Investigating High-risk Factors, Precise Diagnosis, and Treatment of Castration- Resistant Prostate Cancer (CRPC)
- Authors: Ma Y.1, Liu Z.1, Yu W.2, Huang H.1, Wang Y.1, Niu Y.3
-
Affiliations:
- Department of Urology, Second Hospital of Tianjin Medical University
- Tianjin Institute of Urology, Second Hospital of Tianjin Medical University
- Department of Urology,, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
- Issue: Vol 27, No 17 (2024)
- Pages: 2598-2608
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/645274
- DOI: https://doi.org/10.2174/0113862073266959231114052928
- ID: 645274
Cite item
Full Text
Abstract
Background:The treatment of metastatic castration-resistant prostate cancer (mCRPC) in the actual world currently presents difficulties. In light of this, it is crucial to investigate high-risk factors for the progression of advanced prostate cancer and to identify methods for delaying the onset of CRPC.
Aims:This study aimed to explore the high-risk factors that impact the progression of prostate cancer and emphasize the significance of precise diagnosis and treatment based on etiological classification in the clinical management of castration-resistant prostate cancer.
Methods:A retrospective analysis was conducted on 277 newly diagnosed cases of PCa treated with endocrine therapy. A follow-up was done on prostate-specific antigen (PSA) levels and testosterone. Additionally, a prospective analysis was performed on the clinical data of 60 patients with CRPC. Following the principle of \"4W1H\", 30 patients were included in the precision treatment group for a second biopsy and related tests, while another 30 patients were included in the conventional treatment group. The therapeutic effect and prognosis of the two groups were observed.
Results:Distant metastasis (HR = 1.879, 95% CI: 1.311 ~ 2.694, P = 0.001), PSA nadir > 0.2 ng/mL (HR = 1.843, 95% CI: 1.338 ~ 2.540, P = 0.001), testosterone nadir > 20 ng/dL (HR = 1.403, 95% CI: 1.035 ~ 1.904, P = 0.029), and time to testosterone nadir > 6 months (HR = 1.919, 95% CI: 1.364 ~ 2.701, P = 0.001) were risk factors for the progression to CRPC. Patients in the CRPC group were treated with precision therapy and conventional therapy based on their molecular subtyping. The precision treatment group showed a significantly prolonged median PSA progression-free survival compared to the conventional treatment group (16.0 months vs. 13.0 months, P=0.025). The median radiographic progression-free survival was also significantly extended in the precision treatment group compared to the conventional treatment group (21.0 months vs. 16.0 months, P=0.042).
Conclusion:Patients with prostate cancer diagnosed with distant metastasis at initial presentation require early intervention. Close monitoring of PSA and serum testosterone changes is necessary during the process of endocrine therapy. After entering the CRPC stage, the etiological classification precision treatment can improve the therapeutic effect and improve the prognosis of patients.
About the authors
Yuan Ma
Department of Urology, Second Hospital of Tianjin Medical University
Email: info@benthamscience.net
Zihao Liu
Department of Urology, Second Hospital of Tianjin Medical University
Email: info@benthamscience.net
Wenyue Yu
Tianjin Institute of Urology, Second Hospital of Tianjin Medical University
Email: info@benthamscience.net
Hua Huang
Department of Urology, Second Hospital of Tianjin Medical University
Email: info@benthamscience.net
Yong Wang
Department of Urology, Second Hospital of Tianjin Medical University
Author for correspondence.
Email: info@benthamscience.net
Yuanjie Niu
Department of Urology,, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
Author for correspondence.
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590. doi: 10.1097/CM9.0000000000002108 PMID: 35143424
- Achard, V.; Putora, P.M.; Omlin, A.; Zilli, T.; Fischer, S. Metastatic prostate cancer: treatment options. Oncology, 2022, 100(1), 48-59. doi: 10.1159/000519861 PMID: 34781285
- Vietri, M.T.; D'Elia, G.; Caliendo, G Hereditary prostate cancer: genes related, target therapy and prevention. Int. J. Mol. Sci., 2021, 22(7), 3753.
- Rosellini, M.; Santoni, M.; Mollica, V.; Rizzo, A.; Cimadamore, A.; Scarpelli, M.; Storti, N.; Battelli, N.; Montironi, R.; Massari, F. Treating prostate cancer by antibodydrug conjugates. Int. J. Mol. Sci., 2021, 22(4), 1551. doi: 10.3390/ijms22041551 PMID: 33557050
- Talkar, S.S.; Patravale, V.B. Gene Therapy for Prostate Cancer: A Review. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(3), 385-396. doi: 10.2174/1871530320666200531141455 PMID: 32473623
- Shang, Z.; Cai, Q.; Zhang, M.; Zhu, S.; Ma, Y.; Sun, L.; Jiang, N.; Tian, J.; Niu, X.; Chen, J.; Sun, Y.; Niu, Y. A switch from CD44+ cell to EMT cell drives the metastasis of prostate cancer. Oncotarget, 2015, 6(2), 1202-1216. doi: 10.18632/oncotarget.2841 PMID: 25483103
- Niu, Y.; Altuwaijri, S.; Lai, K.P.; Wu, C.T.; Ricke, W.A.; Messing, E.M.; Yao, J.; Yeh, S.; Chang, C. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc. Natl. Acad. Sci. USA, 2008, 105(34), 12182-12187. doi: 10.1073/pnas.0804700105 PMID: 18723679
- Jiang, N.; Hjorth-Jensen, K.; Hekmat, O.; Iglesias-Gato, D.; Kruse, T.; Wang, C.; Wei, W.; Ke, B.; Yan, B.; Niu, Y.; Olsen, J.V.; Flores-Morales, A. In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene, 2015, 34(21), 2764-2776. doi: 10.1038/onc.2014.206 PMID: 25065596
- Lee, J.K.; Phillips, J.W.; Smith, B.A.; Park, J.W.; Stoyanova, T.; McCaffrey, E.F.; Baertsch, R.; Sokolov, A.; Meyerowitz, J.G.; Mathis, C.; Cheng, D.; Stuart, J.M.; Shokat, K.M.; Gustafson, W.C.; Huang, J.; Witte, O.N. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell, 2016, 29(4), 536-547. doi: 10.1016/j.ccell.2016.03.001 PMID: 27050099
- Dong, B.; Miao, J.; Wang, Y.; Luo, W.; Ji, Z.; Lai, H.; Zhang, M.; Cheng, X.; Wang, J.; Fang, Y.; Zhu, H.H.; Chua, C.W.; Fan, L.; Zhu, Y.; Pan, J.; Wang, J.; Xue, W.; Gao, W.Q. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun. Biol., 2020, 3(1), 778. doi: 10.1038/s42003-020-01476-1 PMID: 33328604
- Liu, Z.; Wang, L.; Zhou, Y.; Wang, C.; Ma, Y.; Zhao, Y.; Tian, J.; Huang, H.; Wang, H.; Wang, Y.; Niu, Y. Application of metastatic biopsy based on "When, Who, Why, Where, How (4W1H)" principle in diagnosis and treatment of metastatic castration-resistance prostate cancer. Transl. Androl. Urol., 2021, 10(4), 1723-1733. doi: 10.21037/tau-21-23 PMID: 33968660
- Gourdin, T. Recent progress in treating advanced prostate cancer. Curr. Opin. Oncol., 2020, 32(3), 210-215. doi: 10.1097/CCO.0000000000000624 PMID: 32209821
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juárez Soto, Á.; Merseburger, A.S.; Özgüroğlu, M.; Uemura, H.; Ye, D.; Deprince, K.; Naini, V.; Li, J.; Cheng, S.; Yu, M.K.; Zhang, K.; Larsen, J.S.; McCarthy, S.; Chowdhury, S. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med., 2019, 381(1), 13-24. doi: 10.1056/NEJMoa1903307 PMID: 31150574
- Nayan, M.; Carvalho, F.L.F.; Feldman, A.S. Active surveillance for intermediate-risk prostate cancer. World J. Urol., 2022, 40(1), 79-86. doi: 10.1007/s00345-021-03893-1 PMID: 35044491
- Fuerea, A.; Baciarello, G.; Patrikidou, A.; Albigès, L.; Massard, C.; Di Palma, M.; Escudier, B.; Fizazi, K.; Loriot, Y. Early PSA response is an independent prognostic factor in patients with metastatic castration-resistant prostate cancer treated with next-generation androgen pathway inhibitors. Eur. J. Cancer, 2016, 61, 44-51. doi: 10.1016/j.ejca.2016.03.070 PMID: 27151554
- Romesser, P.B.; Pei, X.; Shi, W.; Zhang, Z.; Kollmeier, M.; McBride, S.M.; Zelefsky, M.J. Prostate-Specific Antigen (PSA) Bounce After Dose-Escalated External Beam Radiation Therapy Is an Independent Predictor of PSA Recurrence, Metastasis, and Survival in Prostate Adenocarcinoma Patients. Int. J. Radiat. Oncol. Biol. Phys., 2018, 100(1), 59-67. doi: 10.1016/j.ijrobp.2017.09.003 PMID: 29254782
- Hah, Y.S.; Lee, J.S.; Rha, K.H.; Hong, S.J.; Chung, B.H.; Koo, K.C. Effect of prior local treatment and prostate-specific antigen kinetics during androgen-deprivation therapy on the survival of castration-resistant prostate cancer. Sci. Rep., 2019, 9(1), 11899. doi: 10.1038/s41598-019-48424-6 PMID: 31417160
- Crawford, E.D.; Heidenreich, A.; Lawrentschuk, N.; Tombal, B.; Pompeo, A.C.L.; Mendoza-Valdes, A.; Miller, K.; Debruyne, F.M.J.; Klotz, L. Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate Cancer Prostatic Dis., 2019, 22(1), 24-38. doi: 10.1038/s41391-018-0079-0 PMID: 30131604
- Yamamoto, S.; Sakamoto, S.; Minhui, X.; Tamura, T.; Otsuka, K.; Sato, K.; Maimaiti, M.; Kamada, S.; Takei, A.; Fuse, M.; Kawamura, K.; Imamoto, T.; Komiya, A.; Akakura, K.; Ichikawa, T. Testosterone Reduction of ≥ 480 ng/dL Predicts Favorable Prognosis of Japanese Men With Advanced Prostate Cancer Treated With Androgen-Deprivation Therapy. Clin. Genitourin. Cancer, 2017, 15(6), e1107-e1115. doi: 10.1016/j.clgc.2017.07.023 PMID: 28882738
- San Francisco, I.F.; Werner, L.; Regan, M.M.; Garnick, M.B.; Bubley, G.; DeWolf, W.C. Risk stratification and validation of prostate specific antigen density as independent predictor of progression in men with low risk prostate cancer during active surveillance. J. Urol., 2011, 185(2), 471-476. doi: 10.1016/j.juro.2010.09.115 PMID: 21167525
- Ryu, J.H.; Kim, Y.B.; Lee, J.K.; Kim, Y.J.; Jung, T.Y. Predictive factors of prostate cancer at repeat biopsy in patients with an initial diagnosis of atypical small acinar proliferation of the prostate. Korean J. Urol., 2010, 51(11), 752-756. doi: 10.4111/kju.2010.51.11.752 PMID: 21165194
- Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.C.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.L.; Högnäs, G.; Annala, M.; Kivinummi, K.; Goody, V.; Latimer, C.; OMeara, S.; Dawson, K.J.; Isaacs, W.; Emmert-Buck, M.R.; Nykter, M.; Foster, C.; Kote-Jarai, Z.; Easton, D.; Whitaker, H.C.; Neal, D.E.; Cooper, C.S.; Eeles, R.A.; Visakorpi, T.; Campbell, P.J.; McDermott, U.; Wedge, D.C.; Bova, G.S. The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520(7547), 353-357. doi: 10.1038/nature14347 PMID: 25830880
- Ross, R.W.; Halabi, S.; Ou, S.S.; Rajeshkumar, B.R.; Woda, B.A.; Vogelzang, N.J.; Small, E.J.; Taplin, M.E.; Kantoff, P.W. Predictors of prostate cancer tissue acquisition by an undirected core bone marrow biopsy in metastatic castration-resistant prostate cancer--a Cancer and Leukemia Group B study. Clin. Cancer Res., 2005, 11(22), 8109-8113. doi: 10.1158/1078-0432.CCR-05-1250 PMID: 16299243
- Tannock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; Rosenthal, M.A.; Eisenberger, M.A. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med., 2004, 351(15), 1502-1512. doi: 10.1056/NEJMoa040720 PMID: 15470213
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; Carles, J.; Mulders, P.F.A.; Basch, E.; Small, E.J.; Saad, F.; Schrijvers, D.; Van Poppel, H.; Mukherjee, S.D.; Suttmann, H.; Gerritsen, W.R.; Flaig, T.W.; George, D.J.; Yu, E.Y.; Efstathiou, E.; Pantuck, A.; Winquist, E.; Higano, C.S.; Taplin, M.E.; Park, Y.; Kheoh, T.; Griffin, T.; Scher, H.I.; Rathkopf, D.E. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med., 2013, 368(2), 138-148. doi: 10.1056/NEJMoa1209096 PMID: 23228172
- Borgen, E.; Beiske, K.; Trachsel, S.; Nesland, J.M.; Kvalheim, G.; Herstad, T.K.; Schlichting, E.; Qvist, H.; Naume, B. Immunocytochemical detection of isolated epithelial cells in bone marrow: Non-specific staining and contribution by plasma cells directly reactive to alkaline phosphatase. J. Pathol., 1998, 185(4), 427-434. doi: 10.1002/(SICI)1096-9896(199808)185:43.0.CO;2-7 PMID: 9828843
- Grønhøj Larsen, C.; Gyldenløve, M.; Jensen, D.H.; Therkildsen, M.H.; Kiss, K.; Norrild, B.; Konge, L.; von Buchwald, C. Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours: A systematic review. Br. J. Cancer, 2014, 110(6), 1587-1594. doi: 10.1038/bjc.2014.42 PMID: 24518594
Supplementary files
