Antibacterial Effects of Nanocomposites on Efflux Pump Expression and Biofilm Production in Pseudomonas aeruginosa: A Systematic Review


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:Pseudomonas aeruginosa is an opportunistic gram-negative pathogen with multiple mechanisms of resistance to antibiotics.

Aim:This systematic review aimed to study the antibacterial effects of nanocomposites on efflux pump expression and biofilm production in P. aeruginosa.

Methods:The search was conducted from January 1, 2000, to May 30, 2022, using terms such as (P. aeruginosa) AND (biofilm) AND (antibiofilm activity) AND (anti-Efflux Pump Expression activity) AND (nanoparticles) AND (Efflux Pump Expression) AND (Solid Lipid NPS) AND (Nano Lipid Carriers). Many databases are included in the collection, including ScienceDirect, PubMed, Scopus, Ovid, and Cochrane.

Results:A list of selected articles was retrieved by using the relevant keywords. A total of 323 published papers were selected and imported into the Endnote library (version X9). Following the removal of duplicates, 240 were selected for further processing. Based on the titles and abstracts of the articles, 54 irrelevant studies were excluded. Among the remaining 186 articles, 54 were included in the analysis because their full texts were accessible. Ultimately, 74 studies were selected based on inclusion/exclusion criteria.

Conclusion:Recent studies regarding the impact of NPs on drug resistance in P. aeruginosa found that various nanostructures were developed with different antimicrobial properties. The results of our study suggest that NPs may be a feasible alternative for combating microbial resistance in P. aeruginosa by blocking flux pumps and inhibiting biofilm formation.

Авторлар туралы

Pegah Shakib

Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Reza Saki

Department of Microbiology, Kermanshah University of Medical Sciences

Email: info@benthamscience.net

Abdolrazagh Marzban

Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Gholamreza Goudarzi

Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Suresh Ghotekar

Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai

Email: info@benthamscience.net

Kourosh Cheraghipour

Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Zolfaghari

Department of Microbiology, Qom Branch, Islamic Azad University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Costerton, J.W.; Cheng, K.J.; Geesey, G.G.; Ladd, T.I.; Nickel, J.C.; Dasgupta, M.; Marrie, T.J. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol., 1987, 41(1), 435-464. doi: 10.1146/annurev.mi.41.100187.002251 PMID: 3318676
  2. Høiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.; Moser, C.; Jensen, P.Ø.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The clinical impact of bacterial biofilms. Int. J. Oral Sci., 2011, 3(2), 55-65. doi: 10.4248/IJOS11026 PMID: 21485309
  3. Driscoll, J.A.; Brody, S.L.; Kollef, M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs, 2007, 67(3), 351-368. doi: 10.2165/00003495-200767030-00003 PMID: 17335295
  4. Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol., 2003, 57(1), 677-701. doi: 10.1146/annurev.micro.57.030502.090720 PMID: 14527295
  5. Khaledi, A.; Weimann, A.; Schniederjans, M.; Asgari, E.; Kuo, T.H.; Oliver, A.; Cabot, G.; Kola, A.; Gastmeier, P.; Hogardt, M.; Jonas, D.; Mofrad, M.R.K.; Bremges, A.; McHardy, A.C. Häussler, S. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning‐enabled molecular diagnostics. EMBO Mol. Med., 2020, 12(3), e10264. doi: 10.15252/emmm.201910264 PMID: 32048461
  6. Hadadi-Fishani, M.; Khaledi, A.; Fatemi-Nasab, Z.S.J.I.M. Correlation between biofilm formation and antibiotic resistance in Pseudomonas aeruginosa: A meta-analysis. Infez. Med., 2020, 28(1), 47-54. PMID: 32172260
  7. Salomoni, R.; Léo, P.; Montemor, A.; Rinaldi, B.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl., 2017, 10, 115-121. doi: 10.2147/NSA.S133415 PMID: 28721025
  8. Poole, K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 255-264. PMID: 11321581
  9. Aeschlimann, J.R. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Pharmacotherapy, 2003, 23(7), 916-924. doi: 10.1592/phco.23.7.916.32722 PMID: 12885104
  10. Joji, R.M.; Al Rashed, N.; Saeed, N.; Bindayna, K. Detection of overexpression of efflux pump expression in fluoroquinolone-resistant Pseudomonas aeruginosa isolates. Int. J. Appl. Basic Med. Res., 2020, 10(1), 37-42. doi: 10.4103/ijabmr.IJABMR_90_19 PMID: 32002384
  11. Huang, X.; Li, T.; Zhang, X.; Deng, J.; Yin, X. Bimetallic palladium@copper nanoparticles: Lethal effect on the gram-negative bacterium Pseudomonas aeruginosa. Mater. Sci. Eng. C, 2021, 129, 112392. doi: 10.1016/j.msec.2021.112392 PMID: 34579911
  12. Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed., 2019, 14, 1469. doi: 10.2147/IJN.S191340
  13. Singh, N.; Paknikar, K.M.; Rajwade, J. RNA-sequencing reveals a multitude of effects of silver nanoparticles on Pseudomonas aeruginosa biofilms. Environ. Sci. Nano, 2019, 6(6), 1812-1828. doi: 10.1039/C8EN01286E
  14. Ju, X.; Chen, J.; Zhou, M.; Zhu, M.; Li, Z.; Gao, S.; Ou, J.; Xu, D.; Wu, M.; Jiang, S.; Hu, Y.; Tian, Y.; Niu, Z. Combating Pseudomonas aeruginosa biofilms by a chitosan-PEG-peptide conjugate via changes in assembled structure. ACS Appl. Mater. Interfaces, 2020, 12(12), 13731-13738. doi: 10.1021/acsami.0c02034 PMID: 32155326
  15. Singh, N.; Romero, M.; Travanut, A.; Monteiro, P.F.; Jordana-Lluch, E.; Hardie, K.R.; Williams, P.; Alexander, M.R.; Alexander, C. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of Pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater. Sci., 2019, 7(10), 4099-4111. doi: 10.1039/C9BM00773C PMID: 31355397
  16. Subhaswaraj, P.; Barik, S.; Macha, C.; Chiranjeevi, P.V.; Siddhardha, B. Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. Lebensm. Wiss. Technol., 2018, 97, 752-759. doi: 10.1016/j.lwt.2018.08.011
  17. Wang, Y.; Venter, H.; Ma, S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets, 2016, 17(6), 702-719. doi: 10.2174/1389450116666151001103948 PMID: 26424403
  18. Dey, N.; Kamatchi, C.; Vickram, A.S.; Anbarasu, K.; Thanigaivel, S.; Palanivelu, J.; Pugazhendhi, A.; Ponnusamy, V.K. Role of nanomaterials in deactivating multiple drug resistance efflux pumps – A review. Environ. Res., 2022, 204(Pt A), 111968. doi: 10.1016/j.envres.2021.111968 PMID: 34453898
  19. Christena, L.R.; Mangalagowri, V.; Pradheeba, P.; Ahmed, K.B.A.; Shalini, B.I.S.; Vidyalakshmi, M.; Anbazhagan, V. Sai subramanian, N. Copper nanoparticles as an efflux pump inhibitor to tackle drug resistant bacteria. RSC Advances, 2015, 5(17), 12899-12909. doi: 10.1039/C4RA15382K
  20. Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol., 2019, 53, 101174. doi: 10.1016/j.jddst.2019.101174
  21. Nsayef Muslim, S.; Mohammed Ali, A.N.; Auda, I.G. Anti‐biofilm and anti‐virulence effects of silica oxide nanoparticle–conjugation of lectin purified from Pseudomonas aeruginosa. IET Nanobiotechnol., 2021, 15(3), 318-328. doi: 10.1049/nbt2.12022 PMID: 34694672
  22. Dorri, K.; Modaresi, F.; Shakibaie, M.R.; Moazamian, E. Effect of gold nanoparticles on the expression of efflux pump mexA and mexB genes of Pseudomonas aeruginosa strains by Quantitative real-time PCR. Pharmacia, 2022, 69(1), 125-133. doi: 10.3897/pharmacia.69.e77608
  23. Liu, L.; Li, J.H.; Zi, S.F.; Liu, F.R.; Deng, C.; Ao, X.; Zhang, P. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2019, 103(15), 6195-6204. doi: 10.1007/s00253-019-09905-w PMID: 31129741
  24. LewisOscar. F.; Nithya, C.; Vismaya, S.; Arunkumar, M.; Pugazhendhi, A.; Nguyen-Tri, P.; Alharbi, S.A.; Alharbi, N.S.; Thajuddin, N. In vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14 biofilm formation, their application on urinary catheter. Prog. Org. Coat., 2021, 151, 106058. doi: 10.1016/j.porgcoat.2020.106058
  25. Targhi, A.A.; Moammeri, A.; Jamshidifar, E.; Abbaspour, K.; Sadeghi, S.; Lamakani, L.; Akbarzadeh, I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg. Chem., 2021, 115, 105116. doi: 10.1016/j.bioorg.2021.105116 PMID: 34333420
  26. Paunova-Krasteva, T.; Haladjova, E.; Petrov, P.; Forys, A.; Trzebicka, B.; Topouzova-Hristova, T.; R., Stoitsova S. Destruction of Pseudomonas aeruginosa pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles. Biofouling, 2020, 36(6), 679-695. doi: 10.1080/08927014.2020.1799354 PMID: 32741293
  27. Patel, K.K.; Surekha, D.B.; Tripathi, M.; Anjum, M.M.; Muthu, M.S.; Tilak, R.; Agrawal, A.K.; Singh, S. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: A study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol. Pharm., 2019, 16(9), 3916-3925. doi: 10.1021/acs.molpharmaceut.9b00527 PMID: 31318574
  28. Madhi, M.; Hasani, A.; Mojarrad, J.S.; Rezaee, M.A.; Zarrini, G.; Davaran, S. Impact of chitosan and silver nanoparticles laden with antibiotics on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Arch. Clin. Infect. Dis., 2020, 15(4), e100195. doi: 10.5812/archcid.100195
  29. Mohammad, A.; Molavi, F. Dolatabadi SJJoIUoMSV. Synergistic effect of silver nanoparticles and streptomycin antibiotic on the MexX gene expression of pump efflux system in drug-resistant Pseudomonas aeruginosa strains. J. Ilam Univ. Med. Sci., 2022, 30(2), 41-50.
  30. Silva Santos, K.; Barbosa, A.; Pereira da Costa, L.; Pinheiro, M.; Oliveira, M.; Ferreira, P.F. Silver nanocomposite biosynthesis: Antibacterial activity against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii. Molecules, 2016, 21(9), 1255. doi: 10.3390/molecules21091255 PMID: 27657031
  31. Campo-Beleño, C.; Villamizar-Gallardo, R.A.; López-Jácome, L.E.; González, E.E.; Muñoz-Carranza, S.; Franco, B.; Morales- Espinosa, R.; Coria-Jimenez, R.; Franco-Cendejas, R.; Hernández- Durán, M.; Lara-Martínez, R.; Jiménez-García, L.F.; Fernández- Presas, A.M.; García-Contreras, R. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett. Appl. Microbiol., 2022, 75(3), 680-688. doi: 10.1111/lam.13759 PMID: 35687297
  32. Kumar, S.; Paliya, B.S.; Singh, B.N. Superior inhibition of virulence and biofilm formation of Pseudomonas aeruginosa PAO1 by phyto-synthesized silver nanoparticles through anti-quorum sensing activity. Microb. Pathog., 2022, 170, 105678. doi: 10.1016/j.micpath.2022.105678 PMID: 35820580
  33. Saeki, E.K.; Yamada, A.Y.; de Araujo, L.A.; Anversa, L.; Garcia, D.O.; de Souza, R.L.B.; Martins, H.M.; Kobayashi, R.K.T.; Nakazato, G. Subinhibitory concentrations of biogenic silver nanoparticles affect motility and biofilm formation in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol., 2021, 11, 656984. doi: 10.3389/fcimb.2021.656984 PMID: 33869087
  34. Bhargava, A.; Pareek, V.; Roy Choudhury, S.; Panwar, J.; Karmakar, S. Karmakar SJAam, interfaces. Superior bactericidal efficacy of fucose-functionalized silver nanoparticles against Pseudomonas aeruginosa PAO1 and prevention of its colonization on urinary catheters. ACS Appl. Mater. Interfaces, 2018, 10(35), 29325-29337. doi: 10.1021/acsami.8b09475 PMID: 30096228
  35. El-Deeb, N.M.; Abo-Eleneen, M.A.; Al-Madboly, L.A.; Sharaf, M.M.; Othman, S.S.; Ibrahim, O.M.; Mubarak, M.S. Biogenically synthesized polysaccharides-capped silver nanoparticles: Immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Front. Bioeng. Biotechnol., 2020, 8, 643. doi: 10.3389/fbioe.2020.00643 PMID: 32793561
  36. Guo, J.; Qin, S.; Wei, Y.; Liu, S.; Peng, H.; Li, Q.; Luo, L.; Lv, M. Silver nanoparticles exert concentration‐dependent influences on biofilm development and architecture. Cell Prolif., 2019, 52(4), e12616. doi: 10.1111/cpr.12616 PMID: 31050052
  37. Korzekwa, K.; Kędziora, A.; Stańczykiewicz, B.; Bugla- Płoskońska, G.; Wojnicz, D. Benefits of usage of immobilized silver nanoparticles as Pseudomonas aeruginosa antibiofilm factors. Int. J. Mol. Sci., 2021, 23(1), 284. doi: 10.3390/ijms23010284 PMID: 35008720
  38. Shariati, A.; Asadian, E.; Fallah, F.; Azimi, T.; Hashemi, A.; Yasbolaghi, S.J.; Taati, M.M. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect. Drug Resist., 2019, 12, 2223-2235. doi: 10.2147/IDR.S213200 PMID: 31440064
  39. Shahbandeh, M.; Taati Moghadam, M.; Mirnejad, R.; Mirkalantari, S.; Mirzaei, M. The efficacy of AgNO3 nanoparticles alone and conjugated with imipenem for combating extensively drug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2020, 15, 6905-6916. doi: 10.2147/IJN.S260520
  40. Abdolhosseini, M.; Zamani, H.; Salehzadeh, A. Synergistic antimicrobial potential of ciprofloxacin with silver nanoparticles conjugated to thiosemicarbazide against ciprofloxacin resistant Pseudomonas aeruginosa by attenuation of MexA-B efflux pump genes. Biologia, 2019, 74(9), 1191-1196. doi: 10.2478/s11756-019-00269-0
  41. Al-Obaidi, H.; Kalgudi, R.; Zariwala, M.G. Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles with synergetic effect against Pseudomonas aeruginosa. Eur. J. Pharm. Biopharm., 2018, 128, 27-35. doi: 10.1016/j.ejpb.2018.04.006 PMID: 29654885
  42. Singh, P.; Pandit, S. Garnæs, J.; Tunjic, S.; Mokkapati, V.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R.V.; Daugaard, A.E.; Baun, A.; Mijakovic, I. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomedicine, 2018, 13, 3571-3591. doi: 10.2147/IJN.S157958 PMID: 29950836
  43. Slavin, Y.N.; Ivanova, K.; Hoyo, J.; Perelshtein, I.; Owen, G.; Haegert, A.; Lin, Y.Y.; LeBihan, S.; Gedanken, A. Häfeli, U.O.; Tzanov, T.; Bach, H. Novel lignin-capped silver nanoparticles against multidrug-resistant bacteria. ACS Appl. Mater. Interfaces, 2021, 13(19), 22098-22109. doi: 10.1021/acsami.0c16921 PMID: 33945683
  44. Yang, Y.; Alvarez, P.J.J.E.S.; Letters, T. Sublethal concentrations of silver nanoparticles stimulate biofilm development. Environ. Sci. Technol., 2015, 2(8), 221-226.
  45. de Lacerda Coriolano, D.; de Souza, J.B.; Bueno, E.V.; Medeiros, S.M.F.R.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Braz. J. Microbiol., 2021, 52(1), 267-278. doi: 10.1007/s42770-020-00406-x PMID: 33231865
  46. Parasuraman, P. R y, T.; Shaji, C.; Sharan, A.; Bahkali, A.H.; Al-Harthi, H.F.; Syed, A.; Anju, V.T.; Dyavaiah, M.; Siddhardha, B. Biogenic silver nanoparticles decorated with methylene blue potentiated the photodynamic inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics, 2020, 12(8), 709. doi: 10.3390/pharmaceutics12080709 PMID: 32751176
  47. Ding, F.; Songkiatisak, P.; Cherukuri, P.K.; Huang, T.; Xu, X.H.N. Xu X-HNJAo. Size-dependent inhibitory effects of antibiotic drug nanocarriers against Pseudomonas aeruginosa. ACS Omega, 2018, 3(1), 1231-1243. doi: 10.1021/acsomega.7b01956 PMID: 29399654
  48. Gondil, V.S.; Kalaiyarasan, T.; Bharti, V.K.; Chhibber, S. Antibiofilm potential of Seabuckthorn silver nanoparticles (SBT@AgNPs) against Pseudomonas aeruginosa. 3 Biotech, 2019, 9(11), 402. doi: 10.1007/s13205-019-1947-6 PMID: 31681523
  49. Hůlková, M.; Soukupová, J.; Carlson, R.P.; Maršálek, B.; Biointerfaces, S.B. Biointerfaces, S.B. Interspecies interactions can enhance Pseudomonas aeruginosa tolerance to surfaces functionalized with silver nanoparticles. Colloids Surf. B Biointerfaces, 2020, 192, 111027. doi: 10.1016/j.colsurfb.2020.111027 PMID: 32387859
  50. Chakraborty, P.; Paul, P.; Kumari, M.; Bhattacharjee, S.; Singh, M.; Maiti, D.; Dastidar, D.G.; Akhter, Y.; Kundu, T.; Das, A.; Tribedi, P. Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: An individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Folia Microbiol., 2021, 66(2), 255-271. doi: 10.1007/s12223-020-00841-1 PMID: 33411249
  51. Qureshi, R.; Qamar, M.U.; Shafique, M.; Muzammil, S.; Rasool, M.H.; Ahmad, I.; Ejaz, H. Antibacterial efficacy of silver nanoparticles against metallo-β-lactamase (blaNDM, blaVIM, blaOXA) producing clinically isolated Pseudomonas aeruginosa. Pak. J. Pharm. Sci., 2021, 34(S1), 237-243. PMID: 34275847
  52. Pompilio, A.; Geminiani, C.; Bosco, D.; Rana, R.; Aceto, A.; Bucciarelli, T.; Scotti, L.; Di Bonaventura, G. Electrochemically synthesized silver nanoparticles are active against planktonic and biofilm cells of Pseudomonas aeruginosa and other cystic fibrosis-associated bacterial pathogens. Front. Microbiol., 2018, 9, 1349. doi: 10.3389/fmicb.2018.01349 PMID: 30026732
  53. Aziz, S.A.A.A.; Mahmoud, R.; Mohamed, M.B.E.D. Control of biofilm-producing Pseudomonas aeruginosa isolated from dairy farm using Virokill silver nano-based disinfectant as an alternative approach. Sci. Rep., 2022, 12(1), 9452. doi: 10.1038/s41598-022-13619-x PMID: 35676412
  54. El-Telbany, M.; El-Sharaki, A. Antibacterial and anti-biofilm activity of silver nanoparticles on multi-drug resistance Pseudomonas Aeruginosa isolated from dental-implant. J. Oral Biol. Craniofac. Res., 2022, 12(1), 199-203. doi: 10.1016/j.jobcr.2021.12.002 PMID: 35028283
  55. Ugalde-Arbizu, M.; Aguilera-Correa, J.J.; Mediero, A.; Esteban, J. Páez, P.L.; San Sebastian, E.; Gómez-Ruiz, S. Hybrid nanosystems based on nicotinate-functionalized mesoporous silica and silver chloride nanoparticles loaded with phenytoin for preventing Pseudomonas aeruginosa biofilm development. Pharmaceuticals, 2022, 15(7), 884. doi: 10.3390/ph15070884 PMID: 35890182
  56. Hemmati, F.; Salehi, R.; Ghotaslou, R.; Kafil, H.S.; Hasani, A.; Gholizadeh, P.; Rezaee, M.A. The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Biol. Macromol., 2020, 163, 2248-2258. doi: 10.1016/j.ijbiomac.2020.09.037 PMID: 32920055
  57. Madhi, M.; Hasani, A.; Mojarrad, J.S.; Rezaee, M.A.; Zarrini, G.; Davaran, S. Nano-strategies in pursuit of efflux pump activeness in Acinetobacter baumannii and Pseudomonas aeruginosa. Gene Rep., 2020, 21, 100915. doi: 10.1016/j.genrep.2020.100915
  58. Badawy, M.S.E.M.; Riad, O.K.M.; Taher, F.A.; Zaki, S.A. Chitosan and chitosan-zinc oxide nanocomposite inhibit expression of LasI and RhlI genes and quorum sensing dependent virulence factors of Pseudomonas aeruginosa. Int. J. Biol. Macromol., 2020, 149, 1109-1117. doi: 10.1016/j.ijbiomac.2020.02.019 PMID: 32032711
  59. Abdelraheem, W.M.; Mohamed, E.S. The effect of Zinc Oxide nanoparticles on Pseudomonas aeruginosa biofilm formation and virulence genes expression. J. Infect. Dev. Ctries., 2021, 15(6), 826-832. doi: 10.3855/jidc.13958 PMID: 34242193
  60. García-Lara B.; Saucedo-Mora, M.Á.; Roldán-Sánchez, J.A.; Pérez-Eretza, B.; Ramasamy, M.; Lee, J.; Coria-Jimenez, R.; Tapia, M.; Varela-Guerrero, V.; García-Contreras, R. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett. Appl. Microbiol., 2015, 61(3), 299-305. doi: 10.1111/lam.12456 PMID: 26084709
  61. Fadwa, A.O.; Alkoblan, D.K.; Mateen, A.; Albarag, A.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci., 2021, 28(1), 928-935. doi: 10.1016/j.sjbs.2020.09.064 PMID: 33424384
  62. El-Shounya, W.A.; Moawad, M.; Haider, A.S.; Ali, S. Nouh SJEJoB. Antibacterial potential of a newly synthesized zinc peroxide nanoparticles (ZnO2-NPs) to combat biofilm-producing multi-drug resistant Pseudomonas aeruginosa. Egypt. J. Bot., 2019, 59(3), 657-666.
  63. Eleftheriadou, I.; Giannousi, K.; Protonotariou, E.; Skoura, L.; Arsenakis, M.; Dendrinou-Samara, C.; Sivropoulou, A. Cocktail of CuO, ZnO, or CuZn nanoparticles and antibiotics for combating multidrug-resistant Pseudomonas aeruginosa via efflux pump inhibition. ACS Appl. Nano Mater., 2021, 4(9), 9799-9810. doi: 10.1021/acsanm.1c02208
  64. Rahmati, A.; Shakib, P.; Javadi, A. Zolfaghari, MRJB Synthesis and evaluation of antimicrobial activities of Gold and ZnO nanoparticles on inhibiting the mexab-oprm efflux pump in pseudomonas aeruginosa isolates. Bio. Nano. Sci, 2022, 12(1), 1455-1463. doi: 10.1007/s12668-022-00992-0
  65. Khan, F.; Kang, M.G.; Jo, D.M.; Chandika, P.; Jung, W.K.; Kang, H.W.; Kim, Y.M. Phloroglucinol-gold and-zinc oxide nanoparticles: Antibiofilm and antivirulence activities towards Pseudomonas aeruginosa PAO1. Mar. Drugs, 2021, 19(11), 601. doi: 10.3390/md19110601 PMID: 34822472
  66. Mirzaei, S.Z.; Ahmadi Somaghian, S.; Lashgarian, H.E.; Karkhane, M.; Cheraghipour, K.; Marzban, A. Phyco-fabrication of bimetallic nanoparticles (zinc–selenium) using aqueous extract of Gracilaria corticata and its biological activity potentials. Ceram. Int., 2021, 47(4), 5580-5586. doi: 10.1016/j.ceramint.2020.10.142
  67. Aswathanarayan, J.B.; Vittal, R.R. Antimicrobial, biofilm inhibitory and anti-infective activity of metallic nanoparticles against pathogens MRSA and Pseudomonas aeruginosa PA01. Pharm. Nanotechnol., 2017, 5(2), 148-153. doi: 10.2174/2211738505666170424121944 PMID: 28440203
  68. Mubdir, D.M.; Al-Shukri, M.S. Antimicrobial activity of gold nanoparticles and SWCNT-COOH on viability of Pseudomonas aeruginosa. Ann. Rom. Soc. Cell Biol., 2021, 5507-5513.
  69. Arya, S.S.; Sharma, M.M.; Das, R.K.; Rookes, J.; Cahill, D.; Lenka, S.K. Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon, 2019, 5(7), e02021. doi: 10.1016/j.heliyon.2019.e02021 PMID: 31312733
  70. Ali, S.G.; Jalal, M.; Ahmad, H.; Umar, K.; Ahmad, A.; Alshammari, M.B.; Khan, H.M. Biosynthesis of gold nanoparticles and its effect against Pseudomonas aeruginosa. Molecules, 2022, 27(24), 8685. doi: 10.3390/molecules27248685 PMID: 36557818
  71. Qais, F.A.; Ahmad, I.; Altaf, M.; Alotaibi, S.H. Biofabrication of gold nanoparticles using Capsicum annuum extract and its antiquorum sensing and antibiofilm activity against bacterial pathogens. ACS Omega, 2021, 6(25), 16670-16682. doi: 10.1021/acsomega.1c02297 PMID: 34235339
  72. Habimana, O.; Zanoni, M.; Vitale, S.; O’Neill, T.; Scholz, D.; Xu, B.; Casey, E. One particle, two targets: A combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms. J. Colloid Interface Sci., 2018, 526, 419-428. doi: 10.1016/j.jcis.2018.05.014 PMID: 29763820
  73. Satisha, S.; Syed, B.; Prasad, N.M.N. Endogenic mediated synthesis of gold nanoparticles bearing bactericidal activity. J. Microsc. Ultrastruct., 2016, 4(3), 162-166. doi: 10.1016/j.jmau.2016.01.004 PMID: 30023223
  74. Zhang, C.; Shi, D.T.; Yan, K.C.; Sedgwick, A.C.; Chen, G.R.; He, X.P.; James, T.D.; Ye, B.; Hu, X.L.; Chen, D. A glycoconjugate-based gold nanoparticle approach for the targeted treatment of Pseudomonas aeruginosa biofilms. Nanoscale, 2020, 12(45), 23234-23240. doi: 10.1039/D0NR05365A PMID: 33206087
  75. Khare, T.; Mahalunkar, S.; Shriram, V.; Gosavi, S.; Kumar, V. Embelin-loaded chitosan gold nanoparticles interact synergistically with ciprofloxacin by inhibiting efflux pumps in multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. Environ. Res., 2021, 199, 111321. doi: 10.1016/j.envres.2021.111321 PMID: 33989619
  76. Rajkumari, J.; Busi, S.; Vasu, A.C.; Reddy, P. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microb. Pathog., 2017, 107, 261-269. doi: 10.1016/j.micpath.2017.03.044 PMID: 28377235
  77. Armijo, L.M.; Wawrzyniec, S.J.; Kopciuch, M.; Brandt, Y.I.; Rivera, A.C.; Withers, N.J.; Cook, N.C.; Huber, D.L.; Monson, T.C.; Smyth, H.D.C. Osiński, M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnology, 2020, 18(1), 35. doi: 10.1186/s12951-020-0588-6 PMID: 32070354
  78. Pham, D.T.N.; Khan, F.; Phan, T.T.V.; Park, S.; Manivasagan, P.; Oh, J.; Kim, Y.M. Biofilm inhibition, modulation of virulence and motility properties by FeOOH nanoparticle in Pseudomonas aeruginosa. Braz. J. Microbiol., 2019, 50(3), 791-805. doi: 10.1007/s42770-019-00108-z PMID: 31250405
  79. Sharif, R. Effect of iron oxide nanoparticles and probiotic bifidobacterium bifidum on mexa gene expression in drug resistant isolates of pseudomonas aeruginosa. Resen. Med., 2019, 43(3), 118-123.
  80. Baig, U.; Ansari, M.A.; Gondal, M.A.; Akhtar, S.; Khan, F.A.; Falath, W.S. Single step production of high-purity copper oxide-titanium dioxide nanocomposites and their effective antibacterial and anti-biofilm activity against drug-resistant bacteria. Mater. Sci. Eng. C, 2020, 113, 110992. doi: 10.1016/j.msec.2020.110992 PMID: 32487404
  81. Singh, N.; Paknikar, K.M.; Rajwade, J. Gene expression is influenced due to ‘nano’ and ‘ionic’ copper in pre-formed Pseudomonas aeruginosa biofilms. Environ. Res., 2019, 175, 367-375. doi: 10.1016/j.envres.2019.05.034 PMID: 31153105
  82. Li, N.; Wang, L.; Yan, H.; Wang, M.; Shen, D.; Yin, J.; Shentu, J. Effects of low-level engineered nanoparticles on the quorum sensing of Pseudomonas aeruginosa PAO1. Environ. Sci. Pollut. Res. Int., 2018, 25(7), 7049-7058. doi: 10.1007/s11356-017-0947-5 PMID: 29273994
  83. Hiebner, D.W.; Barros, C.; Quinn, L.; Vitale, S.; Casey, E. Surface functionalization-dependent localization and affinity of SiO2 nanoparticles within the biofilm EPS matrix. Biofilm, 2020, 2, 100029. doi: 10.1016/j.bioflm.2020.100029 PMID: 33447814
  84. Memar, M.Y.; Yekani, M.; Ghanbari, H.; Nabizadeh, E.; Vahed, S.Z.; Dizaj, S.M.; Sharifi, S. Antimicrobial and antibiofilm activities of meropenem loaded-mesoporous silica nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. J. Biomater. Appl., 2021, 36(4), 605-612. doi: 10.1177/08853282211003848 PMID: 33722086
  85. Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol., 2015, 29, 235-241. doi: 10.1016/j.jtemb.2014.07.020 PMID: 25175509
  86. Prateeksha; Singh, B.R.; Shoeb, M.; Sharma, S.; Naqvi, A.H.; Gupta, V.K.; Singh, B.N. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front. Cell. Infect. Microbiol., 2017, 7, 93. doi: 10.3389/fcimb.2017.00093 PMID: 28386534
  87. Jegel, O.; Pfitzner, F.; Gazanis, A. Oberländer, J.; Pütz, E.; Lange, M.; von der Au, M.; Meermann, B.; Mailänder, V.; Klasen, A.; Heermann, R.; Tremel, W. Transparent polycarbonate coated with CeO 2 nanozymes repel Pseudomonas aeruginosa PA14 biofilms. Nanoscale, 2021, 14(1), 86-98. doi: 10.1039/D1NR03320D PMID: 34897345
  88. Xu, Y.; Wang, C.; Hou, J.; Wang, P.; You, G.; Miao, L. Mechanistic understanding of cerium oxide nanoparticle-mediated biofilm formation in Pseudomonas aeruginosa. Environ. Sci. Pollut. Res. Int., 2018, 25(34), 34765-34776. doi: 10.1007/s11356-018-3418-8 PMID: 30324376
  89. Zubair, M.; Husain, F.M.; Qais, F.A.; Alam, P.; Ahmad, I.; Albalawi, T.; Ahmad, N.; Alam, M.; Baig, M.H.; Dong, J-J.; Fatima, F.; Alsayed, B. Bio-fabrication of titanium oxide nanoparticles from Ochradenus arabicus to obliterate biofilms of drug-resistant Staphylococcus aureus and Pseudomonas aeruginosa isolated from diabetic foot infections. Appl. Nanosci., 2021, 11(2), 375-387. doi: 10.1007/s13204-020-01630-5
  90. Rajkumari, J.; Magdalane, C.M.; Siddhardha, B.; Madhavan, J.; Ramalingam, G.; Al-Dhabi, N.A.; Arasu, M.V.; Ghilan, A.K.M.; Duraipandiayan, V.; Kaviyarasu, K. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J. Photochem. Photobiol. B, 2019, 201, 111667. doi: 10.1016/j.jphotobiol.2019.111667 PMID: 31683167
  91. Ahmed, F.Y.; Aly, U.F.; Abd El-Baky, R.M.; Waly, N.G.F.M. Effect of titanium dioxide nanoparticles on the expression of efflux pump and quorum-sensing genes in MDR Pseudomonas aeruginosa isolates. Antibiotics, 2021, 10(6), 625. doi: 10.3390/antibiotics10060625 PMID: 34073802
  92. Darabpour, E.; Doroodmand, M.M.; Halabian, R.; Imani, F.A.A. Sulfur-functionalized fullerene nanoparticle as an inhibitor and eliminator agent on Pseudomonas aeruginosa biofilm and expression of toxA gene. Microb. Drug Resist., 2019, 25(4), 594-602. doi: 10.1089/mdr.2018.0008 PMID: 30461338
  93. Kher, L.; Santoro, D.; Kelley, K.; Gibson, D.; Schultz, G. Effect of nanosulfur against multidrug-resistant Staphylococcus pseudintermedius and Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 2022, 106(8), 3201-3213. doi: 10.1007/s00253-022-11872-8 PMID: 35384449
  94. Maruthupandy, M.; Rajivgandhi, G.N.; Quero, F.; Li, W-J. Anti-quorum sensing and anti-biofilm activity of nickel oxide nanoparticles against Pseudomonas aeruginosa. J. Environ. Chem. Eng., 2020, 8(6), 104533. doi: 10.1016/j.jece.2020.104533
  95. Alvares, J.J.; Furtado, I.J. Anti-Pseudomonas aeruginosa biofilm activity of tellurium nanorods biosynthesized by cell lysate of Haloferax alexandrinus GUSF-1(KF796625). Biometals, 2021, 34(5), 1007-1016. doi: 10.1007/s10534-021-00323-y PMID: 34173930
  96. Ibrahim, N.; Akindoyo, J.O.; Mariatti, M. Recent development in silver-based ink for flexible electronics. J. Sci-adv. Mater. Dev., 2022, 7(1), 100395. doi: 10.1016/j.jsamd.2021.09.002
  97. Senthamarai, M.D.; Malaikozhundan, B. Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle marmelos (L.) - Antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Mater. Today Commun., 2022, 30, 103228. doi: 10.1016/j.mtcomm.2022.103228
  98. Mann, R.; Holmes, A.; McNeilly, O.; Cavaliere, R.; Sotiriou, G.A.; Rice, S.A.; Gunawan, C. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: Adaptation phenomena and cross-resistance. J. Nanobiotechnology, 2021, 19(1), 291. doi: 10.1186/s12951-021-01027-8 PMID: 34579731
  99. Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; da Silva, S.S. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnol. Rev., 2018, 7(4), 303-315. doi: 10.1515/ntrev-2018-0031
  100. Chakrapani, V.; Ayaz Ahmed, K.B.; Kumar, V.V.; Ganapathy, V.; Anthony, S.P.; Anbazhagan, V. A facile route to synthesize casein capped copper nanoparticles: An effective antibacterial agent and selective colorimetric sensor for mercury and tryptophan. RSC Advances, 2014, 4(63), 33215-33221. doi: 10.1039/C4RA03086A
  101. Niranjan, R.; Zafar, S.; Lochab, B.; Priyadarshini, R. Synthesis and characterization of sulfur and sulfur-selenium nanoparticles loaded on reduced graphene oxide and their antibacterial activity against gram-positive pathogens. Nanomaterials, 2022, 12(2), 191. doi: 10.3390/nano12020191 PMID: 35055210
  102. Tran, T.T.; Hadinoto, K. A potential quorum-sensing inhibitor for bronchiectasis therapy: Quercetin–chitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int. J. Mol. Sci., 2021, 22(4), 1541. doi: 10.3390/ijms22041541 PMID: 33546487
  103. Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.M.; Shaban, M. A review on green synthesis of TiO2 NPs: Photocatalysis and antimicrobial applications. Polymers (Basel), 2022, 14(7), 1444. doi: 10.3390/polym14071444 PMID: 35406317
  104. Xie, J.; Hung, Y.C. UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. Lebensm. Wiss. Technol., 2018, 96, 307-314. doi: 10.1016/j.lwt.2018.05.050
  105. Younis, AB; Haddad, Y; Kosaristanova, L Smerkova, KJWIRN Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdiscip Rev Comput, 2022, e1860. doi: 10.1002/wnan.1860 PMID: 36205103
  106. de Dicastillo, C.L.; Correa, M.G. Martínez, FB; Streitt, C; Galotto, MJJAR-AOHP Antimicrobial effect of titanium dioxide nanoparticles. In: Antimicrobial Resistance - A One Health Perspective; 2020. doi: 10.5772/intechopen.90891
  107. Zhang, M.; Zhang, C.; Zhai, X.; Luo, F.; Du, Y.; Yan, C. Antibacterial mechanism and activity of cerium oxide nanoparticles. Sci. China Mater., 2019, 62(11), 1727-1739. doi: 10.1007/s40843-019-9471-7

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024