Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications


Cite item

Full Text

Abstract

Objective::The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies.

Methods::Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance.

Results::The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine.

Conclusion::In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.

About the authors

Ravi Mittal

, Galgotias College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

Raghav Mishra

, Lloyd School of Pharmacy, Knowledge Park II

Email: info@benthamscience.net

Rehan Uddin

, Sir Madanlal Institute of Pharmacy

Email: info@benthamscience.net

Vikram Sharma

, Galgotias College of Pharmacy

Email: info@benthamscience.net

References

  1. Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature, 1960, 185(4706), 117-118. doi: 10.1038/185117a0
  2. Zhang, W.; Du, A.; Liu, S.; Lv, M.; Chen, S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen. Ther., 2021, 18, 88-96. doi: 10.1016/j.reth.2021.04.002 PMID: 34095366
  3. Jiang, Y.; Wang, Y.; Li, Q.; Yu, C.; Chu, W. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem., 2020, 27(16), 2631-2657. doi: 10.2174/0929867326666191122144916 PMID: 31755377
  4. Ganji, F.; Vasheghani, F.S.; Vasheghani, F.E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J., 2010, 19(5), 375-398.
  5. Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev., 2020, 49(11), 3605-3637. doi: 10.1039/C9CS00849G PMID: 32393930
  6. Hossen Md, J.; Sarkar, S.D. Mussel‐inspired adhesive nano‐filler for strengthening polyacrylamide hydrogel. ChemistrySelect, 2020, 5, 8906-8914. doi: 10.1002/slct.202001632
  7. Sarkar, S.D.; Uddin, M.M.; Roy, C.K.; Hossen, M.J.; Sujan, M.I.; Azam, M.S. Mechanically tough and highly stretchable poly(acrylic acid) hydrogel cross-linked by 2D graphene oxide. RSC Advances, 2020, 10(18), 10949-10958. doi: 10.1039/D0RA00678E PMID: 35492941
  8. Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13(5), 1164. doi: 10.3390/cancers13051164 PMID: 33803133
  9. Hong, Y.; Lin, Z.; Yang, Y.; Jiang, T.; Shang, J.; Luo, Z. Biocompatible conductive hydrogels: Applications in the field of biomedicine. Int. J. Mol. Sci., 2022, 23(9), 4578. doi: 10.3390/ijms23094578 PMID: 35562969
  10. Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C, 2017, 79, 958-971. doi: 10.1016/j.msec.2017.05.096 PMID: 28629101
  11. Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021, 31(19), 2009432. doi: 10.1002/adfm.202009432
  12. Zhang, H.; Wu, S.; Chen, W.; Hu, Y.; Geng, Z.; Su, J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact. Mater., 2023, 23, 156-169. doi: 10.1016/j.bioactmat.2022.10.028 PMID: 36406248
  13. Xue, X.; Zhang, H.; Liu, H.; Wang, S.; Li, J.; Zhou, Q.; Chen, X.; Ren, X.; Jing, Y.; Deng, Y.; Geng, Z.; Wang, X.; Su, J. Rational design of multifunctional CuS nanoparticle‐PEG composite soft hydrogel‐coated 3D hard polycaprolactone scaffolds for efficient bone regeneration. Adv. Funct. Mater., 2022, 32(33), 2202470. doi: 10.1002/adfm.202202470
  14. Zhou, Z.; Cui, J.; Wu, S.; Geng, Z.; Su, J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics, 2022, 12(11), 5103-5124. doi: 10.7150/thno.74548 PMID: 35836802
  15. Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 6. doi: 10.3390/gels3010006 PMID: 30920503
  16. Mehrotra, D.; Dwivedi, R.; Nandana, D.; Singh, R.K. From injectable to 3D printed hydrogels in maxillofacial tissue engineering: A review. J. Oral Biol. Craniofac. Res., 2020, 10(4), 680-689. doi: 10.1016/j.jobcr.2020.09.006 PMID: 33072505
  17. Yang, Y.; Xu, L.; Wang, J.; Meng, Q.; Zhong, S.; Gao, Y.; Cui, X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr. Polym., 2022, 283, 119161. doi: 10.1016/j.carbpol.2022.119161 PMID: 35153030
  18. Huang, B.; Li, P.; Chen, M.; Peng, L.; Luo, X.; Tian, G.; Wang, H.; Wu, L.; Tian, Q.; Li, H.; Yang, Y.; Jiang, S.; Yang, Z.; Zha, K.; Sui, X.; Liu, S.; Guo, Q. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J. Nanobiotechnology, 2022, 20(1), 25. doi: 10.1186/s12951-021-01230-7 PMID: 34991615
  19. Seo, H.S.; Wang, C.P.J.; Park, W.; Park, C.G. Short review on advances in hydrogel-based drug delivery strategies for cancer immunotherapy. Tissue Eng. Regen. Med., 2022, 19(2), 263-280. doi: 10.1007/s13770-021-00369-6 PMID: 34596839
  20. Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel trends in hydrogel development for biomedical applications: A review. Polymers, 2022, 14(15), 3023. doi: 10.3390/polym14153023 PMID: 35893984
  21. Nair, A.B.; Al-Dhubiab, B.E.; Shah, J.; Jacob, S.; Saraiya, V.; Attimarad, M. SreeHarsha, N.; Akrawi, S.H.; Shehata, T.M. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi Pharm. J., 2020, 28(2), 201-209. doi: 10.1016/j.jsps.2019.11.022 PMID: 32042259
  22. Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release, 2020, 320, 125-141. doi: 10.1016/j.jconrel.2020.01.006 PMID: 31917295
  23. Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer, 2008, 49(8), 1993-2007.
  24. Qi, X.; Xiang, Y.; Cai, E.; Ge, X.; Chen, X.; Zhang, W.; Li, Z.; Shen, J. Inorganic-organic hybrid nanomaterials for photothermal antibacterial therapy. Coord. Chem. Rev., 2023, 496, 215426. doi: 10.1016/j.ccr.2023.215426
  25. Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121. doi: 10.1016/j.jare.2013.07.006 PMID: 25750745
  26. Cheng, Y.H.; Hung, K.H.; Tsai, T.H.; Lee, C.J.; Ku, R.Y.; Chiu, A.W.; Chiou, S.H.; Liu, C.J. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater., 2014, 10(10), 4360-4366. doi: 10.1016/j.actbio.2014.05.031 PMID: 24914827
  27. Zhang, X.Z.; Yang, Y.Y.; Chung, T.S.; Ma, K.X. Preparation and characterization of fast response macroporous poly (N-isopropylacrylamide) hydrogels. Langmuir, 2001, 17(20), 6094-6099. doi: 10.1021/la010105v
  28. Kamaci, M.; Kaya, I. Chitosan based hybrid hydrogels for drug delivery: Preparation, biodegradation, thermal, and mechanical properties. Polym. Adv. Technol., 2023, 34(2), 779-788. doi: 10.1002/pat.5930
  29. He, Z.; Luo, H.; Wang, Z.; Chen, D.; Feng, Q.; Cao, X. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr. Polym., 2023, 299, 120180. doi: 10.1016/j.carbpol.2022.120180 PMID: 36876795
  30. Mastropietro, D.J.; Omidian, H.; Park, K. Drug delivery applications for superporous hydrogels. Expert Opin. Drug Deliv., 2012, 9(1), 71-89. doi: 10.1517/17425247.2012.641950 PMID: 22145909
  31. Dalmoro, A.; Sitenkov, A.Y.; Cascone, S.; Lamberti, G.; Barba, A.A.; Moustafine, R.I. Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. Int. J. Pharm., 2017, 518(1-2), 50-58. doi: 10.1016/j.ijpharm.2016.12.056 PMID: 28034735
  32. Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym., 2019, 221, 94-112. doi: 10.1016/j.carbpol.2019.05.067 PMID: 31227171
  33. Bahram, M.; Nurallahzadeh, N.; Mohseni, N. pH-sensitive hydrogel for coacervative cloud point extraction and spectrophotometric determination of Cu (II): Optimization by central composite design. J. Indian Chem. Soc., 2015, 12, 1781-1787.
  34. Alvarez-Figueroa, M.J.; Blanco-Méndez, J. Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm., 2001, 215(1-2), 57-65. doi: 10.1016/S0378-5173(00)00674-8 PMID: 11250092
  35. Fang, J.Y.; Sung, K.C.; Wang, J.J.; Chu, C.C.; Chen, K.T. The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels. J. Pharm. Pharmacol., 2010, 54(10), 1329-1337. doi: 10.1211/002235702760345392 PMID: 12396293
  36. Bouchemal, K.; Aka-Any-Grah, A.; Dereuddre-Bosquet, N.; Martin, L.; Lievin-Le-Moal, V.; Le Grand, R.; Nicolas, V.; Gibellini, D.; Lembo, D.; Poüs, C.; Koffi, A.; Ponchel, G. Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob. Agents Chemother., 2015, 59(4), 2215-2222. doi: 10.1128/AAC.03503-14 PMID: 25645853
  37. Perinelli, D.; Campana, R.; Skouras, A.; Bonacucina, G.; Cespi, M.; Mastrotto, F.; Baffone, W.; Casettari, L. Chitosan loaded into a hydrogel delivery system as a strategy to treat vaginal co-infection. Pharmaceutics, 2018, 10(1), 23. doi: 10.3390/pharmaceutics10010023 PMID: 29401648
  38. Bahram, M.; Mohseni, N.; Moghtader, M. An introduction to hydrogels and some recent applications. In: Emerging concepts in analysis and applications of hydrogels; IntechOpen, 2016. doi: 10.5772/64301
  39. Champeau, M.; Heinze, D.A.; Viana, T.N.; de Souza, E.R.; Chinellato, A.C.; Titotto, S. 4D printing of hydrogels: A review. Adv. Funct. Mater., 2020, 30(31), 1910606. doi: 10.1002/adfm.201910606
  40. Ferraris, S.; Spriano, S.; Scalia, A.C.; Cochis, A.; Rimondini, L.; Cruz-Maya, I.; Guarino, V.; Varesano, A.; Vineis, C. Topographical and biomechanical guidance of electrospun fibers for biomedical applications. Polymers, 2020, 12(12), 2896. doi: 10.3390/polym12122896 PMID: 33287236
  41. Yu, Y.; Zheng, X.; Liu, X.; Zhao, J.; Wang, S. Injectable carboxymethyl chitosan-based hydrogel for simultaneous anti-tumor recurrence and anti-bacterial applications. Int. J. Biol. Macromol., 2023, 230, 123196. doi: 10.1016/j.ijbiomac.2023.123196 PMID: 36634799
  42. Morgado, P.I.; Lisboa, P.F.; Ribeiro, M.P.; Miguel, S.P.; Simões, P.C.; Correia, I.J.; Aguiar-Ricardo, A. Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. J. Membr. Sci., 2014, 469, 262-271. doi: 10.1016/j.memsci.2014.06.035
  43. Heilmann, S.; Küchler, S.; Wischke, C.; Lendlein, A.; Stein, C.; Schäfer-Korting, M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int. J. Pharm., 2013, 444(1-2), 96-102. doi: 10.1016/j.ijpharm.2013.01.027 PMID: 23352858
  44. Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen., 2012, 20(6), 904-910. doi: 10.1111/j.1524-475X.2012.00848.x PMID: 23110551
  45. Qi, X.; Cai, E.; Xiang, Y.; Zhang, C.; Ge, X.; Wang, J.; Lan, Y.; Xu, H.; Hu, R.; Shen, J. An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics. Adv. Mater., 2023, 35(48), 2306632. doi: 10.1002/adma.202306632 PMID: 37803944
  46. Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable cellulose-based hydrogels: Design and applications. Materials, 2009, 2(2), 353-373. doi: 10.3390/ma2020353
  47. Kang, J.; Yun, S.I. Double-network hydrogel films based on cellulose derivatives and κ-carrageenan with enhanced mechanical strength and superabsorbent properties. Gels, 2022, 9(1), 20. doi: 10.3390/gels9010020 PMID: 36661788
  48. Bachra, Y.; Grouli, A.; Damiri, F.; Zhu, X.X.; Talbi, M.; Berrada, M. Synthesis, characterization, and swelling properties of a new highly absorbent hydrogel based on carboxymethyl guar gum reinforced with bentonite and Silica particles for disposable hygiene products. ACS Omega, 2022, 7(43), 39002-39018. doi: 10.1021/acsomega.2c04744 PMID: 36340181
  49. Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267. doi: 10.1016/j.eurpolymj.2014.11.024
  50. Zhao, J.; Wang, L.; Zhang, H.; Liao, B.; Li, Y. Progress of research in in situ smart hydrogels for local antitumor therapy: A review. Pharmaceutics, 2022, 14(10), 2028. doi: 10.3390/pharmaceutics14102028 PMID: 36297463
  51. Gao, B.; Luo, J.; Liu, Y.; Su, S.; Fu, S.; Yang, X.; Li, B. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int. J. Nanomedicine, 2021, 16, 4073-4085. doi: 10.2147/IJN.S308057 PMID: 34163160
  52. Yao, J.; Zhu, C.; Peng, T.; Ma, Q.; Gao, S. Injectable and temperature-sensitive titanium carbide-loaded hydrogel system for photothermal therapy of breast cancer. Front. Bioeng. Biotechnol., 2021, 9, 791891. doi: 10.3389/fbioe.2021.791891 PMID: 35004650
  53. Yang, X.; Gao, L.; Wei, Y.; Tan, B.; Wu, Y.; Yi, C.; Liao, J. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J. Nanobiotechnology, 2021, 19(1), 307. doi: 10.1186/s12951-021-01041-w PMID: 34620160
  54. Li, R.; Shan, L.; Yao, Y.; Peng, F.; Jiang, S.; Yang, D.; Ling, G.; Zhang, P. Black phosphorus nanosheets and docetaxel micelles co-incorporated thermoreversible hydrogel for combination chemo-photodynamic therapy. Drug Deliv. Transl. Res., 2021, 11(3), 1133-1143. doi: 10.1007/s13346-020-00836-y PMID: 32776211
  55. Jo, Y.J.; Gulfam, M.; Jo, S.H.; Gal, Y.S.; Oh, C.W.; Park, S.H.; Lim, K.T. Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application. Carbohydr. Polym., 2022, 286, 119303. doi: 10.1016/j.carbpol.2022.119303 PMID: 35337532
  56. Parisi, O.I.; Morelli, C.; Scrivano, L.; Sinicropi, M.S.; Cesario, M.G.; Candamano, S.; Puoci, F.; Sisci, D. Controlled release of sunitinib in targeted cancer therapy: Smart magnetically responsive hydrogels as restricted access materials. RSC Advances, 2015, 5(80), 65308-65315. doi: 10.1039/C5RA12229E
  57. Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X. Antibacterial hydrogels. Adv. Sci., 2018, 5(5), 1700527. doi: 10.1002/advs.201700527 PMID: 29876202
  58. Gupta, A.; Briffa, S.M.; Swingler, S.; Gibson, H.; Kannappan, V.; Adamus, G.; Kowalczuk, M.; Martin, C.; Radecka, I. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules, 2020, 21(5), 1802-1811. doi: 10.1021/acs.biomac.9b01724 PMID: 31967794
  59. Zumbuehl, A.; Ferreira, L.; Kuhn, D.; Astashkina, A.; Long, L.; Yeo, Y.; Iaconis, T.; Ghannoum, M.; Fink, G.R.; Langer, R.; Kohane, D.S. Antifungal hydrogels. Proc. Natl. Acad. Sci., 2007, 104(32), 12994-12998. doi: 10.1073/pnas.0705250104 PMID: 17664427
  60. AbouSamra, M.M.; Basha, M.; Awad, G.E.A.; Mansy, S.S. A promising nystatin nanocapsular hydrogel as an antifungal polymeric carrier for the treatment of topical candidiasis. J. Drug Deliv. Sci. Technol., 2019, 49, 365-374. doi: 10.1016/j.jddst.2018.12.014
  61. Shchelik, I.S.; Sieber, S.; Gademann, K. Green algae as a drug delivery system for the controlled release of antibiotics. Chemistry, 2020, 26(70), 16644-16648. doi: 10.1002/chem.202003821 PMID: 32910832
  62. ElFeky, D.S.; Awad, A.R.; Elshobaky, M.A.; Elawady, B.A. Effect of ceftaroline, vancomycin, gentamicin, macrolides, and ciprofloxacin against methicillin-resistant Staphylococcus aureus isolates: An in vitro study. Surg. Infect., 2020, 21(2), 150-157. doi: 10.1089/sur.2019.229 PMID: 31513456
  63. Li, Y.; Cheng, C.; Gao, X.; Wang, S.; Ye, H.; Han, X. Aminoglycoside hydrogels based on dynamic covalent bonds with PH sensitivity, biocompatibility, self‐healing, and antibacterial ability. J. Appl. Polym. Sci., 2020, 137(41), 49250. doi: 10.1002/app.49250
  64. Zhang, J.; Tan, W.; Li, Q.; Liu, X.; Guo, Z. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing. Mar. Drugs, 2021, 19(9), 479. doi: 10.3390/md19090479 PMID: 34564141
  65. Gupta, P.; Purwar, R. Influence of cross-linkers on the properties of cotton grafted poly (acrylamide-co-acrylic acid) hydrogel composite: Swelling and drug release kinetics. Iran. Polym. J., 2021, 30(4), 381-391. doi: 10.1007/s13726-020-00897-3
  66. Bai, J.; Chen, C.; Wang, J.; Zhang, Y.; Cox, H.; Zhang, J.; Wang, Y.; Penny, J.; Waigh, T.; Lu, J.R.; Xu, H. Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces, 2016, 8(24), 15093-15102. doi: 10.1021/acsami.6b03770 PMID: 27243270
  67. Gunes, O.C.; Ziylan Albayrak, A. Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym. Bull., 2021, 78(11), 6409-6428. doi: 10.1007/s00289-020-03429-4
  68. Yang, S.; Zhou, Y.; Zhao, Y.; Wang, D.; Luan, Y. Microwave synthesis of graphene oxide decorated with silver nanoparticles for slow-release antibacterial hydrogel. Mater. Today Commun., 2022, 31, 103663. doi: 10.1016/j.mtcomm.2022.103663
  69. Kang, W.; Liang, J.; Liu, T.; Long, H.; Huang, L.; Shi, Q.; Zhang, J.; Deng, S.; Tan, S. Preparation of silane-dispersed graphene crosslinked vinyl carboxymethyl chitosan temperature-responsive hydrogel with antibacterial properties. Int. J. Biol. Macromol., 2022, 200, 99-109. doi: 10.1016/j.ijbiomac.2021.12.050 PMID: 34953806
  70. Fathollahipour, S.; Koosha, M.; Tavakoli, J.; Maziarfar, S.; Fallah Mehrabadi, J. Erythromycin releasing PVA/sucrose and PVA/honey hydrogels as wound dressings with antibacterial activity and enhanced bio-adhesion. Iran. J. Pharm. Res., 2020, 19(1), 448-464. PMID: 32922500
  71. Baretta, R.; Raucci, A.; Cinti, S.; Frasconi, M. Porous hydrogel scaffolds integrating Prussian Blue nanoparticles: A versatile strategy for electrochemical (bio)sensing. Sens. Actuators B Chem., 2023, 376, 132985. doi: 10.1016/j.snb.2022.132985
  72. Gill, E.L.; Wang, W.; Liu, R.; Huang, Y.Y.S. Additive batch electrospinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling. Addit. Manuf., 2020, 36, 101456. doi: 10.1016/j.addma.2020.101456
  73. Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49. doi: 10.1016/j.mser.2015.04.001 PMID: 27134415
  74. Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes, 2012, 2(1), 40-69. doi: 10.3390/membranes2010040 PMID: 24957962
  75. Sánchez-Tirado, E.; Agüí, L.; González-Cortés, A.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical (bio)sensing devices for human-microbiome-related biomarkers. Sensors, 2023, 23(2), 837. doi: 10.3390/s23020837 PMID: 36679633
  76. Nair, R.R.; Debnath, S.; Das, S.; Wakchaure, P.; Ganguly, B.; Chatterjee, P.B. A highly selective turn-on biosensor for measuring spermine/spermidine in human urine and blood. ACS Appl. Bio Mater., 2019, 2(6), 2374-2387. doi: 10.1021/acsabm.9b00084 PMID: 35030730
  77. Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater., 2021, 10(11), 2100062. doi: 10.1002/adhm.202100062 PMID: 33939333
  78. Mao, X.; Chen, G.; Wang, Z.; Zhang, Y.; Zhu, X.; Li, G. Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing. Chem. Sci., 2018, 9(4), 811-818. doi: 10.1039/C7SC03716C PMID: 29629148
  79. Pedrosa, V.A.; Yan, J.; Simonian, A.L.; Revzin, A. Micropatterned nanocomposite hydrogels for biosensing applications. Electroanalysis, 2011, 23(5), 1142-1149. doi: 10.1002/elan.201000654
  80. Osouli-Bostanabad, K.; Masalehdan, T.; Kapsa, R.M.I.; Quigley, A.; Lalatsa, A.; Bruggeman, K.F.; Franks, S.J.; Williams, R.J.; Nisbet, D.R. Traction of 3D and 4D printing in the healthcare industry: From drug delivery and analysis to regenerative medicine. ACS Biomater. Sci. Eng., 2022, 8(7), 2764-2797. doi: 10.1021/acsbiomaterials.2c00094 PMID: 35696306
  81. Hou, C.; Zheng, J.; Li, Z.; Qi, X.; Tian, Y.; Zhang, M.; Zhang, J.; Huang, X. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int. J. Biol. Macromol., 2021, 180, 177-186. doi: 10.1016/j.ijbiomac.2021.03.070 PMID: 33737175
  82. Fei, Z.; Xin, X.; Fei, H.; Yuechong, C. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 244, 1-4. doi: 10.1016/j.ejogrb.2019.10.018 PMID: 31731019
  83. Wenbo, Q.; Lijian, X.; Shuangdan, Z.; Jiahua, Z.; Yanpeng, T.; Xuejun, Q.; Xianghua, H.; Jingkun, Z. Controlled releasing of SDF-1α in chitosan-heparin hydrogel for endometrium injury healing in rat model. Int. J. Biol. Macromol., 2020, 143, 163-172. doi: 10.1016/j.ijbiomac.2019.11.184 PMID: 31765745
  84. Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm., 2020, 573, 118803. doi: 10.1016/j.ijpharm.2019.118803 PMID: 31682963
  85. Sun, Y.; Yang, C.; Zhu, X.; Wang, J.J.; Liu, X.Y.; Yang, X.P.; An, X.W.; Liang, J.; Dong, H.J.; Jiang, W.; Chen, C.; Wang, Z.G.; Sun, H.T.; Tu, Y.; Zhang, S.; Chen, F.; Li, X.H. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J. Biomed. Mater. Res. A, 2019, 107(9), 1898-1908. doi: 10.1002/jbm.a.36675 PMID: 30903675
  86. Jeon, M.S.; Jeon, Y.; Hwang, J.H.; Heu, C.S.; Jin, S.; Shin, J.; Song, Y.; Chang Kim, S.; Cho, B.K.; Lee, J.K.; Kim, D.R. Fabrication of three-dimensional porous carbon scaffolds with tunable pore sizes for effective cell confinement. Carbon, 2018, 130, 814-821. doi: 10.1016/j.carbon.2018.01.050
  87. Wang, X.; Salick, M.R.; Gao, Y.; Jiang, J.; Li, X.; Liu, F.; Cordie, T.; Li, Q.; Turng, L.S. Interconnected porous poly(ɛ-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J. Cell. Plast., 2018, 54(2), 379-397. doi: 10.1177/0021955X16681470
  88. Bordini, E.A.F.; Ferreira, J.A.; Dubey, N.; Ribeiro, J.S.; de Souza Costa, C.A.; Soares, D.G.; Bottino, M.C. Injectable multifunctional drug delivery system for hard tissue regeneration under inflammatory microenvironments. ACS Appl. Bio Mater., 2021, 4(9), 6993-7006. doi: 10.1021/acsabm.1c00620 PMID: 35006932
  89. Liu, C.; Qin, W.; Wang, Y.; Ma, J.; Liu, J.; Wu, S.; Zhao, H. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int. J. Nanomedicine, 2021, 16, 8417-8432. doi: 10.2147/IJN.S339500 PMID: 35002236
  90. Vidović E.; Klee, D.; Höcker, H. Evaluation of water uptake and mechanical properties of biomedical polymers. J. Appl. Polym. Sci., 2013, 130(5), 3682-3688. doi: 10.1002/app.39624
  91. P B. S.; S, G.; J, P.; Muthusamy, S.; R, N.; Krishnakumar, G.S.; R, S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int. J. Biol. Macromol., 2022, 195, 179-189. doi: 10.1016/j.ijbiomac.2021.11.184 PMID: 34863969
  92. Killion, J.A.; Geever, L.M.; Devine, D.M.; Kennedy, J.E.; Higginbotham, C.L. Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application. J. Mech. Behav. Biomed. Mater., 2011, 4(7), 1219-1227. doi: 10.1016/j.jmbbm.2011.04.004 PMID: 21783130
  93. Tozzi, G.; De Mori, A.; Oliveira, A.; Roldo, M. Composite hydrogels for bone regeneration. Materials, 2016, 9(4), 267. doi: 10.3390/ma9040267 PMID: 28773392
  94. Wang, X.; Yu, Y.; Yang, C.; Shao, C.; Shi, K.; Shang, L.; Ye, F.; Zhao, Y. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv. Funct. Mater., 2021, 31(40), 2105190. doi: 10.1002/adfm.202105190
  95. Blatchley, M.R.; Gerecht, S. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed. Mater., 2015, 10(3), 034001. doi: 10.1088/1748-6041/10/3/034001 PMID: 25775039
  96. Li, Z.; Qu, T.; Ding, C.; Ma, C.; Sun, H.; Li, S.; Liu, X. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater., 2015, 13, 88-100. doi: 10.1016/j.actbio.2014.11.002 PMID: 25462840
  97. Zheng, Z.; Tan, Y.; Li, Y.; Liu, Y.; Yi, G.; Yu, C.Y.; Wei, H. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J. Control. Release, 2021, 335, 216-236. doi: 10.1016/j.jconrel.2021.05.023 PMID: 34022323
  98. Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr., 2020, 60(10), 1651-1666. doi: 10.1080/10408398.2019.1587737 PMID: 30892058
  99. Shit, S.C. Shah, PM Edible polymers: Challenges and opportunities. J. Polym., 2014, 2014, 427259. doi: 10.1155/2014/427259
  100. Chen, L.; Remondetto, G.E.; Subirade, M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol., 2006, 17(5), 272-283. doi: 10.1016/j.tifs.2005.12.011
  101. Farris, S.; Schaich, K.M.; Liu, L.; Piergiovanni, L.; Yam, K.L. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review. Trends Food Sci. Technol., 2009, 20(8), 316-332. doi: 10.1016/j.tifs.2009.04.003
  102. Parente, M.E.; Ochoa Andrade, A.; Ares, G.; Russo, F.; Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci., 2015, 37(5), 511-518. doi: 10.1111/ics.12227 PMID: 25854849
  103. Kim, S.J.; Kwon, S.S.; Jeon, S.H.; Yu, E.R.; Park, S.N. Enhanced skin delivery of liquiritigenin and liquiritin‐loaded liposome‐in‐hydrogel complex system. Int. J. Cosmet. Sci., 2014, 36(6), 553-560. doi: 10.1111/ics.12156 PMID: 25074560
  104. Purohit, P.; Bhatt, A.; Mittal, R.K.; Abdellattif, M.H.; Farghaly, T.A. Polymer Grafting and its chemical reactions. Front. Bioeng. Biotechnol., 2023, 10, 1044927. doi: 10.3389/fbioe.2022.1044927 PMID: 36714621
  105. Herrero, C.; Ayoob, A.; Hanes, J.; Peris, H. Spiral Therapeutics Inc, assignee. Apoptosis inhibitor formulations for prevention of hearing loss. U.S. Patent 16/740,181, 2020.
  106. Florek, C.; Armbruster, D.A.; Kerr, S.H.; Jain, S.; Julien, J.; Bikram-Liles, M. Biocompatible organogel matrices for intraoperative preparation of a drug delivery depot. U.S. Patent 16/851,177, 2020.
  107. Gu, Z.; Yu, J.; Zhang, Y.; Gallippi, C. Thrombin-responsive hydrogels and devices for auto-anticoagulant regulation. U.S. Patent 17/019,707, 2021.
  108. Naheed, S. Medication. U.S. Patent 20200282062A1, 2020.
  109. Clayman, R.V.; Jiang, P.; Schoenberg, M.; Tsipori, O. Thermosensitive bio-adhesive hydrogel for removal of ureteral and renal stones. U.S. Patent 11,576,744, 2023.
  110. Spiegel, A.J. Methodist Hospital System, assignee. Hydrogel devices and methods of making and use thereof. U.S. Patent 11,730,861, 2023.
  111. Pan, Y.; Hao, Z.; Zhao, X. Three-dimensional hydrogel-graphenebased biosensor and preparation method thereof. U.S. Patent 11,619,602, 2023.
  112. Kubota, R.; MacCabee, G.F.; Widjaja, F.; Gupta, A. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens. U.S. Patent 11,409,136, 2022.
  113. Ruptured Aneurysms Treated with Hydrogel Coils. NCT03252314, 2023.
  114. Comparative Clinical Performance of 59% Hioxifilcon a Contact Lenses vs. Marketed Hydrogel Contact Lens. NCT04671108 2023.
  115. MucoLox Formulation to Mitigate Mucositis Symptoms in Head/Neck Cancer. NCT03461354, 2023.
  116. Treatment of Knee Osteoarthritis with PAAG-OA. NCT04045431, 2023.
  117. Prostate-Rectal Separation with PEG Hydrogel and Its Effect on Decreasing Rectal Dose. NCT02212548, 2023.
  118. Clinical Performance of a Daily Disposable Toric Silicone Hydrogel Contact Lens. NCT04464044, 2023.
  119. TracelT Hydrogel in Localizing Bladder Tumors in Patients Undergoing Radiation Therapy for Bladder. NCT03125226, 2023.
  120. Performance of Toric Hydrogel Lenses Following a Refit with Toric Silicone Hydrogel Lenses for 1 Month. NCT03835221, 2023.
  121. Vijayasekaran, S.; Chirila, T.V.; Robertson, T.A.; Lou, X.; Fitton, J.H.; Hicks, C.R.; Constable, I.J. Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea: a 3-month study. J. Biomater. Sci. Polym. Ed., 2000, 11(6), 599-615. doi: 10.1163/156856200743896 PMID: 10981676
  122. Vegas, A.J.; Veiseh, O.; Doloff, J.C.; Ma, M.; Tam, H.H.; Bratlie, K.; Li, J.; Bader, A.R.; Langan, E.; Olejnik, K.; Fenton, P.; Kang, J.W.; Hollister-Locke, J.; Bochenek, M.A.; Chiu, A.; Siebert, S.; Tang, K.; Jhunjhunwala, S.; Aresta-Dasilva, S.; Dholakia, N.; Thakrar, R.; Vietti, T.; Chen, M.; Cohen, J.; Siniakowicz, K.; Qi, M.; McGarrigle, J.; Graham, A.C.; Lyle, S.; Harlan, D.M.; Greiner, D.L.; Oberholzer, J.; Weir, G.C.; Langer, R.; Anderson, D.G. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol., 2016, 34(3), 345-352. doi: 10.1038/nbt.3462 PMID: 26807527
  123. Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009. doi: 10.1016/j.nantod.2020.101009
  124. Wuschko, S.; Gugerell, A.; Chabicovsky, M.; Hofbauer, H.; Laggner, M.; Erb, M.; Ostler, T.; Peterbauer, A.; Suessner, S.; Demyanets, S.; Leuschner, J.; Moser, B.; Mildner, M.; Ankersmit, H.J. Toxicological testing of allogeneic secretome derived from peripheral mononuclear cells (APOSEC): A novel cell-free therapeutic agent in skin disease. Sci. Rep., 2019, 9(1), 5598. doi: 10.1038/s41598-019-42057-5 PMID: 30944367
  125. Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426. doi: 10.1038/s41392-021-00830-x PMID: 34916490
  126. Bai, Q.; Zheng, C.; Chen, W.; Sun, N.; Gao, Q.; Liu, J.; Hu, F.; Pimpi, S.; Yan, X.; Zhang, Y.; Lu, T. Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Mater. Adv., 2022, 3(17), 6707-6727. doi: 10.1039/D2MA00695B
  127. Wang, Y.; Yuan, X.; Yao, B.; Zhu, S.; Zhu, P.; Huang, S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact. Mater., 2022, 17, 178-194. doi: 10.1016/j.bioactmat.2022.01.024 PMID: 35386443
  128. Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639. doi: 10.1016/j.biomaterials.2022.121639 PMID: 35779481
  129. Kasai, R.D.; Radhika, D.; Archana, S.; Shanavaz, H.; Koutavarapu, R.; Lee, D.Y.; Shim, J. A review on hydrogels classification and recent developments in biomedical applications. Int. J. Polym. Mater., 2023, 72(13), 1059-1069. doi: 10.1080/00914037.2022.2075872
  130. Liu, X.; Steiger, C.; Lin, S.; Parada, G.A.; Liu, J.; Chan, H.F.; Yuk, H.; Phan, N.V.; Collins, J.; Tamang, S.; Traverso, G.; Zhao, X. Ingestible hydrogel device. Nat. Commun., 2019, 10(1), 493. doi: 10.1038/s41467-019-08355-2 PMID: 30700712
  131. Danyuo, Y.; Ani, C.J.; Salifu, A.A.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Obanawu, V.O.; Akpan, U.M.; Odusanya, O.S.; Abade-Abugre, M.; McBagonluri, F.; Soboyejo, W.O. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer. Sci. Rep., 2019, 9(1), 3862. doi: 10.1038/s41598-019-39578-4 PMID: 30846795
  132. O’Connell, C.D.; Di Bella, C.; Thompson, F.; Augustine, C.; Beirne, S.; Cornock, R.; Richards, C.J.; Chung, J.; Gambhir, S.; Yue, Z.; Bourke, J.; Zhang, B.; Taylor, A.; Quigley, A.; Kapsa, R.; Choong, P.; Wallace, G.G. Development of the Biopen: A handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 2016, 8(1), 015019. doi: 10.1088/1758-5090/8/1/015019 PMID: 27004561

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers