerates Mycobacterium tuberculosis clearance in pulmonary TB: a randomised phase IIA trial. Int. J. Tuberc. Lung Dis., 2023, 27(3), 226-228. doi: 10.5588/ijtld.22.0548 PMID: 36855033
  79. Naik, A.L. Effect of DOTS treatment on Vitamin D levels in pulmonary tuberculosis. J. Clin. Diagn. Res., 2017, 11(4), BC18-BC22. doi: 10.7860/JCDR/2017/24501.9759
  80. Campbell, G.R.; Spector, S.A. Autophagy induction by vitamin D inhibits both Mycobacterium tuberculosis and human immunodeficiency virus type 1. Autophagy, 2012, 8(10), 1523-1525. doi: 10.4161/auto.21154 PMID: 22892387
  81. Young, C.; Walzl, G.; Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol., 2020, 13(2), 190-204. doi: 10.1038/s41385-019-0226-5 PMID: 31772320
  82. Jolliffe, D.A.; Ganmaa, D.; Wejse, C.; Raqib, R.; Haq, M.A.; Salahuddin, N.; Daley, P.K.; Ralph, A.P.; Ziegler, T.R.; Martineau, A.R. Adjunctive vitamin D in tuberculosis treatment: Meta-analysis of individual participant data. Eur. Respir. J., 2019, 53(3), 1802003. doi: 10.1183/13993003.02003-2018 PMID: 30728208
  83. Soeharto, D.A.; Rifai, D.A.; Marsudidjadja, S.; Roekman, A.E.; Assegaf, C.K.; Louisa, M. Vitamin D as an adjunctive treatment to standard drugs in pulmonary tuberculosis patients: An evidence-based case report. Adv. Prev. Med., 2019, 2019, 1-10. doi: 10.1155/2019/5181847 PMID: 31321102
  84. Ganmaa, D.; Uyanga, B.; Zhou, X.; Gantsetseg, G.; Delgerekh, B.; Enkhmaa, D.; Khulan, D.; Ariunzaya, S.; Sumiya, E.; Bolortuya, B.; Yanjmaa, J.; Enkhtsetseg, T.; Munkhzaya, A.; Tunsag, M.; Khudyakov, P.; Seddon, J.A.; Marais, B.J.; Batbayar, O.; Erdenetuya, G.; Amarsaikhan, B.; Spiegelman, D.; Tsolmon, J.; Martineau, A.R. Vitamin D supplements for prevention of tuberculosis infection and disease. N. Engl. J. Med., 2020, 383(4), 359-368. doi: 10.1056/NEJMoa1915176 PMID: 32706534
  85. Wang, J.; Xiong, K.; Wang, Q.; Zhao, S.; Liu, Y.; Ma, A. Adjunctive vitamin A and D during pulmonary tuberculosis treatment: A randomized controlled trial with a 2 × 2 factorial design. Food Funct., 2020, 11(5), 4672-4681. doi: 10.1039/C9FO02751C PMID: 32406431
  86. Yudhawati, R.; Prasanta, N. The role of N-acetyl sistein in pulmonary tuberculosis. J. Respirasi, 2020, 6(1), 27. doi: 10.20473/jr.v6-I.1.2020.27-34
  87. Teskey, G.; Cao, R.; Islamoglu, H.; Medina, A.; Prasad, C.; Prasad, R.; Sathananthan, A.; Fraix, M.; Subbian, S.; Zhong, L.; Venketaraman, V. The synergistic effects of the glutathione precursor, NAC and first-line antibiotics in the granulomatous response against Mycobacterium tuberculosis. Front. Immunol., 2018, 9(Sep), 2069. doi: 10.3389/fimmu.2018.02069 PMID: 30258443
  88. Amaral, E.P.; Conceição, E.L.; Costa, D.L.; Rocha, M.S.; Marinho, J.M.; Cordeiro-Santos, M.; D’Império-Lima, M.R.; Barbosa, T.; Sher, A.; Andrade, B.B. N-acetyl-cysteine exhibits potent anti-mycobacterial activity in addition to its known anti-oxidative functions. BMC Microbiol., 2016, 16(1), 251. doi: 10.1186/s12866-016-0872-7 PMID: 27793104
  89. Safe, I.P.; Lacerda, M.V.G.; Printes, V.S.; Praia Marins, A.F.; Rebelo Rabelo, A.L.; Costa, A.A. Safety and efficacy of N-acetylcysteine in hospitalized patients with HIV-associated tuberculosis: An open-label, randomized, phase II trial (RIPENACTB Study). PLoS One, 2020, 15(6), e0235381.
  90. Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56. doi: 10.1038/nrd.2017.162 PMID: 28935918
  91. Prasad, K.; Singh, M.B.; Ryan, H. Corticosteroids for managing tuberculous meningitis. Cochrane Database Syst. Rev., 2016, 4(4), CD002244. PMID: 27121755
  92. Roca, F.J.; Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell, 2013, 153(3), 521-534. doi: 10.1016/j.cell.2013.03.022 PMID: 23582643
  93. Tobin, D.M.; Vary, J.C., Jr; Ray, J.P.; Walsh, G.S.; Dunstan, S.J.; Bang, N.D.; Hagge, D.A.; Khadge, S.; King, M.C.; Hawn, T.R.; Moens, C.B.; Ramakrishnan, L. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5), 717-730. doi: 10.1016/j.cell.2010.02.013 PMID: 20211140
  94. Lai, S.W.; Lin, C.L.; Liao, K.F. Nation-based case-control study investigating the relationship between oral corticosteroids use and pulmonary tuberculosis. Eur. J. Intern. Med., 2017, 43, 53-57. doi: 10.1016/j.ejim.2017.05.020 PMID: 28554781
  95. Miller, M.J.; Walz, A.J.; Zhu, H.; Wu, C.; Moraski, G.; Möllmann, U.; Tristani, E.M.; Crumbliss, A.L.; Ferdig, M.T.; Checkley, L.; Edwards, R.L.; Boshoff, H.I. Design, synthesis, and study of a mycobactin-artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. J. Am. Chem. Soc., 2011, 133(7), 2076-2079. doi: 10.1021/ja109665t PMID: 21275374
  96. Morake, M.; Coertzen, D.; Ngwane, A.; Wentzel, J.F.; Wong, H.N.; Smit, F.J.; Birkholtz, L.M.; Pietersen, R.D.; Baker, B.; Wiid, I.; N’Da, D.D.; Haynes, R.K. Preliminary evaluation of artemisinin-cholesterol conjugates as potential drugs for the treatment of intractable forms of malaria and tuberculosis. ChemMedChem, 2018, 13(1), 67-77. doi: 10.1002/cmdc.201700579 PMID: 29193799
  97. Zhu, C.; Liu, Y.; Hu, L.; Yang, M.; He, Z.G. Molecular mechanism of the synergistic activity of ethambutol and isoniazid against Mycobacterium tuberculosis. J. Biol. Chem., 2018, 293(43), 16741-16750. doi: 10.1074/jbc.RA118.002693 PMID: 30185616
  98. Choi, W. Novel pharmacological activity of artesunate and artemisinin: Their potential as anti-tubercular agents. J. Clin. Med., 2017, 6(3), 30. doi: 10.3390/jcm6030030 PMID: 28287416
  99. Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol., 2020, 30(3), 313-324. doi: 10.4014/jmb.2003.03011 PMID: 32238757
  100. Golandaj, J.A. Insight into the COVID-19 led slow-down in TB notifications in India. Indian J. Tuberc., 2021, 68(1), 142-145. doi: 10.1016/j.ijtb.2020.12.005 PMID: 33641836
  101. Lippincott, C.; Perry, A.; Munk, E.; Maltas, G.; Shah, M. Tuberculosis treatment adherence in the era of COVID-19; Res Sq, 2022.
  102. Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; Pulmonology, L.D. Pulmonology LD-, 2021 undefined. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects; Elsevier, 2021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers