Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications
- Authors: Mittal R.1, Mishra R.2, Uddin R.3, Sharma V.1
-
Affiliations:
- , Galgotias College of Pharmacy
- , Lloyd School of Pharmacy, Knowledge Park II
- , Sir Madanlal Institute of Pharmacy
- Issue: Vol 25, No 11 (2024)
- Pages: 1436-1451
- Section: Biotechnology
- URL: https://rjeid.com/1389-2010/article/view/644432
- DOI: https://doi.org/10.2174/0113892010281021231229100228
- ID: 644432
Cite item
Full Text
Abstract
Objective::The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies.
Methods::Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance.
Results::The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine.
Conclusion::In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.
Keywords
About the authors
Ravi Mittal
, Galgotias College of Pharmacy
Author for correspondence.
Email: info@benthamscience.net
Raghav Mishra
, Lloyd School of Pharmacy, Knowledge Park II
Email: info@benthamscience.net
Rehan Uddin
, Sir Madanlal Institute of Pharmacy
Email: info@benthamscience.net
Vikram Sharma
, Galgotias College of Pharmacy
Email: info@benthamscience.net
References
- Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature, 1960, 185(4706), 117-118. doi: 10.1038/185117a0
- Zhang, W.; Du, A.; Liu, S.; Lv, M.; Chen, S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen. Ther., 2021, 18, 88-96. doi: 10.1016/j.reth.2021.04.002 PMID: 34095366
- Jiang, Y.; Wang, Y.; Li, Q.; Yu, C.; Chu, W. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem., 2020, 27(16), 2631-2657. doi: 10.2174/0929867326666191122144916 PMID: 31755377
- Ganji, F.; Vasheghani, F.S.; Vasheghani, F.E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J., 2010, 19(5), 375-398.
- Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev., 2020, 49(11), 3605-3637. doi: 10.1039/C9CS00849G PMID: 32393930
- Hossen Md, J.; Sarkar, S.D. Mussel‐inspired adhesive nano‐filler for strengthening polyacrylamide hydrogel. ChemistrySelect, 2020, 5, 8906-8914. doi: 10.1002/slct.202001632
- Sarkar, S.D.; Uddin, M.M.; Roy, C.K.; Hossen, M.J.; Sujan, M.I.; Azam, M.S. Mechanically tough and highly stretchable poly(acrylic acid) hydrogel cross-linked by 2D graphene oxide. RSC Advances, 2020, 10(18), 10949-10958. doi: 10.1039/D0RA00678E PMID: 35492941
- Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13(5), 1164. doi: 10.3390/cancers13051164 PMID: 33803133
- Hong, Y.; Lin, Z.; Yang, Y.; Jiang, T.; Shang, J.; Luo, Z. Biocompatible conductive hydrogels: Applications in the field of biomedicine. Int. J. Mol. Sci., 2022, 23(9), 4578. doi: 10.3390/ijms23094578 PMID: 35562969
- Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C, 2017, 79, 958-971. doi: 10.1016/j.msec.2017.05.096 PMID: 28629101
- Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021, 31(19), 2009432. doi: 10.1002/adfm.202009432
- Zhang, H.; Wu, S.; Chen, W.; Hu, Y.; Geng, Z.; Su, J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact. Mater., 2023, 23, 156-169. doi: 10.1016/j.bioactmat.2022.10.028 PMID: 36406248
- Xue, X.; Zhang, H.; Liu, H.; Wang, S.; Li, J.; Zhou, Q.; Chen, X.; Ren, X.; Jing, Y.; Deng, Y.; Geng, Z.; Wang, X.; Su, J. Rational design of multifunctional CuS nanoparticle‐PEG composite soft hydrogel‐coated 3D hard polycaprolactone scaffolds for efficient bone regeneration. Adv. Funct. Mater., 2022, 32(33), 2202470. doi: 10.1002/adfm.202202470
- Zhou, Z.; Cui, J.; Wu, S.; Geng, Z.; Su, J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics, 2022, 12(11), 5103-5124. doi: 10.7150/thno.74548 PMID: 35836802
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 6. doi: 10.3390/gels3010006 PMID: 30920503
- Mehrotra, D.; Dwivedi, R.; Nandana, D.; Singh, R.K. From injectable to 3D printed hydrogels in maxillofacial tissue engineering: A review. J. Oral Biol. Craniofac. Res., 2020, 10(4), 680-689. doi: 10.1016/j.jobcr.2020.09.006 PMID: 33072505
- Yang, Y.; Xu, L.; Wang, J.; Meng, Q.; Zhong, S.; Gao, Y.; Cui, X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr. Polym., 2022, 283, 119161. doi: 10.1016/j.carbpol.2022.119161 PMID: 35153030
- Huang, B.; Li, P.; Chen, M.; Peng, L.; Luo, X.; Tian, G.; Wang, H.; Wu, L.; Tian, Q.; Li, H.; Yang, Y.; Jiang, S.; Yang, Z.; Zha, K.; Sui, X.; Liu, S.; Guo, Q. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J. Nanobiotechnology, 2022, 20(1), 25. doi: 10.1186/s12951-021-01230-7 PMID: 34991615
- Seo, H.S.; Wang, C.P.J.; Park, W.; Park, C.G. Short review on advances in hydrogel-based drug delivery strategies for cancer immunotherapy. Tissue Eng. Regen. Med., 2022, 19(2), 263-280. doi: 10.1007/s13770-021-00369-6 PMID: 34596839
- Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel trends in hydrogel development for biomedical applications: A review. Polymers, 2022, 14(15), 3023. doi: 10.3390/polym14153023 PMID: 35893984
- Nair, A.B.; Al-Dhubiab, B.E.; Shah, J.; Jacob, S.; Saraiya, V.; Attimarad, M. SreeHarsha, N.; Akrawi, S.H.; Shehata, T.M. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi Pharm. J., 2020, 28(2), 201-209. doi: 10.1016/j.jsps.2019.11.022 PMID: 32042259
- Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release, 2020, 320, 125-141. doi: 10.1016/j.jconrel.2020.01.006 PMID: 31917295
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer, 2008, 49(8), 1993-2007.
- Qi, X.; Xiang, Y.; Cai, E.; Ge, X.; Chen, X.; Zhang, W.; Li, Z.; Shen, J. Inorganic-organic hybrid nanomaterials for photothermal antibacterial therapy. Coord. Chem. Rev., 2023, 496, 215426. doi: 10.1016/j.ccr.2023.215426
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121. doi: 10.1016/j.jare.2013.07.006 PMID: 25750745
- Cheng, Y.H.; Hung, K.H.; Tsai, T.H.; Lee, C.J.; Ku, R.Y.; Chiu, A.W.; Chiou, S.H.; Liu, C.J. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater., 2014, 10(10), 4360-4366. doi: 10.1016/j.actbio.2014.05.031 PMID: 24914827
- Zhang, X.Z.; Yang, Y.Y.; Chung, T.S.; Ma, K.X. Preparation and characterization of fast response macroporous poly (N-isopropylacrylamide) hydrogels. Langmuir, 2001, 17(20), 6094-6099. doi: 10.1021/la010105v
- Kamaci, M.; Kaya, I. Chitosan based hybrid hydrogels for drug delivery: Preparation, biodegradation, thermal, and mechanical properties. Polym. Adv. Technol., 2023, 34(2), 779-788. doi: 10.1002/pat.5930
- He, Z.; Luo, H.; Wang, Z.; Chen, D.; Feng, Q.; Cao, X. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr. Polym., 2023, 299, 120180. doi: 10.1016/j.carbpol.2022.120180 PMID: 36876795
- Mastropietro, D.J.; Omidian, H.; Park, K. Drug delivery applications for superporous hydrogels. Expert Opin. Drug Deliv., 2012, 9(1), 71-89. doi: 10.1517/17425247.2012.641950 PMID: 22145909
- Dalmoro, A.; Sitenkov, A.Y.; Cascone, S.; Lamberti, G.; Barba, A.A.; Moustafine, R.I. Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. Int. J. Pharm., 2017, 518(1-2), 50-58. doi: 10.1016/j.ijpharm.2016.12.056 PMID: 28034735
- Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym., 2019, 221, 94-112. doi: 10.1016/j.carbpol.2019.05.067 PMID: 31227171
- Bahram, M.; Nurallahzadeh, N.; Mohseni, N. pH-sensitive hydrogel for coacervative cloud point extraction and spectrophotometric determination of Cu (II): Optimization by central composite design. J. Indian Chem. Soc., 2015, 12, 1781-1787.
- Alvarez-Figueroa, M.J.; Blanco-Méndez, J. Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm., 2001, 215(1-2), 57-65. doi: 10.1016/S0378-5173(00)00674-8 PMID: 11250092
- Fang, J.Y.; Sung, K.C.; Wang, J.J.; Chu, C.C.; Chen, K.T. The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels. J. Pharm. Pharmacol., 2010, 54(10), 1329-1337. doi: 10.1211/002235702760345392 PMID: 12396293
- Bouchemal, K.; Aka-Any-Grah, A.; Dereuddre-Bosquet, N.; Martin, L.; Lievin-Le-Moal, V.; Le Grand, R.; Nicolas, V.; Gibellini, D.; Lembo, D.; Poüs, C.; Koffi, A.; Ponchel, G. Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob. Agents Chemother., 2015, 59(4), 2215-2222. doi: 10.1128/AAC.03503-14 PMID: 25645853
- Perinelli, D.; Campana, R.; Skouras, A.; Bonacucina, G.; Cespi, M.; Mastrotto, F.; Baffone, W.; Casettari, L. Chitosan loaded into a hydrogel delivery system as a strategy to treat vaginal co-infection. Pharmaceutics, 2018, 10(1), 23. doi: 10.3390/pharmaceutics10010023 PMID: 29401648
- Bahram, M.; Mohseni, N.; Moghtader, M. An introduction to hydrogels and some recent applications. In: Emerging concepts in analysis and applications of hydrogels; IntechOpen, 2016. doi: 10.5772/64301
- Champeau, M.; Heinze, D.A.; Viana, T.N.; de Souza, E.R.; Chinellato, A.C.; Titotto, S. 4D printing of hydrogels: A review. Adv. Funct. Mater., 2020, 30(31), 1910606. doi: 10.1002/adfm.201910606
- Ferraris, S.; Spriano, S.; Scalia, A.C.; Cochis, A.; Rimondini, L.; Cruz-Maya, I.; Guarino, V.; Varesano, A.; Vineis, C. Topographical and biomechanical guidance of electrospun fibers for biomedical applications. Polymers, 2020, 12(12), 2896. doi: 10.3390/polym12122896 PMID: 33287236
- Yu, Y.; Zheng, X.; Liu, X.; Zhao, J.; Wang, S. Injectable carboxymethyl chitosan-based hydrogel for simultaneous anti-tumor recurrence and anti-bacterial applications. Int. J. Biol. Macromol., 2023, 230, 123196. doi: 10.1016/j.ijbiomac.2023.123196 PMID: 36634799
- Morgado, P.I.; Lisboa, P.F.; Ribeiro, M.P.; Miguel, S.P.; Simões, P.C.; Correia, I.J.; Aguiar-Ricardo, A. Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. J. Membr. Sci., 2014, 469, 262-271. doi: 10.1016/j.memsci.2014.06.035
- Heilmann, S.; Küchler, S.; Wischke, C.; Lendlein, A.; Stein, C.; Schäfer-Korting, M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int. J. Pharm., 2013, 444(1-2), 96-102. doi: 10.1016/j.ijpharm.2013.01.027 PMID: 23352858
- Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen., 2012, 20(6), 904-910. doi: 10.1111/j.1524-475X.2012.00848.x PMID: 23110551
- Qi, X.; Cai, E.; Xiang, Y.; Zhang, C.; Ge, X.; Wang, J.; Lan, Y.; Xu, H.; Hu, R.; Shen, J. An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics. Adv. Mater., 2023, 35(48), 2306632. doi: 10.1002/adma.202306632 PMID: 37803944
- Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable cellulose-based hydrogels: Design and applications. Materials, 2009, 2(2), 353-373. doi: 10.3390/ma2020353
- Kang, J.; Yun, S.I. Double-network hydrogel films based on cellulose derivatives and κ-carrageenan with enhanced mechanical strength and superabsorbent properties. Gels, 2022, 9(1), 20. doi: 10.3390/gels9010020 PMID: 36661788
- Bachra, Y.; Grouli, A.; Damiri, F.; Zhu, X.X.; Talbi, M.; Berrada, M. Synthesis, characterization, and swelling properties of a new highly absorbent hydrogel based on carboxymethyl guar gum reinforced with bentonite and Silica particles for disposable hygiene products. ACS Omega, 2022, 7(43), 39002-39018. doi: 10.1021/acsomega.2c04744 PMID: 36340181
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267. doi: 10.1016/j.eurpolymj.2014.11.024
- Zhao, J.; Wang, L.; Zhang, H.; Liao, B.; Li, Y. Progress of research in in situ smart hydrogels for local antitumor therapy: A review. Pharmaceutics, 2022, 14(10), 2028. doi: 10.3390/pharmaceutics14102028 PMID: 36297463
- Gao, B.; Luo, J.; Liu, Y.; Su, S.; Fu, S.; Yang, X.; Li, B. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int. J. Nanomedicine, 2021, 16, 4073-4085. doi: 10.2147/IJN.S308057 PMID: 34163160
- Yao, J.; Zhu, C.; Peng, T.; Ma, Q.; Gao, S. Injectable and temperature-sensitive titanium carbide-loaded hydrogel system for photothermal therapy of breast cancer. Front. Bioeng. Biotechnol., 2021, 9, 791891. doi: 10.3389/fbioe.2021.791891 PMID: 35004650
- Yang, X.; Gao, L.; Wei, Y.; Tan, B.; Wu, Y.; Yi, C.; Liao, J. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J. Nanobiotechnology, 2021, 19(1), 307. doi: 10.1186/s12951-021-01041-w PMID: 34620160
- Li, R.; Shan, L.; Yao, Y.; Peng, F.; Jiang, S.; Yang, D.; Ling, G.; Zhang, P. Black phosphorus nanosheets and docetaxel micelles co-incorporated thermoreversible hydrogel for combination chemo-photodynamic therapy. Drug Deliv. Transl. Res., 2021, 11(3), 1133-1143. doi: 10.1007/s13346-020-00836-y PMID: 32776211
- Jo, Y.J.; Gulfam, M.; Jo, S.H.; Gal, Y.S.; Oh, C.W.; Park, S.H.; Lim, K.T. Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application. Carbohydr. Polym., 2022, 286, 119303. doi: 10.1016/j.carbpol.2022.119303 PMID: 35337532
- Parisi, O.I.; Morelli, C.; Scrivano, L.; Sinicropi, M.S.; Cesario, M.G.; Candamano, S.; Puoci, F.; Sisci, D. Controlled release of sunitinib in targeted cancer therapy: Smart magnetically responsive hydrogels as restricted access materials. RSC Advances, 2015, 5(80), 65308-65315. doi: 10.1039/C5RA12229E
- Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X. Antibacterial hydrogels. Adv. Sci., 2018, 5(5), 1700527. doi: 10.1002/advs.201700527 PMID: 29876202
- Gupta, A.; Briffa, S.M.; Swingler, S.; Gibson, H.; Kannappan, V.; Adamus, G.; Kowalczuk, M.; Martin, C.; Radecka, I. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules, 2020, 21(5), 1802-1811. doi: 10.1021/acs.biomac.9b01724 PMID: 31967794
- Zumbuehl, A.; Ferreira, L.; Kuhn, D.; Astashkina, A.; Long, L.; Yeo, Y.; Iaconis, T.; Ghannoum, M.; Fink, G.R.; Langer, R.; Kohane, D.S. Antifungal hydrogels. Proc. Natl. Acad. Sci., 2007, 104(32), 12994-12998. doi: 10.1073/pnas.0705250104 PMID: 17664427
- AbouSamra, M.M.; Basha, M.; Awad, G.E.A.; Mansy, S.S. A promising nystatin nanocapsular hydrogel as an antifungal polymeric carrier for the treatment of topical candidiasis. J. Drug Deliv. Sci. Technol., 2019, 49, 365-374. doi: 10.1016/j.jddst.2018.12.014
- Shchelik, I.S.; Sieber, S.; Gademann, K. Green algae as a drug delivery system for the controlled release of antibiotics. Chemistry, 2020, 26(70), 16644-16648. doi: 10.1002/chem.202003821 PMID: 32910832
- ElFeky, D.S.; Awad, A.R.; Elshobaky, M.A.; Elawady, B.A. Effect of ceftaroline, vancomycin, gentamicin, macrolides, and ciprofloxacin against methicillin-resistant Staphylococcus aureus isolates: An in vitro study. Surg. Infect., 2020, 21(2), 150-157. doi: 10.1089/sur.2019.229 PMID: 31513456
- Li, Y.; Cheng, C.; Gao, X.; Wang, S.; Ye, H.; Han, X. Aminoglycoside hydrogels based on dynamic covalent bonds with PH sensitivity, biocompatibility, self‐healing, and antibacterial ability. J. Appl. Polym. Sci., 2020, 137(41), 49250. doi: 10.1002/app.49250
- Zhang, J.; Tan, W.; Li, Q.; Liu, X.; Guo, Z. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing. Mar. Drugs, 2021, 19(9), 479. doi: 10.3390/md19090479 PMID: 34564141
- Gupta, P.; Purwar, R. Influence of cross-linkers on the properties of cotton grafted poly (acrylamide-co-acrylic acid) hydrogel composite: Swelling and drug release kinetics. Iran. Polym. J., 2021, 30(4), 381-391. doi: 10.1007/s13726-020-00897-3
- Bai, J.; Chen, C.; Wang, J.; Zhang, Y.; Cox, H.; Zhang, J.; Wang, Y.; Penny, J.; Waigh, T.; Lu, J.R.; Xu, H. Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces, 2016, 8(24), 15093-15102. doi: 10.1021/acsami.6b03770 PMID: 27243270
- Gunes, O.C.; Ziylan Albayrak, A. Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym. Bull., 2021, 78(11), 6409-6428. doi: 10.1007/s00289-020-03429-4
- Yang, S.; Zhou, Y.; Zhao, Y.; Wang, D.; Luan, Y. Microwave synthesis of graphene oxide decorated with silver nanoparticles for slow-release antibacterial hydrogel. Mater. Today Commun., 2022, 31, 103663. doi: 10.1016/j.mtcomm.2022.103663
- Kang, W.; Liang, J.; Liu, T.; Long, H.; Huang, L.; Shi, Q.; Zhang, J.; Deng, S.; Tan, S. Preparation of silane-dispersed graphene crosslinked vinyl carboxymethyl chitosan temperature-responsive hydrogel with antibacterial properties. Int. J. Biol. Macromol., 2022, 200, 99-109. doi: 10.1016/j.ijbiomac.2021.12.050 PMID: 34953806
- Fathollahipour, S.; Koosha, M.; Tavakoli, J.; Maziarfar, S.; Fallah Mehrabadi, J. Erythromycin releasing PVA/sucrose and PVA/honey hydrogels as wound dressings with antibacterial activity and enhanced bio-adhesion. Iran. J. Pharm. Res., 2020, 19(1), 448-464. PMID: 32922500
- Baretta, R.; Raucci, A.; Cinti, S.; Frasconi, M. Porous hydrogel scaffolds integrating Prussian Blue nanoparticles: A versatile strategy for electrochemical (bio)sensing. Sens. Actuators B Chem., 2023, 376, 132985. doi: 10.1016/j.snb.2022.132985
- Gill, E.L.; Wang, W.; Liu, R.; Huang, Y.Y.S. Additive batch electrospinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling. Addit. Manuf., 2020, 36, 101456. doi: 10.1016/j.addma.2020.101456
- Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49. doi: 10.1016/j.mser.2015.04.001 PMID: 27134415
- Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes, 2012, 2(1), 40-69. doi: 10.3390/membranes2010040 PMID: 24957962
- Sánchez-Tirado, E.; Agüí, L.; González-Cortés, A.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical (bio)sensing devices for human-microbiome-related biomarkers. Sensors, 2023, 23(2), 837. doi: 10.3390/s23020837 PMID: 36679633
- Nair, R.R.; Debnath, S.; Das, S.; Wakchaure, P.; Ganguly, B.; Chatterjee, P.B. A highly selective turn-on biosensor for measuring spermine/spermidine in human urine and blood. ACS Appl. Bio Mater., 2019, 2(6), 2374-2387. doi: 10.1021/acsabm.9b00084 PMID: 35030730
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater., 2021, 10(11), 2100062. doi: 10.1002/adhm.202100062 PMID: 33939333
- Mao, X.; Chen, G.; Wang, Z.; Zhang, Y.; Zhu, X.; Li, G. Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing. Chem. Sci., 2018, 9(4), 811-818. doi: 10.1039/C7SC03716C PMID: 29629148
- Pedrosa, V.A.; Yan, J.; Simonian, A.L.; Revzin, A. Micropatterned nanocomposite hydrogels for biosensing applications. Electroanalysis, 2011, 23(5), 1142-1149. doi: 10.1002/elan.201000654
- Osouli-Bostanabad, K.; Masalehdan, T.; Kapsa, R.M.I.; Quigley, A.; Lalatsa, A.; Bruggeman, K.F.; Franks, S.J.; Williams, R.J.; Nisbet, D.R. Traction of 3D and 4D printing in the healthcare industry: From drug delivery and analysis to regenerative medicine. ACS Biomater. Sci. Eng., 2022, 8(7), 2764-2797. doi: 10.1021/acsbiomaterials.2c00094 PMID: 35696306
- Hou, C.; Zheng, J.; Li, Z.; Qi, X.; Tian, Y.; Zhang, M.; Zhang, J.; Huang, X. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int. J. Biol. Macromol., 2021, 180, 177-186. doi: 10.1016/j.ijbiomac.2021.03.070 PMID: 33737175
- Fei, Z.; Xin, X.; Fei, H.; Yuechong, C. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 244, 1-4. doi: 10.1016/j.ejogrb.2019.10.018 PMID: 31731019
- Wenbo, Q.; Lijian, X.; Shuangdan, Z.; Jiahua, Z.; Yanpeng, T.; Xuejun, Q.; Xianghua, H.; Jingkun, Z. Controlled releasing of SDF-1α in chitosan-heparin hydrogel for endometrium injury healing in rat model. Int. J. Biol. Macromol., 2020, 143, 163-172. doi: 10.1016/j.ijbiomac.2019.11.184 PMID: 31765745
- Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm., 2020, 573, 118803. doi: 10.1016/j.ijpharm.2019.118803 PMID: 31682963
- Sun, Y.; Yang, C.; Zhu, X.; Wang, J.J.; Liu, X.Y.; Yang, X.P.; An, X.W.; Liang, J.; Dong, H.J.; Jiang, W.; Chen, C.; Wang, Z.G.; Sun, H.T.; Tu, Y.; Zhang, S.; Chen, F.; Li, X.H. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J. Biomed. Mater. Res. A, 2019, 107(9), 1898-1908. doi: 10.1002/jbm.a.36675 PMID: 30903675
- Jeon, M.S.; Jeon, Y.; Hwang, J.H.; Heu, C.S.; Jin, S.; Shin, J.; Song, Y.; Chang Kim, S.; Cho, B.K.; Lee, J.K.; Kim, D.R. Fabrication of three-dimensional porous carbon scaffolds with tunable pore sizes for effective cell confinement. Carbon, 2018, 130, 814-821. doi: 10.1016/j.carbon.2018.01.050
- Wang, X.; Salick, M.R.; Gao, Y.; Jiang, J.; Li, X.; Liu, F.; Cordie, T.; Li, Q.; Turng, L.S. Interconnected porous poly(ɛ-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J. Cell. Plast., 2018, 54(2), 379-397. doi: 10.1177/0021955X16681470
- Bordini, E.A.F.; Ferreira, J.A.; Dubey, N.; Ribeiro, J.S.; de Souza Costa, C.A.; Soares, D.G.; Bottino, M.C. Injectable multifunctional drug delivery system for hard tissue regeneration under inflammatory microenvironments. ACS Appl. Bio Mater., 2021, 4(9), 6993-7006. doi: 10.1021/acsabm.1c00620 PMID: 35006932
- Liu, C.; Qin, W.; Wang, Y.; Ma, J.; Liu, J.; Wu, S.; Zhao, H. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int. J. Nanomedicine, 2021, 16, 8417-8432. doi: 10.2147/IJN.S339500 PMID: 35002236
- Vidović E.; Klee, D.; Höcker, H. Evaluation of water uptake and mechanical properties of biomedical polymers. J. Appl. Polym. Sci., 2013, 130(5), 3682-3688. doi: 10.1002/app.39624
- P B. S.; S, G.; J, P.; Muthusamy, S.; R, N.; Krishnakumar, G.S.; R, S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int. J. Biol. Macromol., 2022, 195, 179-189. doi: 10.1016/j.ijbiomac.2021.11.184 PMID: 34863969
- Killion, J.A.; Geever, L.M.; Devine, D.M.; Kennedy, J.E.; Higginbotham, C.L. Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application. J. Mech. Behav. Biomed. Mater., 2011, 4(7), 1219-1227. doi: 10.1016/j.jmbbm.2011.04.004 PMID: 21783130
- Tozzi, G.; De Mori, A.; Oliveira, A.; Roldo, M. Composite hydrogels for bone regeneration. Materials, 2016, 9(4), 267. doi: 10.3390/ma9040267 PMID: 28773392
- Wang, X.; Yu, Y.; Yang, C.; Shao, C.; Shi, K.; Shang, L.; Ye, F.; Zhao, Y. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv. Funct. Mater., 2021, 31(40), 2105190. doi: 10.1002/adfm.202105190
- Blatchley, M.R.; Gerecht, S. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed. Mater., 2015, 10(3), 034001. doi: 10.1088/1748-6041/10/3/034001 PMID: 25775039
- Li, Z.; Qu, T.; Ding, C.; Ma, C.; Sun, H.; Li, S.; Liu, X. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater., 2015, 13, 88-100. doi: 10.1016/j.actbio.2014.11.002 PMID: 25462840
- Zheng, Z.; Tan, Y.; Li, Y.; Liu, Y.; Yi, G.; Yu, C.Y.; Wei, H. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J. Control. Release, 2021, 335, 216-236. doi: 10.1016/j.jconrel.2021.05.023 PMID: 34022323
- Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr., 2020, 60(10), 1651-1666. doi: 10.1080/10408398.2019.1587737 PMID: 30892058
- Shit, S.C. Shah, PM Edible polymers: Challenges and opportunities. J. Polym., 2014, 2014, 427259. doi: 10.1155/2014/427259
- Chen, L.; Remondetto, G.E.; Subirade, M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol., 2006, 17(5), 272-283. doi: 10.1016/j.tifs.2005.12.011
- Farris, S.; Schaich, K.M.; Liu, L.; Piergiovanni, L.; Yam, K.L. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review. Trends Food Sci. Technol., 2009, 20(8), 316-332. doi: 10.1016/j.tifs.2009.04.003
- Parente, M.E.; Ochoa Andrade, A.; Ares, G.; Russo, F.; Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci., 2015, 37(5), 511-518. doi: 10.1111/ics.12227 PMID: 25854849
- Kim, S.J.; Kwon, S.S.; Jeon, S.H.; Yu, E.R.; Park, S.N. Enhanced skin delivery of liquiritigenin and liquiritin‐loaded liposome‐in‐hydrogel complex system. Int. J. Cosmet. Sci., 2014, 36(6), 553-560. doi: 10.1111/ics.12156 PMID: 25074560
- Purohit, P.; Bhatt, A.; Mittal, R.K.; Abdellattif, M.H.; Farghaly, T.A. Polymer Grafting and its chemical reactions. Front. Bioeng. Biotechnol., 2023, 10, 1044927. doi: 10.3389/fbioe.2022.1044927 PMID: 36714621
- Herrero, C.; Ayoob, A.; Hanes, J.; Peris, H. Spiral Therapeutics Inc, assignee. Apoptosis inhibitor formulations for prevention of hearing loss. U.S. Patent 16/740,181, 2020.
- Florek, C.; Armbruster, D.A.; Kerr, S.H.; Jain, S.; Julien, J.; Bikram-Liles, M. Biocompatible organogel matrices for intraoperative preparation of a drug delivery depot. U.S. Patent 16/851,177, 2020.
- Gu, Z.; Yu, J.; Zhang, Y.; Gallippi, C. Thrombin-responsive hydrogels and devices for auto-anticoagulant regulation. U.S. Patent 17/019,707, 2021.
- Naheed, S. Medication. U.S. Patent 20200282062A1, 2020.
- Clayman, R.V.; Jiang, P.; Schoenberg, M.; Tsipori, O. Thermosensitive bio-adhesive hydrogel for removal of ureteral and renal stones. U.S. Patent 11,576,744, 2023.
- Spiegel, A.J. Methodist Hospital System, assignee. Hydrogel devices and methods of making and use thereof. U.S. Patent 11,730,861, 2023.
- Pan, Y.; Hao, Z.; Zhao, X. Three-dimensional hydrogel-graphenebased biosensor and preparation method thereof. U.S. Patent 11,619,602, 2023.
- Kubota, R.; MacCabee, G.F.; Widjaja, F.; Gupta, A. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens. U.S. Patent 11,409,136, 2022.
- Ruptured Aneurysms Treated with Hydrogel Coils. NCT03252314, 2023.
- Comparative Clinical Performance of 59% Hioxifilcon a Contact Lenses vs. Marketed Hydrogel Contact Lens. NCT04671108 2023.
- MucoLox Formulation to Mitigate Mucositis Symptoms in Head/Neck Cancer. NCT03461354, 2023.
- Treatment of Knee Osteoarthritis with PAAG-OA. NCT04045431, 2023.
- Prostate-Rectal Separation with PEG Hydrogel and Its Effect on Decreasing Rectal Dose. NCT02212548, 2023.
- Clinical Performance of a Daily Disposable Toric Silicone Hydrogel Contact Lens. NCT04464044, 2023.
- TracelT Hydrogel in Localizing Bladder Tumors in Patients Undergoing Radiation Therapy for Bladder. NCT03125226, 2023.
- Performance of Toric Hydrogel Lenses Following a Refit with Toric Silicone Hydrogel Lenses for 1 Month. NCT03835221, 2023.
- Vijayasekaran, S.; Chirila, T.V.; Robertson, T.A.; Lou, X.; Fitton, J.H.; Hicks, C.R.; Constable, I.J. Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea: a 3-month study. J. Biomater. Sci. Polym. Ed., 2000, 11(6), 599-615. doi: 10.1163/156856200743896 PMID: 10981676
- Vegas, A.J.; Veiseh, O.; Doloff, J.C.; Ma, M.; Tam, H.H.; Bratlie, K.; Li, J.; Bader, A.R.; Langan, E.; Olejnik, K.; Fenton, P.; Kang, J.W.; Hollister-Locke, J.; Bochenek, M.A.; Chiu, A.; Siebert, S.; Tang, K.; Jhunjhunwala, S.; Aresta-Dasilva, S.; Dholakia, N.; Thakrar, R.; Vietti, T.; Chen, M.; Cohen, J.; Siniakowicz, K.; Qi, M.; McGarrigle, J.; Graham, A.C.; Lyle, S.; Harlan, D.M.; Greiner, D.L.; Oberholzer, J.; Weir, G.C.; Langer, R.; Anderson, D.G. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol., 2016, 34(3), 345-352. doi: 10.1038/nbt.3462 PMID: 26807527
- Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009. doi: 10.1016/j.nantod.2020.101009
- Wuschko, S.; Gugerell, A.; Chabicovsky, M.; Hofbauer, H.; Laggner, M.; Erb, M.; Ostler, T.; Peterbauer, A.; Suessner, S.; Demyanets, S.; Leuschner, J.; Moser, B.; Mildner, M.; Ankersmit, H.J. Toxicological testing of allogeneic secretome derived from peripheral mononuclear cells (APOSEC): A novel cell-free therapeutic agent in skin disease. Sci. Rep., 2019, 9(1), 5598. doi: 10.1038/s41598-019-42057-5 PMID: 30944367
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426. doi: 10.1038/s41392-021-00830-x PMID: 34916490
- Bai, Q.; Zheng, C.; Chen, W.; Sun, N.; Gao, Q.; Liu, J.; Hu, F.; Pimpi, S.; Yan, X.; Zhang, Y.; Lu, T. Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Mater. Adv., 2022, 3(17), 6707-6727. doi: 10.1039/D2MA00695B
- Wang, Y.; Yuan, X.; Yao, B.; Zhu, S.; Zhu, P.; Huang, S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact. Mater., 2022, 17, 178-194. doi: 10.1016/j.bioactmat.2022.01.024 PMID: 35386443
- Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639. doi: 10.1016/j.biomaterials.2022.121639 PMID: 35779481
- Kasai, R.D.; Radhika, D.; Archana, S.; Shanavaz, H.; Koutavarapu, R.; Lee, D.Y.; Shim, J. A review on hydrogels classification and recent developments in biomedical applications. Int. J. Polym. Mater., 2023, 72(13), 1059-1069. doi: 10.1080/00914037.2022.2075872
- Liu, X.; Steiger, C.; Lin, S.; Parada, G.A.; Liu, J.; Chan, H.F.; Yuk, H.; Phan, N.V.; Collins, J.; Tamang, S.; Traverso, G.; Zhao, X. Ingestible hydrogel device. Nat. Commun., 2019, 10(1), 493. doi: 10.1038/s41467-019-08355-2 PMID: 30700712
- Danyuo, Y.; Ani, C.J.; Salifu, A.A.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Obanawu, V.O.; Akpan, U.M.; Odusanya, O.S.; Abade-Abugre, M.; McBagonluri, F.; Soboyejo, W.O. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer. Sci. Rep., 2019, 9(1), 3862. doi: 10.1038/s41598-019-39578-4 PMID: 30846795
- OConnell, C.D.; Di Bella, C.; Thompson, F.; Augustine, C.; Beirne, S.; Cornock, R.; Richards, C.J.; Chung, J.; Gambhir, S.; Yue, Z.; Bourke, J.; Zhang, B.; Taylor, A.; Quigley, A.; Kapsa, R.; Choong, P.; Wallace, G.G. Development of the Biopen: A handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 2016, 8(1), 015019. doi: 10.1088/1758-5090/8/1/015019 PMID: 27004561
Supplementary files
