Therapeutic Potential of Capsaicin in Various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling


Cite item

Full Text

Abstract

Neurodegenerative disease is mainly characterized by the accumulation of misfolded proteins, contributing to mitochondrial impairments, increased production of proinflammatory cytokines and reactive oxygen species, and neuroinflammation resulting in synaptic loss and neuronal loss. These pathophysiological factors are a serious concern in the treatment of neurodegenerative diseases. Based on the symptoms of various neurodegenerative diseases, different treatments are available, but they have serious side effects and fail in clinical trials, too. Therefore, treatments for neurodegenerative diseases are still a challenge at present. Thus, it is important to study an alternative option. Capsaicin is a naturally occurring alkaloid found in capsicum. Besides the TRPV1 receptor activator in nociception, capsaicin showed a protective effect in brain-related disorders. Capsaicin also reduces the aggregation of misfolded proteins, improves mitochondrial function, and decreases ROS generation. Its antioxidant role is due to increased expression of an nrf2-mediated signaling pathway. Nrf2 is a nuclear erythroid 2-related factor, a transcription factor, which has a crucial role in maintaining the normal function of mitochondria and the cellular defense system against oxidative stress. Intriguingly, Nrf2 mediated pathway improved the upregulation of antioxidant genes and inhibition of microglial-induced inflammation, improved mitochondrial resilience and functions, leading to decreased ROS in neurodegenerative conditions, suggesting that Nrf2 activation could be a better therapeutic approach to target pathophysiology of neurodegenerative disease. Therefore, the present review has evaluated the potential role of capsaicin as a pharmacological agent for the treatment and management of various neurodegenerative diseases via the Nrf2-mediated signaling pathway.

About the authors

Vibhav Varshney

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Author for correspondence.
Email: info@benthamscience.net

Abhishek Kumar

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Vikas Parashar

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Ankit Kumar

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Ahsas Goyal

Department of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Debapriya Garabadu

Department of Pharmacology, School of Health Sciences,, Central University of Punjab

Email: info@benthamscience.net

References

  1. Mishra, A.; Mishra, P.S.; Bandopadhyay, R.; Khurana, N.; Angelopoulou, E.; Paudel, Y.N.; Piperi, C. Neuroprotective potential of chrysin: Mechanistic insights and therapeutic potential for neurological disorders. Molecules, 2021, 26(21), 6456. doi: 10.3390/molecules26216456 PMID: 34770864
  2. Armstrong, R. What causes neurodegenerative disease? Folia Neuropathol., 2020, 58(2), 93-112. doi: 10.5114/fn.2020.96707 PMID: 32729289
  3. Liu, Y.; Yu, C.; Zhang, X. Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb. Cortex, 2014, 24(6), 1422-1435. doi: 10.1093/cercor/bhs410
  4. Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
  5. Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet., 2013, 47(1), 601-623. doi: 10.1146/annurev-genet-110711-155524 PMID: 24274755
  6. Walker, L.C.; Jucker, M. Neurodegenerative diseases: expanding the prion concept. Annu. Rev. Neurosci., 2015, 38(1), 87-103. doi: 10.1146/annurev-neuro-071714-033828 PMID: 25840008
  7. Watts, J.C.; Giles, K.; Oehler, A.; Middleton, L.; Dexter, D.T.; Gentleman, S.M.; DeArmond, S.J.; Prusiner, S.B. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl. Acad. Sci. USA, 2013, 110(48), 19555-19560. doi: 10.1073/pnas.1318268110 PMID: 24218576
  8. Cova, I.; Markova, A.; Campini, I.; Grande, G.; Mariani, C.; Pomati, S. Worldwide trends in the prevalence of dementia. J. Neurol. Sci., 2017, 379, 259-260. doi: 10.1016/j.jns.2017.06.030 PMID: 28716255
  9. Das, S.K.; Ray, B.K.; Paul, N.; Hazra, A.; Das, S.; Ghosal, M.K.; Misra, A.K.; Banerjee, T.K.; Chaudhuri, A. Prevalence, burden, and risk factors of migraine: A community-based study from Eastern India. Neurol. India, 2017, 65(6), 1280-1288. doi: 10.4103/0028-3886.217979 PMID: 29133701
  10. Bala, A.; Gupta, B.M. Parkinson′s disease in India: An analysis of publications output during 2002-2011. Int. J. Nutr. Pharmacol. Neurol. Dis., 2013, 3(3), 254. doi: 10.4103/2231-0738.114849
  11. Pandit, L.; Kundapur, R. Prevalence and patterns of demyelinating central nervous system disorders in urban Mangalore, South India. Mult. Scler., 2014, 20(12), 1651-1653. doi: 10.1177/1352458514521503 PMID: 24493471
  12. Jellinger, K.A. Basic mechanisms of neurodegeneration: A critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487. doi: 10.1111/j.1582-4934.2010.01010.x PMID: 20070435
  13. Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci., 2022, 23(3), 1851. doi: 10.3390/ijms23031851 PMID: 35163773
  14. Obermeier, B.; Daneman, R.; Ransohoff, R.M. Development, maintenance and disruption of the blood-brain barrier. Nat. Med., 2013, 19(12), 1584-1596. doi: 10.1038/nm.3407 PMID: 24309662
  15. Mishra, A.; Bandopadhyay, R.; Singh, P.K.; Mishra, P.S.; Sharma, N.; Khurana, N. Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis., 2021, 36(7), 1591-1626. doi: 10.1007/s11011-021-00806-4 PMID: 34387831
  16. Vasconcelos, A.R.; dos Santos, N.B.; Scavone, C.; Munhoz, C.D. Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front. Pharmacol., 2019, 10, 33. doi: 10.3389/fphar.2019.00033 PMID: 30778297
  17. Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219. doi: 10.1111/imm.12922 PMID: 29513402
  18. Moratilla-Rivera, I.; Sánchez, M.; Valdés-González, J.A.; Gómez-Serranillos, M.P. Natural products as modulators of Nrf2 signaling pathway in neuroprotection. Int. J. Mol. Sci., 2023, 24(4), 3748. doi: 10.3390/ijms24043748 PMID: 36835155
  19. Saha, S.; Buttari, B.; Profumo, E.; Tucci, P.; Saso, L. A perspective on nrf2 signaling pathway for neuroinflammation: A potential therapeutic target in Alzheimer’s and Parkinson’s diseases. Front. Cell. Neurosci., 2022, 15, 787258. doi: 10.3389/fncel.2021.787258 PMID: 35126058
  20. Dexter, D.T.; Carter, C.J.; Wells, F.R.; Javoy-Agid, F.; Agid, Y.; Lees, A.; Jenner, P.; Marsden, C.D. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem., 1989, 52(2), 381-389. doi: 10.1111/j.1471-4159.1989.tb09133.x PMID: 2911023
  21. Pedersen, W.A.; Fu, W.; Keller, J.N.; Markesbery, W.R.; Appel, S.; Smith, R.G.; Kasarskis, E.; Mattson, M.P. Protein modification by the lipid peroxidation product 4‐hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol., 1998, 44(5), 819-824. doi: 10.1002/ana.410440518 PMID: 9818940
  22. Selley, M.; Close, D.R.; Stern, S.E. The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging, 2002, 23(3), 383-388. doi: 10.1016/S0197-4580(01)00327-X PMID: 11959400
  23. Arlt, S.; Beisiegel, U.; Kontush, A. Lipid peroxidation in neurodegeneration: New insights into Alzheimerʼs disease. Curr. Opin. Lipidol., 2002, 13(3), 289-294. doi: 10.1097/00041433-200206000-00009 PMID: 12045399
  24. Sayre, L.; Smith, M.; Perry, G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem., 2001, 8(7), 721-738. doi: 10.2174/0929867013372922 PMID: 11375746
  25. Rauf, A.; Badoni, H.; Abu-Izneid, T.; Olatunde, A.; Rahman, M.M.; Painuli, S.; Semwal, P.; Wilairatana, P.; Mubarak, M.S. Neuroinflammatory markers: Key indicators in the pathology of neurodegenerative diseases. Molecules, 2022, 27(10), 3194. doi: 10.3390/molecules27103194 PMID: 35630670
  26. Dadhania, V.P.; Trivedi, P.P.; Vikram, A.; Tripathi, D.N. Nutraceuticals against neurodegeneration: A mechanistic insight. Curr. Neuropharmacol., 2016, 14(6), 627-640. doi: 10.2174/1570159X14666160104142223 PMID: 26725888
  27. Selvi, S.; Polat, R.; Çakilcioğlu, U.; Celep, F.; Dirmenci, T.; Ertuğ, Z.F. An ethnobotanical review on medicinal plants of the Lamiaceae family in Turkey. Turk. J. Bot., 2022, 46(4) doi: 10.55730/1300-008X.2712
  28. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
  29. Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response, 2007, 5(3), 174-186. doi: 10.2203/dose-response.07-004.Mattson PMID: 18648607
  30. Gezer, C. Stress response of dietary phytochemicals in a hormetic manner for health and longevity; Gene expression and regulation in mammalian cells - transcription toward the establishment of novel therapeutics. Gene expression and regulation in mammalian cells - transcription toward the establishment of novel therapeutics, 2018. doi: 10.5772/intechopen.71867
  31. Mattson, M.P.; Cheng, A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci., 2006, 29(11), 632-639.
  32. Koppula, S.; Kumar, H.; More, S.V.; Lim, H.W.; Hong, S.M.; Choi, D.K. Recent updates in redox regulation and free radical scavenging effects by herbal products in experimental models of Parkinson’s disease. Molecules, 2012, 17(10), 11391-11420. doi: 10.3390/molecules171011391 PMID: 23014498
  33. Van Kampen, J.M.; Baranowski, D.B.; Shaw, C.A.; Kay, D.G. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp. Gerontol., 2014, 50(1), 95-105. doi: 10.1016/j.exger.2013.11.012 PMID: 24316034
  34. Ríos, J.L.; Onteniente, M.; Picazo, D.; Montesinos, M.C. Medicinal plants and natural products as potential sources for antiparkinson drugs. Planta Med., 2016, 82(11/12), 942-951. doi: 10.1055/s-0042-107081 PMID: 27224274
  35. Bi, Y.; Qu, P.C.; Wang, Q.S.; Zheng, L.; Liu, H.L.; Luo, R.; Chen, X.Q.; Ba, Y.Y.; Wu, X.; Yang, H. Neuroprotective effects of alkaloids from Piper longum in a MPTP-induced mouse model of Parkinson’s disease. Pharm. Biol., 2015, 53(10), 1516-1524. doi: 10.3109/13880209.2014.991835 PMID: 25857256
  36. Sun, Y.; Yang, T.; Leak, R.K.; Chen, J.; Zhang, F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol. Disord. Drug Targets, 2017, 16(3), 326-338. doi: 10.2174/1871527316666170102120211 PMID: 28042770
  37. Jadeja, R.N.; Upadhyay, K.K.; Devkar, R.V.; Khurana, S. Naturally occurring Nrf2 activators: Potential in treatment of liver injury. Oxid Med Cell Longev., 2016.
  38. Balos, M.M. Determination of weeds and their floristic investigation in vineyards in some districts of Şanlıurfa. Int J Nat Lif Sci, 2023, 7(2), 1-17.
  39. Çakılcıoğlu, U.; Türkoğlu, I. Plants used for hemorrhoid treatment in elaziǧ central district. Acta Hortic., 2009, 826(826), 89-96. doi: 10.17660/ActaHortic.2009.826.11
  40. Babbar, S.; Marier, J.F.; Mouksassi, M.S.; Beliveau, M.; Vanhove, G.F.; Chanda, S.; Bley, K. Pharmacokinetic analysis of capsaicin after topical administration of a high-concentration capsaicin patch to patients with peripheral neuropathic pain. Ther. Drug Monit., 2009, 31(4), 502-510. doi: 10.1097/FTD.0b013e3181a8b200 PMID: 19494795
  41. Suresh, D.; Srinivasan, K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res., 2010, 131, 682-691. PMID: 20516541
  42. Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control. Release, 2014, 196, 96-105. doi: 10.1016/j.jconrel.2014.09.027 PMID: 25307998
  43. Chittepu, VCSR; Kalhotra, P Revilla, GIO Emerging Technologies to Improve Capsaicin Delivery and its Therapeutic Efficacy. Capsaicin and its Human Therapeutic Development InTech, 2018. doi: 10.5772/intechopen.77080
  44. Ran, F.; Yang, Y.; Yang, L. Capsaicin prevents contrast-associated acute kidney injury through activation of Nrf2 in mice. Oxid. Med. Cell. Longev., 2022, 2022, 1763922. doi: 10.1155/2022/1763922
  45. Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci., 2014, 39(4), 199-218. doi: 10.1016/j.tibs.2014.02.002 PMID: 24647116
  46. Joung, E.J.; Li, M.H.; Lee, H.G. Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid. Redox Signal., 2007, 9(12), 2087-2098.
  47. Lv, Z.; Xu, X.; Sun, Z.; Yang, Y.X.; Guo, H.; Li, J.; Sun, K.; Wu, R.; Xu, J.; Jiang, Q.; Ikegawa, S.; Shi, D. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis., 2021, 12(6), 504. doi: 10.1038/s41419-021-03792-8 PMID: 34006826
  48. Kwon, Y. Estimation of dietary capsaicinoid exposure in korea and assessment of its health effects. Nutrients, 2021, 13(7), 2461. doi: 10.3390/nu13072461 PMID: 34371974
  49. Díaz-Laviada, I.; Rodríguez-Henche, N. The potential antitumor effects of capsaicin. Prog. Drug Res., 2014, 68, 181-208. doi: 10.1007/978-3-0348-0828-6_8 PMID: 24941670
  50. Pasierski, M.; Szulczyk, B. Capsaicin inhibits sodium currents and epileptiform activity in prefrontal cortex pyramidal neurons. Neurochem. Int., 2020, 135, 104709. doi: 10.1016/j.neuint.2020.104709 PMID: 32105721
  51. Onizuka, S.; Yonaha, T.; Tamura, R.; Hosokawa, N.; Kawasaki, Y.; Kashiwada, M.; Shirasaka, T.; Tsuneyoshi, I. Capsaicin indirectly suppresses voltage-gated Na+ currents through TRPV1 in rat dorsal root ganglion neurons. Anesth. Analg., 2011, 112(3), 703-709. doi: 10.1213/ANE.0b013e318204ea5b PMID: 21156986
  52. Anand, P.; Bley, K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth., 2011, 107(4), 490-502. doi: 10.1093/bja/aer260 PMID: 21852280
  53. McCarty, M.F.; DiNicolantonio, J.J.; O’Keefe, J.H. Capsaicin may have important potential for promoting vascular and metabolic health: Table 1. Open Heart, 2015, 2(1), e000262. doi: 10.1136/openhrt-2015-000262 PMID: 26113985
  54. Xu, X.; Wang, P.; Zhao, Z.; Cao, T.; He, H.; Luo, Z.; Zhong, J.; Gao, F.; Zhu, Z.; Li, L.; Yan, Z.; Chen, J.; Ni, Y.; Liu, D.; Zhu, Z. Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke, 2011, 42(11), 3245-3251. doi: 10.1161/STROKEAHA.111.618306 PMID: 21852608
  55. Liu, L.; Oortgiesen, M.; Li, L.; Simon, S.A. Capsaicin inhibits activation of voltage-gated sodium currents in capsaicin-sensitive trigeminal ganglion neurons. J. Neurophysiol., 2001, 85(2), 745-758. doi: 10.1152/jn.2001.85.2.745 PMID: 11160509
  56. Wang, C.; Huang, W.; Lu, J.; Chen, H.; Yu, Z. TRPV1-mediated microglial autophagy attenuates alzheimer’s disease-associated pathology and cognitive decline. Front. Pharmacol., 2022, 12, 763866. doi: 10.3389/fphar.2021.763866 PMID: 35115924
  57. Baek, J.; Jeong, J.; Kim, K.; Won, S.Y.; Chung, Y.; Nam, J.; Cho, E.; Ahn, T.B.; Bok, E.; Shin, W.H.; Jin, B. Inhibition of microglia-derived oxidative stress by ciliary neurotrophic factor protects dopamine neurons in vivo from MPP+ neurotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3543. doi: 10.3390/ijms19113543 PMID: 30423807
  58. Jittiwat, J.; Suksamrarn, A.; Tocharus, C.; Tocharus, J. Dihydrocapsaicin effectively mitigates cerebral ischemia-induced pathological changes in vivo, partly via antioxidant and anti-apoptotic pathways. Life Sci., 2021, 283, 119842. doi: 10.1016/j.lfs.2021.119842 PMID: 34298038
  59. Xia, J.; Gu, L.; Guo, Y.; Feng, H.; Chen, S.; Jurat, J.; Fu, W.; Zhang, D. Gut microbiota mediates the preventive effects of dietary capsaicin against depression-like behavior induced by lipopolysaccharide in mice. Front. Cell. Infect. Microbiol., 2021, 11, 627608. doi: 10.3389/fcimb.2021.627608 PMID: 33987106
  60. Wang, J.; Sun, B.L.; Xiang, Y.; Tian, D.Y.; Zhu, C.; Li, W.W.; Liu, Y.H.; Bu, X.L.; Shen, L.L.; Jin, W.S.; Wang, Z.; Zeng, G.H.; Xu, W.; Chen, L.Y.; Chen, X.W.; Hu, Z.; Zhu, Z.M.; Song, W.; Zhou, H.D.; Yu, J.T.; Wang, Y.J. Capsaicin consumption reduces brain amyloid-beta generation and attenuates Alzheimer’s disease-type pathology and cognitive deficits in APP/PS1 mice. Transl. Psychiatry, 2020, 10(1), 230. doi: 10.1038/s41398-020-00918-y PMID: 32661266
  61. Du, Y.; Fu, M.; Huang, Z.; Tian, X.; Li, J.; Pang, Y.; Song, W.; Tian Wang, Y. Dong, Z. TRPV1 activation alleviates cognitive and synaptic plasticity impairments through inhibiting AMPAR endocytosis in APP23/PS45 mouse model of Alzheimer’s disease. Aging Cell, 2020, 19(3), e13113. doi: 10.1111/acel.13113 PMID: 32061032
  62. Chung, Y.C.; Baek, J.Y.; Kim, S.R.; Ko, H.W.; Bok, E.; Shin, W.H.; Won, S.Y.; Jin, B.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease. Exp. Mol. Med., 2017, 49(3), e298. doi: 10.1038/emm.2016.159 PMID: 28255166
  63. Zhao, Z.; Wang, J.; Wang, L.; Yao, X.; Liu, Y.; Li, Y.; Chen, S.; Yue, T.; Wang, X.; Yu, W.; Liu, Y. Capsaicin protects against oxidative insults and alleviates behavioral deficits in rats with 6-OHDA-Induced Parkinson’s Disease via activation of TRPV1. Neurochem. Res., 2017, 42(12), 3431-3438. doi: 10.1007/s11064-017-2388-4 PMID: 28861768
  64. Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep., 2020, 40(6), BSR20191796. doi: 10.1042/BSR20191796 PMID: 32537633
  65. Bok, E.; Chung, Y.C.; Kim, K.S.; Baik, H.H.; Shin, W.H.; Jin, B.K. Modulation of M1/M2 polarization by capsaicin contributes to the survival of dopaminergic neurons in the lipopolysaccharide-lesioned substantia nigra in vivo. Exp. Mol. Med., 2018, 50(7), 1-14. doi: 10.1038/s12276-018-0111-4 PMID: 29968707
  66. Ouyang, M.; Zhang, Q.; Shu, J.; Wang, Z.; Fan, J.; Yu, K.; Lei, L.; Li, Y.; Wang, Q. Capsaicin ameliorates the loosening of mitochondria-associated endoplasmic reticulum membranes and improves cognitive function in rats with chronic cerebral hypoperfusion. Front. Cell. Neurosci., 2022, 16, 822702. doi: 10.3389/fncel.2022.822702 PMID: 35370565
  67. Goyal, A.; Solanki, A.; Verma, A. Preclinical evidence-based review on therapeutic potential of eugenol for the treatment of brain disorders. Curr. Mol. Med., 2023, 23(5), 390-400. doi: 10.2174/1566524022666220525145521 PMID: 35619280
  68. Galano, A.; Martínez, A. Capsaicin, a tasty free radical scavenger: mechanism of action and kinetics. J. Phys. Chem. B, 2012, 116(3), 1200-1208. doi: 10.1021/jp211172f PMID: 22188587
  69. Lu, M.; Chen, C.; Lan, Y.; Xiao, J.; Li, R.; Huang, J.; Huang, Q.; Cao, Y.; Ho, C.T. Capsaicin—the major bioactive ingredient of chili peppers: bio-efficacy and delivery systems. Food Funct., 2020, 11(4), 2848-2860. doi: 10.1039/D0FO00351D PMID: 32246759
  70. Amna, T.; Hwang, I.; Shang, K.; Amina, M.; Al-Musayeib, N.M.; Al-Deyab, S.S. Influence of capsaicin on inflammatory cytokines induced by lipopolysaccharide in myoblast cells under in vitro environment. Pharmacogn. Mag., 2017, 13(49)(Suppl. 1), 26. doi: 10.4103/0973-1296.203984 PMID: 28479722
  71. Tang, J.; Luo, K.; Li, Y.; Chen, Q.; Tang, D.; Wang, D.; Xiao, J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int. Immunopharmacol., 2015, 28(1), 264-269. doi: 10.1016/j.intimp.2015.06.007 PMID: 26093270
  72. Abdel-Salam, O.M.E.; Sleem, A.A.; Sayed, M.A.E.B.M.; Youness, E.R.; Shaffie, N. Capsaicin exerts anti-convulsant and neuroprotective effects in pentylenetetrazole-induced seizures. Neurochem. Res., 2020, 45(5), 1045-1061. doi: 10.1007/s11064-020-02979-3 PMID: 32036609
  73. Khatibi, N.H.; Jadhav, V.; Charles, S.; Chiu, J.; Buchholz, J.; Tang, J.; Zhang, J.H. Capsaicin pre-treatment provides neurovascular protection against neonatal hypoxic-ischemic brain injury in rats. Acta Neurochir. Suppl., 2011, 111(111), 225-230. doi: 10.1007/978-3-7091-0693-8_38 PMID: 21725760
  74. Inyang, D.; Saumtally, T.; Nnadi, C.N.; Devi, S.; So, P.W. A systematic review of the effects of capsaicin on Alzheimer’s Disease. Int. J. Mol. Sci., 2023, 24(12), 10176. doi: 10.3390/ijms241210176 PMID: 37373321
  75. He, F.Q.; Qiu, B.Y.; Zhang, X.H.; Li, T.K.; Xie, Q.; Cui, D.J.; Huang, X.L.; Gan, H.T. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β(1–42). Brain Res., 2011, 1384, 89-96. doi: 10.1016/j.brainres.2011.01.103 PMID: 21300035
  76. Pákáski, M.; Hugyecz, M.; Sántha, P.; Jancsó, G.; Bjelik, A.; Domokos, Á.; Janka, Z.; Kálmán, J. Capsaicin promotes the amyloidogenic route of brain amyloid precursor protein processing. Neurochem. Int., 2009, 54(7), 426-430. doi: 10.1016/j.neuint.2009.01.012 PMID: 19428784
  77. An, Y.; Li, Y.; Hou, Y.; Huang, S.; Pei, G. Alzheimer’s Amyloid- β accelerates cell senescence and suppresses the SIRT1/NRF2 pathway in human microglial cells. Oxid. Med. Cell. Longev., 2022, 2022, 3086010.
  78. Bahn, G.; Park, J.S.; Yun, U.J.; Lee, Y.J.; Choi, Y.; Park, J.S.; Baek, S.H.; Choi, B.Y.; Cho, Y.S.; Kim, H.K.; Han, J.; Sul, J.H.; Baik, S.H.; Lim, J.; Wakabayashi, N.; Bae, S.H.; Han, J.W.; Arumugam, T.V.; Mattson, M.P.; Jo, D.G. NRF2/ARE pathway negatively regulates BACE1 expression and ameliorates cognitive deficits in mouse Alzheimer’s models. Proc. Natl. Acad. Sci. USA, 2019, 116(25), 12516-12523. doi: 10.1073/pnas.1819541116 PMID: 31164420
  79. Noble, W.; Hanger, D.P.; Miller, C.C.J.; Lovestone, S. The importance of tau phosphorylation for neurodegenerative diseases. Front. Neurol., 2013, 4, 83. doi: 10.3389/fneur.2013.00083 PMID: 23847585
  80. Ren, P.; Chen, J.; Li, B.; Zhang, M.; Yang, B.; Guo, X.; Chen, Z.; Cheng, H.; Wang, P.; Wang, S.; Wang, N.; Zhang, G.; Wu, X.; Ma, D.; Guan, D.; Zhao, R. Nrf2 ablation promotes Alzheimer’s disease-like pathology in APP/PS1 transgenic mice: The role of neuroinflammation and oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-13. doi: 10.1155/2020/3050971 PMID: 32454936
  81. Rojo, A.I.; Pajares, M.; Rada, P.; Nuñez, A.; Nevado-Holgado, A.J.; Killik, R.; Van Leuven, F.; Ribe, E.; Lovestone, S.; Yamamoto, M.; Cuadrado, A. NRF2 deficiency replicates transcriptomic changes in Alzheimer’s patients and worsens APP and TAU pathology. Redox Biol., 2017, 13, 444-451. doi: 10.1016/j.redox.2017.07.006 PMID: 28704727
  82. Zgorzynska, E.; Dziedzic, B.; Walczewska, A. An overview of the nrf2/are pathway and its role in neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(17), 9592. doi: 10.3390/ijms22179592 PMID: 34502501
  83. Janyou, A.; Wicha, P.; Jittiwat, J.; Suksamrarn, A.; Tocharus, C.; Tocharus, J. Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Sci. Rep., 2017, 7(1), 10556. doi: 10.1038/s41598-017-11181-5 PMID: 28874782
  84. Kanninen, K.; Malm, T.M.; Jyrkkänen, H.K.; Goldsteins, G.; Keksa-Goldsteine, V.; Tanila, H.; Yamamoto, M.; Ylä-Herttuala, S.; Levonen, A.L.; Koistinaho, J. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol. Cell. Neurosci., 2008, 39(3), 302-313. doi: 10.1016/j.mcn.2008.07.010 PMID: 18706502
  85. Eftekharzadeh, B.; Maghsoudi, N.; Khodagholi, F. Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid β formation in NT2N neurons. Biochimie, 2010, 92(3), 245-253. doi: 10.1016/j.biochi.2009.12.001 PMID: 20026169
  86. Akhter, H.; Katre, A.; Li, L.; Liu, X.; Liu, R.M. Therapeutic potential and anti-amyloidosis mechanisms of tert-butylhydroquinone for Alzheimer’s disease. J. Alzheimers Dis., 2011, 26(4), 767-778. doi: 10.3233/JAD-2011-110512 PMID: 21860091
  87. Kanninen, K.; Heikkinen, R.; Malm, T.; Rolova, T.; Kuhmonen, S.; Leinonen, H.; Ylä-Herttuala, S.; Tanila, H.; Levonen, A.L.; Koistinaho, M.; Koistinaho, J. Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2009, 106(38), 16505-16510. doi: 10.1073/pnas.0908397106 PMID: 19805328
  88. Hayes, M.T. Parkinson’s Disease and parkinsonism. Am. J. Med., 2019, 132(7), 802-807. doi: 10.1016/j.amjmed.2019.03.001 PMID: 30890425
  89. Sung, VW. Nicholas, AP Nonmotor symptoms in Parkinson’s disease: Expanding the view of Parkinson’s disease beyond a pure motor, pure dopaminergic problem. Neurol. Clin., 2013, 31(3)(Suppl.), S1-S16. doi: 10.1016/j.ncl.2013.04.013
  90. Dauer, W.; Przedborski, S. Parkinson’s disease. Neuron, 2003, 39(6), 889-909. doi: 10.1016/S0896-6273(03)00568-3 PMID: 12971891
  91. Huang, B.; Liu, J.; Ju, C. Licochalcone A prevents the loss of dopaminergic neurons by inhibiting microglial activation in Lipopolysaccharide (LPS)-induced Parkinson’s Disease models. Int. J. Mol. Sci., 2017, 18(10), 2043.
  92. Wang, X.; Wang, C.; Wang, J.; Zhao, S.; Zhang, K.; Wang, J.; Zhang, W.; Wu, C.; Yang, J. Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology, 2014, 79, 642-656. doi: 10.1016/j.neuropharm.2014.01.022 PMID: 24467851
  93. Kim, K.I.; Baek, J.Y.; Jeong, J.Y.; Nam, J.H.; Park, E.S.; Bok, E.; Shin, W.H.; Chung, Y.C.; Jin, B.K. Delayed treatment of capsaicin produces partial motor recovery by enhancing dopamine function in MPP + -lesioned rats via ciliary neurotrophic factor. Exp. Neurobiol., 2019, 28(2), 289-299. doi: 10.5607/en.2019.28.2.289 PMID: 31138996
  94. Liu, J.; Liu, H.; Zhao, Z.; Wang, J.; Guo, D.; Liu, Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep., 2020, 40(6)
  95. Siddique, Y.H.; Naz, F.; Jyoti, S. Effect of capsaicin on the oxidative stress and dopamine content in the transgenic Drosophila model of Parkinson’s disease. Acta Biol. Hung., 2018, 69(2), 115-124. doi: 10.1556/018.69.2018.2.1 PMID: 29888671
  96. Brandes, M.S.; Gray, N.E. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro, 2020, 12. doi: 10.1177/1759091419899782 PMID: 31964153
  97. Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91. doi: 10.3389/fnana.2015.00091 PMID: 26217195
  98. Colamartino, M.; Duranti, G.; Ceci, R.; Sabatini, S.; Testa, A.; Cozzi, R. A multi-biomarker analysis of the antioxidant efficacy of Parkinson’s disease therapy. Toxicol. In Vitro, 2018, 47, 1-7. doi: 10.1016/j.tiv.2017.10.020 PMID: 29080800
  99. Holmström, K.M.; Baird, L.; Zhang, Y.; Hargreaves, I.; Chalasani, A.; Land, J.M.; Stanyer, L.; Yamamoto, M.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol. Open, 2013, 2(8), 761-770. doi: 10.1242/bio.20134853 PMID: 23951401
  100. Manoharan, S; Guillemin, GJ; Abiramasundari, RS; Essa, MM; Akbar, M; Akbar, MD The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s Disease, and Huntington’s disease: A mini review. Oxid. Med. Cell. Longev., 2016.
  101. Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative stress in Parkinson’s Disease: A systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11, 236. doi: 10.3389/fnmol.2018.00236 PMID: 30026688
  102. Chen, P.C.; Vargas, M.R.; Pani, A.K.; Smeyne, R.J.; Johnson, D.A.; Kan, Y.W.; Johnson, J.A. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2933-2938. doi: 10.1073/pnas.0813361106 PMID: 19196989
  103. Rojo, A.I.; Innamorato, N.G.; Martín-Moreno, A.M.; De Ceballos, M.L.; Yamamoto, M.; Cuadrado, A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia, 2010, 58(5), 588-598. doi: 10.1002/glia.20947 PMID: 19908287
  104. Williamson, T.P.; Johnson, D.A.; Johnson, J.A. Activation of the Nrf2-ARE pathway by siRNA knockdown of Keap1 reduces oxidative stress and provides partial protection from MPTP-mediated neurotoxicity. Neurotoxicology, 2012, 33(3), 272-279. doi: 10.1016/j.neuro.2012.01.015 PMID: 22342405
  105. Johnson, J.A.; Johnson, D.A.; Kraft, A.D.; Calkins, M.J.; Jakel, R.J.; Vargas, M.R.; Chen, P.C. The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. Ann. N. Y. Acad. Sci., 2008, 1147(1), 61-69. doi: 10.1196/annals.1427.036 PMID: 19076431
  106. Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240. doi: 10.1101/cshperspect.a024240 PMID: 27940602
  107. McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2018, 25(1), 24-34. doi: 10.1111/ene.13413 PMID: 28817209
  108. Hardingham, G.E. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans., 2009, 37(6), 1147-1160. doi: 10.1042/BST0371147 PMID: 19909238
  109. Lastres-Becker, I.; De Miguel, R.; De Petrocellis, L.; Makriyannis, A.; Di Marzo, V.; Fernández-Ruiz, J. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J. Neurochem., 2003, 84(5), 1097-1109. doi: 10.1046/j.1471-4159.2003.01595.x PMID: 12603833
  110. Shih, A.Y.; Imbeault, S.; Barakauskas, V.; Erb, H.; Jiang, L.; Li, P.; Murphy, T.H. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J. Biol. Chem., 2005, 280(24), 22925-22936. doi: 10.1074/jbc.M414635200 PMID: 15840590
  111. Jin, Y.N.; Johnson, G.V.W. The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. J. Bioenerg. Biomembr., 2010, 42(3), 199-205. doi: 10.1007/s10863-010-9286-7 PMID: 20556492
  112. Gu, M.; Gash, M.T.; Mann, V.M.; Javoy-Agid, F.; Cooper, J.M.; Schapira, A.H.V. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann. Neurol., 1996, 39(3), 385-389. doi: 10.1002/ana.410390317 PMID: 8602759
  113. Tabrizi, S.J.; Workman, J.; Hart, P.E.; Mangiarini, L.; Mahal, A.; Bates, G.; Cooper, J.M.; Schapira, A.H.V. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol., 2000, 47(1), 80-86. doi: 10.1002/1531-8249(200001)47:13.0.CO;2-K PMID: 10632104
  114. Steffan, J.S.; Bodai, L.; Pallos, J.; Poelman, M.; McCampbell, A.; Apostol, B.L.; Kazantsev, A.; Schmidt, E.; Zhu, Y.Z.; Greenwald, M.; Kurokawa, R.; Housman, D.E.; Jackson, G.R.; Marsh, J.L.; Thompson, L.M. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 2001, 413(6857), 739-743. doi: 10.1038/35099568 PMID: 11607033
  115. Ganner, A.; Pfeiffer, Z.C.; Wingendorf, L.; Kreis, S.; Klein, M.; Walz, G.; Neumann-Haefelin, E. The acetyltransferase p300 regulates NRF2 stability and localization. Biochem. Biophys. Res. Commun., 2020, 524(4), 895-902. doi: 10.1016/j.bbrc.2020.02.006 PMID: 32057361
  116. Jin, Y.N.; Yu, Y.V.; Gundemir, S.; Jo, C.; Cui, M.; Tieu, K.; Johnson, G.V.W. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One, 2013, 8(3), e57932. doi: 10.1371/journal.pone.0057932 PMID: 23469253
  117. Stack, C.; Ho, D.; Wille, E.; Calingasan, N.Y.; Williams, C.; Liby, K.; Sporn, M.; Dumont, M.; Beal, M.F. Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic. Biol. Med., 2010, 49(2), 147-158. doi: 10.1016/j.freeradbiomed.2010.03.017 PMID: 20338236
  118. Tsvetkov, A.S.; Arrasate, M.; Barmada, S.; Ando, D.M.; Sharma, P.; Shaby, B.A.; Finkbeiner, S. Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration. Nat. Chem. Biol., 2013, 9(9), 586-592. doi: 10.1038/nchembio.1308 PMID: 23873212
  119. Saito, Y.; Yako, T.; Otsu, W.; Nakamura, S.; Inoue, Y.; Muramatsu, A.; Nakagami, Y.; Shimazawa, M.; Hara, H. A triterpenoid Nrf2 activator, RS9, promotes LC3-associated phagocytosis of photoreceptor outer segments in a p62-independent manner. Free Radic. Biol. Med., 2020, 152, 235-247. doi: 10.1016/j.freeradbiomed.2020.03.012 PMID: 32217192
  120. Ninomiya, Y.; Tanuma, S.; Tsukimoto, M. Differences in the effects of four TRPV1 channel antagonists on lipopolysaccharide-induced cytokine production and COX-2 expression in murine macrophages. Biochem. Biophys. Res. Commun., 2017, 484(3), 668-674. doi: 10.1016/j.bbrc.2017.01.173 PMID: 28153725
  121. Franklin, R.J.M. ffrench-Constant, C. Regenerating CNS myelin-from mechanisms to experimental medicines. Nat. Rev. Neurosci., 2017, 18(12), 753-769. doi: 10.1038/nrn.2017.136 PMID: 29142295
  122. Legroux, L.; Arbour, N. Multiple sclerosis and T lymphocytes: An entangled story. J. Neuroimmune Pharmacol., 2015, 10(4), 528-546. doi: 10.1007/s11481-015-9614-0 PMID: 25946987
  123. Al-Kafaji, G; Bakheit, HF; AlAli, F Next-generation sequencing of the whole mitochondrial genome identifies functionally deleterious mutations in patients with multiple sclerosis. PLoS ONE, 2022, 17(2 February)
  124. Campbell, G.R.; Mahad, D.J. Mitochondrial changes associated with demyelination: Consequences for axonal integrity. Mitochondrion, 2012, 12(2), 173-179. doi: 10.1016/j.mito.2011.03.007 PMID: 21406249
  125. Brooks, J.W.; Pryce, G.; Bisogno, T.; Jaggar, S.I.; Hankey, D.J.R.; Brown, P.; Bridges, D.; Ledent, C.; Bifulco, M.; Rice, A.S.C.; Di Marzo, V.; Baker, D. Arvanil-induced inhibition of spasticity and persistent pain: evidence for therapeutic sites of action different from the vanilloid VR1 receptor and cannabinoid CB1/CB2 receptors. Eur. J. Pharmacol., 2002, 439(1-3), 83-92. doi: 10.1016/S0014-2999(02)01369-9 PMID: 11937096
  126. ’t Hart, B.A.; Gran, B.; Weissert, R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol. Med., 2011, 17(3), 119-125. doi: 10.1016/j.molmed.2010.11.006 PMID: 21251877
  127. Rangachari, M.; Kuchroo, V.K. Using EAE to better understand principles of immune function and autoimmune pathology. J. Autoimmun., 2013, 45, 31-39. doi: 10.1016/j.jaut.2013.06.008 PMID: 23849779
  128. Sharma, Y.; Garabadu, D. RETRACTED ARTICLE: Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp. Brain Res., 2020, 238(10), 2293-2306. doi: 10.1007/s00221-020-05896-7 PMID: 32728854
  129. Noh, H.; Jeon, J.; Seo, H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem. Int., 2014, 69(1), 35-40. doi: 10.1016/j.neuint.2014.02.008 PMID: 24607701
  130. Tsuji, F.; Murai, M.; Oki, K.; Seki, I.; Ueda, K.; Inoue, H.; Nagelkerken, L.; Sasano, M.; Aono, H. Transient receptor potential vanilloid 1 agonists as candidates for anti-inflammatory and immunomodulatory agents. Eur. J. Pharmacol., 2010, 627(1-3), 332-339. doi: 10.1016/j.ejphar.2009.10.044 PMID: 19878665
  131. Wang, J.; Zou, Q.; Suo, Y.; Tan, X.; Yuan, T.; Liu, Z.; Liu, X. Lycopene ameliorates systemic inflammation-induced synaptic dysfunction via improving insulin resistance and mitochondrial dysfunction in the liver–brain axis. Food Funct., 2019, 10(4), 2125-2137. doi: 10.1039/C8FO02460J PMID: 30924473
  132. Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol., 2019, 56(4), 2774-2790. doi: 10.1007/s12035-018-1280-9 PMID: 30058023
  133. Khan, A.; Ali, T.; Rehman, S.U. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front. Pharmacol., 2018, 9, 1383. doi: 10.3389/fphar.2018.01383
  134. Chen, W.J.; Du, J.K.; Hu, X.; Yu, Q.; Li, D.X.; Wang, C.N.; Zhu, X.Y.; Liu, Y.J. Protective effects of resveratrol on mitochondrial function in the hippocampus improves inflammation-induced depressive-like behavior. Physiol. Behav., 2017, 182, 54-61. doi: 10.1016/j.physbeh.2017.09.024 PMID: 28964807
  135. Singh, N.K.; Garabadu, D. Quercetin Exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against STZ-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox. Res., 2021, 39(6), 1859-1879. doi: 10.1007/s12640-021-00410-5 PMID: 34554409
  136. Rowland, L.P.; Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 344(22), 1688-1700.
  137. Ravits, J.M.; La Spada, A.R. ALS motor phenotype heterogeneity, focality, and spread: Deconstructing motor neuron degeneration. Neurology, 2009, 73(10), 805-811. doi: 10.1212/WNL.0b013e3181b6bbbd PMID: 19738176
  138. Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M.Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133. doi: 10.1126/science.1134108 PMID: 17023659
  139. Higashi, T.; Murata, N.; Fujimoto, M.; Miyake, S.; Egusa, M.; Higuchi, H.; Maeda, S.; Miyawaki, T. Capsaicin may improve swallowing impairment in patients with amyotrophic lateral sclerosis: A randomized controlled trial. Acta Med. Okayama, 2022, 76(2), 179-186. PMID: 35503446
  140. Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants, 2020, 9(9), 901. doi: 10.3390/antiox9090901 PMID: 32971909
  141. McCombe, P.A.; Henderson, R.D. The Role of immune and inflammatory mechanisms in ALS. Curr. Mol. Med., 2011, 11(3), 246-254. doi: 10.2174/156652411795243450 PMID: 21375489
  142. Mhatre, M.; Floyd, R.A.; Hensley, K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets. J. Alzheimers Dis., 2004, 6(2), 147-157. doi: 10.3233/JAD-2004-6206 PMID: 15096698
  143. Minj, E.; Yadav, R.K.; Mehan, S. Targeting abnormal Nrf2/HO-1 signaling in amyotrophic lateral sclerosis: Current insights on drug targets and influences on neurological disorders. Curr. Mol. Med., 2021, 21(8), 630-644. doi: 10.2174/18755666MTEz5MTUw0 PMID: 33430731
  144. Ghezzi, P.; Bernardini, R.; Giuffrida, R.; Bellomo, M.; Manzoni, C.; Comoletti, D.; Di Santo, E.; Benigni, F.; Mennini, T. Tumor necrosis factor is increased in the spinal cord of an animal model of motor neuron degeneration. Eur. Cytokine Netw., 1998, 9(2), 139-144. PMID: 9681389
  145. Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; Yamamoto, M. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 2016, 7(1), 11624. doi: 10.1038/ncomms11624 PMID: 27211851
  146. Shibata, N.; Nagai, R.; Uchida, K.; Horiuchi, S.; Yamada, S.; Hirano, A.; Kawaguchi, M.; Yamamoto, T.; Sasaki, S.; Kobayashi, M. Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res., 2001, 917(1), 97-104. doi: 10.1016/S0006-8993(01)02926-2 PMID: 11602233
  147. Sarlette, A.; Krampfl, K.; Grothe, C.; Neuhoff, N.; Dengler, R.; Petri, S. Nuclear erythroid 2-related factor 2-antioxidative response element signaling pathway in motor cortex and spinal cord in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2008, 67(11), 1055-1062. doi: 10.1097/NEN.0b013e31818b4906 PMID: 18957896
  148. Wang, Y.; Tang, C.; Tang, Y.; Yin, H.; Liu, X. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food Nutr. Res., 2020, 64(0) doi: 10.29219/fnr.v64.3525 PMID: 32180694
  149. Chen, L.; Huang, Z.; Du, Y.; Fu, M.; Han, H.; Wang, Y.; Dong, Z. Capsaicin attenuates Amyloid-β-induced synapse loss and cognitive impairments in mice. J. Alzheimers Dis., 2017, 59(2), 683-694. doi: 10.3233/JAD-170337 PMID: 28671132
  150. Lu, J.; Zhou, W.; Dou, F.; Wang, C.; Yu, Z. TRPV1 sustains microglial metabolic reprogramming in Alzheimer’s disease. EMBO Rep., 2021, 22(6), e52013. doi: 10.15252/embr.202052013 PMID: 33998138
  151. Jiang, X.; Jia, L.W.; Li, X.H.; Cheng, X.S.; Xie, J.Z.; Ma, Z.W.; Xu, W.J.; Liu, Y.; Yao, Y.; Du, L.L.; Zhou, X.W. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J. Alzheimers Dis., 2013, 35(1), 91-105. doi: 10.3233/JAD-121837 PMID: 23340038
  152. Xu, W.; Liu, J.; Ma, D.; Yuan, G.; Lu, Y.; Yang, Y. Capsaicin reduces Alzheimer-associated tau changes in the hippocampus of type 2 diabetes rats. PLoS One, 2017, 12(2), e0172477. doi: 10.1371/journal.pone.0172477 PMID: 28225806
  153. Park, E.S.; Kim, S.R.; Jin, B.K. Transient receptor potential vanilloid subtype 1 contributes to mesencephalic dopaminergic neuronal survival by inhibiting microglia-originated oxidative stress. Brain Res. Bull., 2012, 89(3-4), 92-96. doi: 10.1016/j.brainresbull.2012.07.001 PMID: 22796104
  154. Cabranes, A.; Venderova, K.; de Lago, E.; Fezza, F.; Sánchez, A.; Mestre, L.; Valenti, M.; García-Merino, A.; Ramos, J.A.; Di Marzo, V.; Fernández-Ruiz, J. Decreased endocannabinoid levels in the brain and beneficial effects of agents activating cannabinoid and/or vanilloid receptors in a rat model of multiple sclerosis. Neurobiol. Dis., 2005, 20(2), 207-217. doi: 10.1016/j.nbd.2005.03.002 PMID: 16242629

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers