Proposition of In silico Pharmacophore Models for Malaria: A Review
- Authors: de Sousa N.1, de Araújo I.2, Rodrigues T.2, da Silva P.1, de Moura J.2, Scotti M.1, Scotti L.1
-
Affiliations:
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba
- Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba
- Issue: Vol 27, No 17 (2024)
- Pages: 2525-2543
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/645270
- DOI: https://doi.org/10.2174/0113862073247691230925062440
- ID: 645270
Cite item
Full Text
Abstract
:In the field of medicinal chemistry, the concept of pharmacophore refers to the specific region of a molecule that possesses essential structural and chemical characteristics for binding to a receptor and eliciting biological activity. Understanding the pharmacophore is crucial for drug research and development, as it allows the design of new drugs. Malaria, a widespread disease, is commonly treated with chloroquine and artemisinin, but the emergence of parasite resistance limits their effectiveness. This study aims to explore computer simulations to discover a specific pharmacophore for Malaria, providing new alternatives for its treatment. A literature review was conducted, encompassing articles proposing a pharmacophore for Malaria, gathered from the \"Web of Science\" database, with a focus on recent publications to ensure up-to-date analysis. The selected articles employed diverse methods, including ligand-based and structurebased approaches, integrating molecular structure and biological activity data to yield comprehensive analyses. Affinity evaluation between the proposed pharmacophore and the target receptor involved calculating free energy to quantify their interaction. Multiple linear regression was commonly utilized, though it is sensitive to multicollinearity issues. Another recurrent methodology was the use of the Schrödinger package, employing tools such as the Phase module and the OPLS force field for interaction analysis. Pharmacophore model proposition allows threedimensional representations guiding the synthesis and design of new biologically active compounds, offering a promising avenue for discovering therapeutic agents to combat Malaria.
About the authors
Natália de Sousa
Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba
Email: info@benthamscience.net
Igor de Araújo
Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba
Email: info@benthamscience.net
Teresa Rodrigues
Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba
Email: info@benthamscience.net
Pablo da Silva
Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba
Email: info@benthamscience.net
Jéssica de Moura
Postgraduate Programa in Natural and Synthetic Bioactive Compounds, Federal University of Paraiba,, Federal University of Paraíba
Email: info@benthamscience.net
Marcus Scotti
Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba
Email: info@benthamscience.net
Luciana Scotti
Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba
Author for correspondence.
Email: info@benthamscience.net
References
- Schmidt, M.; Hrabcova, V.; Jun, D.; Kuca, K.; Musilek, K. Vector Control and Insecticidal Resistance in the African Malaria Mosquito Anopheles gambiae. Chem. Res. Toxicol., 2018, 31(7), 534-547. doi: 10.1021/acs.chemrestox.7b00285 PMID: 29847927
- Hoelz, L.V.B.; Calil, F.A.; Nonato, M.C.; Pinheiro, L.C.S.; Boechat, N. Plasmodium falciparum dihydroorotate dehydrogenase: A drug target against malaria. Future Med. Chem., 2018, 10(15), 1853-1874. doi: 10.4155/fmc-2017-0250 PMID: 30019917
- Hassan, A.O.; Oso, O.V.; Obeagu, E.I.; Adeyemo, A.T. Malaria Vaccine: Prospects and Challenges. Madonna Univ. J. Med. Heal. Sci., 2022, 2(2), 22-40.
- Ayanlade, A.; Sergi, C.M.; Sakdapolrak, P.; Ayanlade, O.S.; Di Carlo, P.; Babatimehin, O.I.; Weldemariam, L.F.; Jegede, M.O. Climate change engenders a better Early Warning System development across Sub-Saharan Africa: The malaria case. Resour. Environ. Sustain., 2022, 10, 100080. doi: 10.1016/j.resenv.2022.100080
- Organização Mundial da Saúde. Diretrizes Da OMS Para Malária 2021. Available From: https://www.paho.org/pt/topicos/malaria
- World Health Organization - WHO. Malaria. 2023. Available From: https://www.who.int/news-room/fact-sheets/detail/malaria
- Khine, M.M.; Langkulsen, U. The Implications of Climate Change on Health among Vulnerable Populations in South Africa: A Systematic Review. Int. J. Environ. Res. Public Health, 2023, 20(4), 3425. doi: 10.3390/ijerph20043425 PMID: 36834118
- Pasini, E.M.; Zeeman, A.M.; Voorberg-Van Der Wel, A.; Kocken, C.H.M. Plasmodium knowlesi: A relevant, versatile experimental malaria model. Parasitology, 2018, 145(1), 56-70. doi: 10.1017/S0031182016002286 PMID: 27938428
- Frischknecht, F. Life Cycle of Malaria-Causing Parasites.Malaria: Deadly parasites, exciting research and no vaccination; Springer: New York, 2023, pp. 9-18. doi: 10.1007/978-3-658-38407-4_3
- Dini, S.; Douglas, N.M.; Poespoprodjo, J.R.; Kenangalem, E.; Sugiarto, P.; Plumb, I.D.; Price, R.N.; Simpson, J.A. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: A retrospective cohort study. BMC Med., 2020, 18(1), 28. doi: 10.1186/s12916-020-1497-0 PMID: 32075649
- Dembele, L.; Diakite, O.; Sogore, F.; Kedir, S.; Tandina, F.; Maiga, M.; Abate, A.; Golassa, L.; Djimde, A.A. Ethiopian Plasmodium vivax hypnozoites formation dynamics and their susceptibility to reference antimalarial drugs. BMC Infect. Dis., 2023, 23(1), 405. doi: 10.1186/s12879-023-08381-y PMID: 37312065
- Ashley, E.A.; Poespoprodjo, J.R. Treatment and prevention of malaria in children. Lancet Child Adolesc. Health, 2020, 4(10), 775-789. doi: 10.1016/S2352-4642(20)30127-9 PMID: 32946831
- Imwong, M.; Dhorda, M.; Myo Tun, K.; Thu, A.M.; Phyo, A.P.; Proux, S.; Suwannasin, K.; Kunasol, C.; Srisutham, S.; Duanguppama, J.; Vongpromek, R.; Promnarate, C.; Saejeng, A.; Khantikul, N.; Sugaram, R.; Thanapongpichat, S.; Sawangjaroen, N.; Sutawong, K.; Han, K.T.; Htut, Y.; Linn, K.; Win, A.A.; Hlaing, T.M.; van der Pluijm, R.W.; Mayxay, M.; Pongvongsa, T.; Phommasone, K.; Tripura, R.; Peto, T.J.; von Seidlein, L.; Nguon, C.; Lek, D.; Chan, X.H.S.; Rekol, H.; Leang, R.; Huch, C.; Kwiatkowski, D.P.; Miotto, O.; Ashley, E.A.; Kyaw, M.P.; Pukrittayakamee, S.; Day, N.P.J.; Dondorp, A.M.; Smithuis, F.M.; Nosten, F.H.; White, N.J. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: An observational study. Lancet Infect. Dis., 2020, 20(12), 1470-1480. doi: 10.1016/S1473-3099(20)30228-0 PMID: 32679084
- Uwimana, A.; Legrand, E.; Stokes, B.H.; Ndikumana, J.L.M.; Warsame, M.; Umulisa, N.; Ngamije, D.; Munyaneza, T.; Mazarati, J.B.; Munguti, K.; Campagne, P.; Criscuolo, A.; Ariey, F.; Murindahabi, M.; Ringwald, P.; Fidock, D.A.; Mbituyumuremyi, A.; Menard, D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med., 2020, 26(10), 1602-1608. doi: 10.1038/s41591-020-1005-2 PMID: 32747827
- Der Merwe, V.; Dawid, J. Synthesis and Antiplasmodial Structure-Activity Relationships for Some Novel 4-Aminoquinolines and 5-Chlorobenzimidazoles; University of Cape Town, 2004.
- Khanal, P. Antimalarial and anticancer properties of artesunate and other artemisinins: Current development. Monatsh. Chem., 2021, 152(4), 387-400. doi: 10.1007/s00706-021-02759-x PMID: 33814617
- Das, A.K. Anticancer effect of antimalarial artemisinin compounds. Ann. Med. Health Sci. Res., 2015, 5(2), 93-102. doi: 10.4103/2141-9248.153609 PMID: 25861527
- Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature, 2023, 616(7958), 673-685. doi: 10.1038/s41586-023-05905-z PMID: 37100941
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Opo, F.A.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure Based Pharmacophore Modeling, Virtual Screening, Molecular Docking and ADMET Approaches for Identification of Natural Anti-Cancer Agents Targeting XIAP Protein. Sci. Rep., 2021, 11(1), 1-17. PMID: 33414495
- Gomes, M.; Muratov, E.; Pereira, M.; Peixoto, J.; Rosseto, L.; Cravo, P.; Andrade, C.; Neves, B. Chalcone derivatives: promising starting points for drug design. Molecules, 2017, 22(8), 1210. doi: 10.3390/molecules22081210 PMID: 28757583
- Oduselu, G.O.; Afolabi, R.; Ademuwagun, I.; Vaughan, A.; Adebiyi, E. Structure-based pharmacophore modeling, virtual screening, and molecular dynamics simulation studies for identification of Plasmodium falciparum 5-aminolevulinate synthase inhibitors. Front. Med. (Lausanne), 2023, 9, 1022429. doi: 10.3389/fmed.2022.1022429 PMID: 36714108
- Dutta, S.; Sutradhar, S.; Sachan, K. Computer-Aided Drug Designa New Approach in Drug Design and Discovery. Computer (Long. Beach. Calif), 2010, 4(3), 146-151.
- Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Combined strategies in structure-based virtual screening. Phys. Chem. Chem. Phys., 2020, 22(6), 3149-3159. doi: 10.1039/C9CP06303J PMID: 31995074
- Silva, A.M.; Lee, A.Y.; Gulnik, S.V.; Maier, P.; Collins, J.; Bhat, T.N.; Collins, P.J.; Cachau, R.E.; Luker, K.E.; Gluzman, I.Y.; Francis, S.E.; Oksman, A.; Goldberg, D.E.; Erickson, J.W. Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1996, 93(19), 10034-10039. doi: 10.1073/pnas.93.19.10034 PMID: 8816746
- Hammes, A.S. Modelagem Molecular de Inibidores de Aspartil Proteasepotenciais Novos Compostos Antimalariais. 2012. Available From: https://www.arca.fiocruz.br/handle/icict/12866
- Bassanini, I.; Parapini, S.; Galli, C.; Vaiana, N.; Pancotti, A.; Basilico, N.; Taramelli, D.; Romeo, S. Discovery and Pharmacophore Mapping of a Low‐Nanomolar Inhibitor of P. falciparum Growth. ChemMedChem, 2019, 14(23), 1982-1994. doi: 10.1002/cmdc.201900526 PMID: 31665565
- The Cambridge Crystallographic Data Centre. The Cambridge Crystallographic Data Centre - CCD. 2023. Available From: https://www.ccdc.cam.ac.uk/
- Bassanini, I.; Parapini, S.; Basilico, N.; Taramelli, D.; Romeo, S. From DC18 to MR07: A Metabolically Stable 4,4′‐Oxybisbenzoyl Amide as a Low‐Nanomolar Growth Inhibitor of P. falciparum. ChemMedChem, 2022, 17(21), e202200355. doi: 10.1002/cmdc.202200355 PMID: 36089546
- BioviaAccelrys Discovery Studio 3.5. 2023. Available From: https://discover.3ds.com/discovery-studio-visualizer-download
- Sharma, P.P.; Kumar, S.; Kaushik, K.; Singh, A.; Singh, I.K.; Grishina, M.; Pandey, K.C.; Singh, P.; Potemkin, V.; Poonam; Singh, G.; Rathi, B. In silico validation of novel inhibitors of malarial aspartyl protease, plasmepsin V and antimalarial efficacy prediction. J. Biomol. Struct. Dyn., 2022, 40(18), 8352-8364. doi: 10.1080/07391102.2021.1911855 PMID: 33870856
- Ji, X.; Wang, Z.; Chen, Q.; Li, J.; Wang, H.; Wang, Z.; Yang, L. In silico and in vitro antimalarial screening and validation targeting Plasmodium falciparum plasmepsin V. Molecules, 2022, 27(9), 2670. doi: 10.3390/molecules27092670 PMID: 35566023
- Nasamu, A.S.; Glushakova, S.; Russo, I.; Vaupel, B.; Oksman, A.; Kim, A.S.; Fremont, D.H.; Tolia, N.; Beck, J.R.; Meyers, M.J. Plasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasion. Science, 2017, 358(6362), 518-522.
- Pino, P.; Caldelari, R.; Mukherjee, B.; Vahokoski, J.; Klages, N.; Maco, B.; Collins, C.R.; Blackman, M.J.; Kursula, I.; Heussler, V. Multistage Antimalarial Targets the Plasmepsins IX and X Essential for Invasion and Egress. Science, 2017, 358(6362), 522-528.
- Munsamy, G.; Soliman, M.E.S. Unveiling a new era in malaria therapeutics: A tailored molecular approach towards the design of plasmepsin IX inhibitors. Protein J., 2019, 38(6), 616-627. doi: 10.1007/s10930-019-09871-2 PMID: 31586296
- Case, D.A.; Babin, V.; Berryman, J.T.; Betz, R.M.; Cai, Q.; Cerutti, D.S.; Cheatham, T.E., III; Darden, T.A.; Duke, R.E.; Gohlke, H. AMBER 14; University of California: San Francisco 2014. Available From: https://books.google.com.br/books?hl=pt-BR&lr=&id=KKlGEAAAQBAJ&oi=fnd&pg=PA5&dq=Case,+D.+A.%3B+Babin,+V.%3B+Berryman,+J.+T.%3B+Betz,+R.+M.%3B+Cai,+Q.%3B+Cerutti,+D.+S.%3B+Cheatham+III,+T.+E.%3B+Darden,+T.+A.%3B+Duke,+R.+E.%3B+Gohlke,+H.+AMBER+14%3B+University+of+California:+San+Francisco,+2014.+Google+Sch.+There+is+no+Corresp.+Rec.+this+Ref.+2014,+1%E2%80%9382&ots=iT_e1BY07Z&sig=2eop_MbETJOYdp6EZ4QlfdfbRBQ#v=onepage&q&f=false
- Koes, D.R.; Camacho, C.J. ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Res., 2012, 40(W1), W409-W414. doi: 10.1093/nar/gks378 PMID: 22553363
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341. doi: 10.1016/j.ddtec.2004.11.007 PMID: 24981612
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. doi: 10.1021/jm020017n PMID: 12036371
- Salam, S.S.; Chetia, P.; Kardong, D. In silico Docking, ADMET and QSAR Study of few Antimalarial Phytoconstituents as Inhibitors of Plasmepsin II of P. falciparum Against Malaria. Curr. Drug Ther., 2020, 15(3), 264-273. doi: 10.2174/1574885514666190923112738
- Morris, G.M.; Goodsell, D.S.; Huey, R.; Lindstrom, W.; Hart, W.E.; Kurowski, S.; Halliday, S.; Belew, R.; Olson, A.J. AutoDock Tolls 4.2. 2014. Available From: https://autodock.scripps.edu/wp-content/uploads/sites/56/2021/10/AutoDock4.2.6_UserGuide.pdf
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791. doi: 10.1002/jcc.21256 PMID: 19399780
- Néron, B.; Ménager, H.; Maufrais, C.; Joly, N.; Maupetit, J.; Letort, S.; Carrere, S.; Tuffery, P.; Letondal, C. Mobyle: A new full web bioinformatics framework. Bioinformatics, 2009, 25(22), 3005-3011. doi: 10.1093/bioinformatics/btp493 PMID: 19689959
- Bhusan, K.K. EasyQSAR: A Beginners Tool for QSAR in drug designing (free software for drug designing and QSAR). 2009. Available From: https://www.researchgate.net/profile/Swathik-Clarancia-2/publication/323791617_Quantitative_Structure-Activity_Relationship_QSAR_Modeling_Approaches_to_Biological_Applications/links/5ee4e33d458515814a5bb2b1/Quantitative-Structure-Activity-Relationship-QSAR-Modeling-Approaches-to-Biological-Applications.pdf
- Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Drug Targets-Infectious Disord., 2010, 10(3), 226-239. doi: 10.2174/187152610791163336 PMID: 20334617
- Phillips, M.A.; Lotharius, J.; Marsh, K.; White, J.; Dayan, A.; White, K.L.; Njoroge, J.W.; El Mazouni, F.; Lao, Y.; Kokkonda, S.; Tomchick, D.R.; Deng, X.; Laird, T.; Bhatia, S.N.; March, S.; Ng, C.L.; Fidock, D.A.; Wittlin, S.; Lafuente-Monasterio, M.; Benito, F.J.G.; Alonso, L.M.S.; Martinez, M.S.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Haselden, J.N.; Louttit, J.; Cui, Y.; Sridhar, A.; Zeeman, A.M.; Kocken, C.; Sauerwein, R.; Dechering, K.; Avery, V.M.; Duffy, S.; Delves, M.; Sinden, R.; Ruecker, A.; Wickham, K.S.; Rochford, R.; Gahagen, J.; Iyer, L.; Riccio, E.; Mirsalis, J.; Bathhurst, I.; Rueckle, T.; Ding, X.; Campo, B.; Leroy, D.; Rogers, M.J.; Rathod, P.K.; Burrows, J.N.; Charman, S.A. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med., 2015, 7(296), 296ra111. doi: 10.1126/scitranslmed.aaa6645 PMID: 26180101
- Alzain, A.A.; Ahmed, Z.A.M.; Mahadi, M.A.; khairy, E.A.; Elbadwi, F.A. Identification of novel Plasmodium falciparum dihydroorotate dehydrogenase inhibitors for malaria using in silico studies. Sci. Am., 2022, 16, e01214. doi: 10.1016/j.sciaf.2022.e01214
- Enamine Compound Library. Enamine. 2023. Available From: https://enamine.net/compound-libraries
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; Abel, R.; Friesner, R.A.; Harder, E.D. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput., 2019, 15(3), 1863-1874. doi: 10.1021/acs.jctc.8b01026 PMID: 30768902
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F., Jr; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem., 1977, 80(2), 319-324. doi: 10.1111/j.1432-1033.1977.tb11885.x PMID: 923582
- RCSB. Protein Data Bank. Available From: https://www.rcsb.org/
- Palmer, M.J.; Deng, X.; Watts, S.; Krilov, G.; Gerasyuto, A.; Kokkonda, S.; El Mazouni, F.; White, J.; White, K.L.; Striepen, J.; Bath, J.; Schindler, K.A.; Yeo, T.; Shackleford, D.M.; Mok, S.; Deni, I.; Lawong, A.; Huang, A.; Chen, G.; Wang, W.; Jayaseelan, J.; Katneni, K.; Patil, R.; Saunders, J.; Shahi, S.P.; Chittimalla, R.; Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Wittlin, S.; Tumwebaze, P.K.; Rosenthal, P.J.; Cooper, R.A.; Aguiar, A.C.C.; Guido, R.V.C.; Pereira, D.B.; Mittal, N.; Winzeler, E.A.; Tomchick, D.R.; Laleu, B.; Burrows, J.N.; Rathod, P.K.; Fidock, D.A.; Charman, S.A.; Phillips, M.A. Potent Antimalarials with Development Potential Identified by Structure-Guided Computational Optimization of a Pyrrole-Based Dihydroorotate Dehydrogenase Inhibitor Series. J. Med. Chem., 2021, 64(9), 6085-6136. doi: 10.1021/acs.jmedchem.1c00173 PMID: 33876936
- Ioakimidis, L.; Thoukydidis, L.; Mirza, A.; Naeem, S.; Reynisson, J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. QSAR Comb. Sci., 2008, 27(4), 445-456. doi: 10.1002/qsar.200730051
- Bhachoo, J.; Beuming, T. Investigating Protein-Peptide Interactions Using the Schrödinger Computational Suite. Methods Mol. Biol., 2017, 1561(4), 235-254.
- Rawat, R.; Verma, S.M. High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of Pf DHODH and Pf Cytbc1 complex to combat drug resistant malaria. J. Biomol. Struct. Dyn., 2021, 39(14), 5148-5159. doi: 10.1080/07391102.2020.1784288 PMID: 32579074
- Van Voorhis, W.C.; Adams, J.H.; Adelfio, R.; Ahyong, V.; Akabas, M.H.; Alano, P.; Alday, A.; Alemán Resto, Y.; Alsibaee, A.; Alzualde, A.; Andrews, K.T.; Avery, S.V.; Avery, V.M.; Ayong, L.; Baker, M.; Baker, S.; Ben Mamoun, C.; Bhatia, S.; Bickle, Q.; Bounaadja, L.; Bowling, T.; Bosch, J.; Boucher, L.E.; Boyom, F.F.; Brea, J.; Brennan, M.; Burton, A.; Caffrey, C.R.; Camarda, G.; Carrasquilla, M.; Carter, D.; Belen Cassera, M.; Chih-Chien Cheng, K.; Chindaudomsate, W.; Chubb, A.; Colon, B.L.; Colón-López, D.D.; Corbett, Y.; Crowther, G.J.; Cowan, N.; DAlessandro, S.; Le Dang, N.; Delves, M.; DeRisi, J.L.; Du, A.Y.; Duffy, S.; Abd El-Salam El-Sayed, S.; Ferdig, M.T.; Fernández Robledo, J.A.; Fidock, D.A.; Florent, I.; Fokou, P.V.T.; Galstian, A.; Gamo, F.J.; Gokool, S.; Gold, B.; Golub, T.; Goldgof, G.M.; Guha, R.; Guiguemde, W.A.; Gural, N.; Guy, R.K.; Hansen, M.A.E.; Hanson, K.K.; Hemphill, A.; Hooft van Huijsduijnen, R.; Horii, T.; Horrocks, P.; Hughes, T.B.; Huston, C.; Igarashi, I.; Ingram-Sieber, K.; Itoe, M.A.; Jadhav, A.; Naranuntarat Jensen, A.; Jensen, L.T.; Jiang, R.H.Y.; Kaiser, A.; Keiser, J.; Ketas, T.; Kicka, S.; Kim, S.; Kirk, K.; Kumar, V.P.; Kyle, D.E.; Lafuente, M.J.; Landfear, S.; Lee, N.; Lee, S.; Lehane, A.M.; Li, F.; Little, D.; Liu, L.; Llinás, M.; Loza, M.I.; Lubar, A.; Lucantoni, L.; Lucet, I.; Maes, L.; Mancama, D.; Mansour, N.R.; March, S.; McGowan, S.; Medina Vera, I.; Meister, S.; Mercer, L.; Mestres, J.; Mfopa, A.N.; Misra, R.N.; Moon, S.; Moore, J.P.; Morais Rodrigues da Costa, F.; Müller, J.; Muriana, A.; Nakazawa Hewitt, S.; Nare, B.; Nathan, C.; Narraidoo, N.; Nawaratna, S.; Ojo, K.K.; Ortiz, D.; Panic, G.; Papadatos, G.; Parapini, S.; Patra, K.; Pham, N.; Prats, S.; Plouffe, D.M.; Poulsen, S.A.; Pradhan, A.; Quevedo, C.; Quinn, R.J.; Rice, C.A.; Abdo Rizk, M.; Ruecker, A.; St Onge, R.; Salgado Ferreira, R.; Samra, J.; Robinett, N.G.; Schlecht, U.; Schmitt, M.; Silva Villela, F.; Silvestrini, F.; Sinden, R.; Smith, D.A.; Soldati, T.; Spitzmüller, A.; Stamm, S.M.; Sullivan, D.J.; Sullivan, W.; Suresh, S.; Suzuki, B.M.; Suzuki, Y.; Swamidass, S.J.; Taramelli, D.; Tchokouaha, L.R.Y.; Theron, A.; Thomas, D.; Tonissen, K.F.; Townson, S.; Tripathi, A.K.; Trofimov, V.; Udenze, K.O.; Ullah, I.; Vallieres, C.; Vigil, E.; Vinetz, J.M.; Voong Vinh, P.; Vu, H.; Watanabe, N.A.; Weatherby, K.; White, P.M.; Wilks, A.F.; Winzeler, E.A.; Wojcik, E.; Wree, M.; Wu, W.; Yokoyama, N.; Zollo, P.H.A.; Abla, N.; Blasco, B.; Burrows, J.; Laleu, B.; Leroy, D.; Spangenberg, T.; Wells, T.; Willis, P.A. Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog., 2016, 12(7), e1005763. doi: 10.1371/journal.ppat.1005763 PMID: 27467575
- Vyas, V.K.; Qureshi, G.; Ghate, M.; Patel, H.; Dalai, S. Identification of novel Pf DHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity. SAR QSAR Environ. Res., 2016, 27(6), 427-440. doi: 10.1080/1062936X.2016.1189959 PMID: 27310104
- Lasko, T.A.; Bhagwat, J.G.; Zou, K.H.; Ohno-Machado, L. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform., 2005, 38(5), 404-415. doi: 10.1016/j.jbi.2005.02.008 PMID: 16198999
- Zhou, Y.; Di, B.; Niu, M.M. Structure-based pharmacophore design and virtual screening for novel tubulin inhibitors with potential anticancer activity. Molecules, 2019, 24(17), 3181. doi: 10.3390/molecules24173181 PMID: 31480625
- OSIRIS 5.0. DATA WARRIOR Program. Available From: https://openmolecules.org/datawarrior/
- Wadood, A.; ulhaq, Z. In silico identification of novel inhibitors against Plasmodium falciparum dihydroorate dehydrogenase. J. Mol. Graph. Model., 2013, 40, 40-47. doi: 10.1016/j.jmgm.2012.11.010 PMID: 23353582
- Booker, M.L.; Bastos, C.M.; Kramer, M.L.; Barker, R.H., Jr; Skerlj, R.; Sidhu, A.B.; Deng, X.; Celatka, C.; Cortese, J.F.; Guerrero Bravo, J.E.; Crespo Llado, K.N.; Serrano, A.E.; Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Viera, S.; Garuti, H.; Wittlin, S.; Papastogiannidis, P.; Lin, J.; Janse, C.J.; Khan, S.M.; Duraisingh, M.; Coleman, B.; Goldsmith, E.J.; Phillips, M.A.; Munoz, B.; Wirth, D.F.; Klinger, J.D.; Wiegand, R.; Sybertz, E. Novel inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase with anti-malarial activity in the mouse model. J. Biol. Chem., 2010, 285(43), 33054-33064. doi: 10.1074/jbc.M110.162081 PMID: 20702404
- Opo, F.A.D.M.; Alkarim, S.; Alrefaei, G.I.; Molla, M.H.R.; Alsubhi, N.H.; Alzahrani, F.; Ahammad, F. Pharmacophore-model-based virtual-screening approaches identified novel natural molecular candidates for treating human neuroblastoma. Curr. Issues Mol. Biol., 2022, 44(10), 4838-4858. doi: 10.3390/cimb44100329 PMID: 36286044
- Kumar, A.; Rathi, E.; Kini, S.G. E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. J. Mol. Struct., 2019, 1189, 299-306. doi: 10.1016/j.molstruc.2019.04.023
- Vyas, V.K.; Shukla, T.; Tulsian, K.; Sharma, M.; Patel, S. Integrated structure-guided computational design of novel substituted quinolizin-4-ones as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Comput. Biol. Chem., 2022, 101, 107787. doi: 10.1016/j.compbiolchem.2022.107787 PMID: 36401950
- Gogoi, N.; Chetia, D.; Gogoi, B.; Das, A. Multiple-targets directed screening of flavonoid compounds from Citrus Species to find out antimalarial lead with predicted mode of action: An in silico and whole cell-based in vitro approach. Curr. Computeraided Drug Des., 2021, 17(1), 69-82. doi: 10.2174/18756697MTAzhMjIjw PMID: 31878860
- Kutmon, M.; Ehrhart, F.; Willighagen, E.L.; Evelo, C.T.; Coort, S.L. CyTargetLinker app update: A flexible solution for network extension in Cytoscape. F1000 Res., 2018, 7, 743. doi: 10.12688/f1000research.14613.1 PMID: 31489175
- Fu, C.; Liu, C.; Li, T.; Zhang, X.; Wang, F.; Yang, J.; Jiang, Y.; Cui, P.; Li, H. DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Comput. Mater. Sci., 2019, 170, 109202. doi: 10.1016/j.commatsci.2019.109202
- Wilson, M.T.; Bickar, D. Cytochrome oxidase as a proton pump. J. Bioenerg. Biomembr., 1991, 23(5), 755-771. doi: 10.1007/BF00786000 PMID: 1660873
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13. doi: 10.1042/BJ20081386 PMID: 19061483
- Sodero, A.C.R.; Abrahim-Vieira, B.; Torres, P.H.M.; Pascutti, P.G.; Garcia, C.R.S.; Ferreira, V.F.; Rocha, D.R.; Ferreira, S.B.; Silva, F.P., Jr Insights into cytochrome bc1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling. Mem. Inst. Oswaldo Cruz, 2017, 112(4), 299-308. doi: 10.1590/0074-02760160417 PMID: 28327793
- Audu, O.; Stander, A.; Ajani, O.; Egieyeh, S.; October, N. In silico design, chemical synthesis and biological screening of novel 4‐(1 H)‐pyridone‐based antimalarial agents. Chem. Biol. Drug Des., 2022, 99(5), 674-687. doi: 10.1111/cbdd.13987 PMID: 34850571
- Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with Glide. Curr. Protoc. Bioinformat., 2007, 8(1), 12. PMID: 18428795
- Birth, D.; Kao, W.C.; Hunte, C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. Nat. Commun., 2014, 5(1), 4029. doi: 10.1038/ncomms5029 PMID: 24893593
- Massengo-Tiassé, R.P.; Cronan, J.E. Diversity in enoyl-acyl carrier protein reductases. Cell. Mol. Life Sci., 2009, 66(9), 1507-1517. doi: 10.1007/s00018-009-8704-7 PMID: 19151923
- Srivastava, V.; Srivastava, K.; Singh, P.; Dwivedi, V. Fatty acid synthase (FAS) machinery in the apicoplast: An efficient drug target for Plasmodium falciparum. Mater. Today Proc., 2022, 68, 785-790. doi: 10.1016/j.matpr.2022.06.142
- Costa Júnior, D.B.; Araújo, J.S.C.; Oliveira, L.M.; Neri, F.S.M.; Moreira, P.O.L.; Taranto, A.G.; Fonseca, A.L.; Varotti, F.P.; Leite, F.H.A. A novel antiplasmodial compound: Integration of in silico and in vitro assays. J. Biomol. Struct. Dyn., 2022, 40(14), 6295-6307. doi: 10.1080/07391102.2021.1882339 PMID: 33554762
- Joshi, S.D.; Dixit, S.R.; Basha, J.; Kulkarni, V.H.; Aminabhavi, T.M.; Nadagouda, M.N.; Lherbet, C. Pharmacophore mapping, molecular docking, chemical synthesis of some novel pyrrolyl benzamide derivatives and evaluation of their inhibitory activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Bioorg. Chem., 2018, 81, 440-453. doi: 10.1016/j.bioorg.2018.08.035 PMID: 30223149
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA. doi: 10.1002/jcc.21334 PMID: 19499576
- Trott, O.; Olson, A.J. AutoDock Vina 1.1.1. 2023. Available From: https://vina.scripps.edu/
- Maity, K.; Bhargav, S.P.; Sankaran, B.; Surolia, N.; Surolia, A.; Suguna, K. X-ray crystallographic analysis of the complexes of enoyl acyl carrier protein reductase of Plasmodium falciparum with triclosan variants to elucidate the importance of different functional groups in enzyme inhibition. IUBMB Life, 2010, 62(6), 467-476. PMID: 20503440
- Roca, C.; Avalos-Padilla, Y.; Prieto-Simón, B.; Iglesias, V.; Ramírez, M.; Imperial, S.; Fernàndez-Busquets, X. Selection of an Aptamer against the Enzyme 1-deoxy-D-xylulose-5-phosphate Reductoisomerase from Plasmodium falciparum. Pharmaceutics, 2022, 14(11), 1-23. PMID: 36432706
- Mumtaz, A.; Ashfaq, U.A.; Ul Qamar, M.T.; Anwar, F.; Gulzar, F.; Ali, M.A.; Saari, N.; Pervez, M.T. MPD3: A useful medicinal plants database for drug designing. Nat. Prod. Res., 2017, 31(11), 1228-1236. PMID: 27681445
- Mangal, M.; Sagar, P.; Singh, H.; Raghava, G.P.S.; Agarwal, S.M. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database. Nucleic Acids Res., 2013, 41(Database issue), D1124-D1129. PMID: 23203877
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem Substance and Compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213. PMID: 26400175
- Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572. PMID: 19075767
- Ali, F.; Wali, H.; Jan, S.; Zia, A.; Aslam, M.; Ahmad, I.; Afridi, S.G.; Shams, S.; Khan, A. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria. Malar. J., 2021, 20(1), 335. PMID: 34344361
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082. doi: 10.1093/nar/gkx1037 PMID: 29126136
- Pesaresi, A.; Lamba, D. Torpedo Californica Acetylcholinesterase in Complex with a Tacrine-Nicotinamide Hybrid Inhibitor. Protein Data Bank, https://www.rcsb.org/structure/5NAU
- Sharma, A.; Yogavel, M.; Sharma, A. Structural and functional attributes of malaria parasite diadenosine tetraphosphate hydrolase. Sci. Rep., 2016, 6(1), 19981. PMID: 26829485
- Hussein, H.A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A-C. PockDrug-Server: A new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res., 2015, 43(W1), W436-42. PMID: 25956651
- Koes, D.R. The Pharmit Backend: A Computer Systems Approach to Enabling Interactive Online Drug Discovery. IBM J. Res. Develop., 2018, 62(6), 1-6. PMID: 33871478
- Manhas, A.; Lone, M.Y.; Jha, P.C. In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: A multicomplex-based approach. Mol. Divers., 2019, 23(2), 453-470. PMID: 30315397
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954. doi: 10.1093/nar/gkw1074 PMID: 27899562
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J.P. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res., 2012, 40(Database issue), D1100-D1107. doi: 10.1093/nar/gkr777 PMID: 21948594
- EMBL-EBI. ChEMBL Data Base. 2019. Available From: https://www.ebi.ac.uk/chembl/
- Wassermann, A.M.; Bajorath, J. BindingDB and ChEMBL: Online compound databases for drug discovery. Expert Opin. Drug Discov., 2011, 6(7), 683-687. PMID: 22650976
- Ngo Hanna, J.; Nziko, V.P.N.; Ntie-Kang, F.; Mbah, J.A.; Toze, F.A.A. The use of minimal topological differences to inspire the design of novel tetrahydroisoquinoline analogues with antimalarial activity. Heliyon, 2021, 7(5), e07032. doi: 10.1016/j.heliyon.2021.e07032 PMID: 34095565
- Chua, M.J.; Robaa, D.; Skinner-Adams, T.S.; Sippl, W.; Andrews, K.T. Activity of bromodomain protein inhibitors/binders against asexual-stage Plasmodium falciparum parasites. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(2), 189-193. doi: 10.1016/j.ijpddr.2018.03.001 PMID: 29631126
- Tallant, C.; Bamborough, P.; Chung, C.; Gamo, F.J.; Kirkpatrick, R. Expanding Bromodomain Targeting into Neglected Parasitic Diseases. ACS Infect. Dis., 2021, 7(11), 2953-2958. doi: 10.1016/j.ijpddr.2018.03.001 PMID: 29631126
- Maree, J.P. The Genome-Wide Nucleosome Positions in Trypanosoma Brucei Procyclic and Bloodstream Forms. 2014. Available From: https://scholar.ufs.ac.za/handle/11660/1412
- Bhattacharjee, A.K.; Nichols, D.A.; Gerena, L.; Roncal, N.; Gutteridge, C.E. An in silico 3D pharmacophore model of chalcones useful in the design of novel antimalarial agents. Med. Chem., 2007, 3(4), 317-326. doi: 10.2174/157340607781024357 PMID: 17627568
- Ibraheem, Z.O.; Majid, R.A.; Sidek, H.M.; Noor, S.M.; Yam, M.F.; Abd Rachman Isnadi, M.F.; Basir, R. In vitro antiplasmodium and chloroquine resistance reversal effects of andrographolide. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-16. doi: 10.1155/2019/7967980 PMID: 31915453
- Bhattacharjee, A.K. In silico Three Dimensional Pharmacophore Models to Aid the Discovery and Design of New Antimalarial Agents. In: Proceedings of the 6th international conference on Computational Science - Volume Part I, United Kingdom, 2006. doi: 10.1007/11758501_54
- Barmade, M.; Murumkar, P.; Sharma, M.; Shingala, K.; Giridhar, R.; Yadav, M. Discovery of anti-malarial agents through application of in silico studies. Comb. Chem. High Throughput Screen., 2015, 18(2), 151-187. doi: 10.2174/1386207318666141229125852 PMID: 25543680
- Zaib, S.; Khan, I. Synthetic and medicinal chemistry of phthalazines: Recent developments, opportunities and challenges. Bioorg. Chem., 2020, 105, 104425. doi: 10.1016/j.bioorg.2020.104425 PMID: 33157344
- Quiliano, M.; Mendoza, A.; Fong, K.Y.; Pabón, A.; Goldfarb, N.E.; Fabing, I.; Vettorazzi, A.; López de Cerain, A.; Dunn, B.M.; Garavito, G.; Wright, D.W.; Deharo, E.; Pérez-Silanes, S.; Aldana, I.; Galiano, S. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. Int. J. Parasitol. Drugs Drug Resist., 2016, 6(3), 184-198. doi: 10.1016/j.ijpddr.2016.09.004 PMID: 27718413
- Roy, K.; Ojha, P.K. Advances in quantitative structureactivity relationship models of antimalarials. Expert Opin. Drug Discov., 2010, 5(8), 751-778. doi: 10.1517/17460441.2010.497812 PMID: 22827798
- Ojha, P.K.; Roy, K. First report on exploring structural requirements of α and β thymidine analogs for PfTMPK inhibitory activity using in silico studies. Biosystems, 2013, 113(3), 177-195. doi: 10.1016/j.biosystems.2013.07.005 PMID: 23850534
- Wadood, A.; Ghufran, M.; Hassan, S.F.; Khan, H.; Azam, S.S.; Rashid, U. In silico identification of promiscuous scaffolds as potential inhibitors of 1-deoxy- D -xylulose 5-phosphate reductoisomerase for treatment of Falciparum malaria. Pharm. Biol., 2017, 55(1), 19-32. doi: 10.1080/13880209.2016.1225778 PMID: 27650666
- Brogi, S.; Giovani, S.; Brindisi, M.; Gemma, S.; Novellino, E.; Campiani, G.; Blackman, M.J.; Butini, S. In silico study of subtilisin-like protease 1 (SUB1) from different Plasmodium species in complex with peptidyl-difluorostatones and characterization of potent pan-SUB1 inhibitors. J. Mol. Graph. Model., 2016, 64(64), 121-130. doi: 10.1016/j.jmgm.2016.01.005 PMID: 26826801
- Rodrigues, T.; Moreira, R.; Gut, J.; Rosenthal, P.J.; O Neill, P.M.; Biagini, G.A.; Lopes, F.; dos Santos, D.J.V.A.; Guedes, R.C. Identification of new antimalarial leads by use of virtual screening against cytochrome bc1. Bioorg. Med. Chem., 2011, 19(21), 6302-6308. doi: 10.1016/j.bmc.2011.09.004 PMID: 21958736
- Kamaria, P.; Kawathekar, N. Ligand-based 3D-QSAR analysis and virtual screening in exploration of new scaffolds as Plasmodium falciparum glutathione reductase inhibitors. Med. Chem. Res., 2014, 23(1), 25-33. doi: 10.1007/s00044-013-0603-7
- Bhattacharjee, A.K. In silico three-dimensional pharmacophores for aiding the discovery of the Pfmrk (Plasmodium cyclin-dependent protein kinases) specific inhibitors for the therapeutic treatment of malaria. Expert Opin. Drug Discov., 2007, 2(8), 1115-1127. doi: 10.1517/17460441.2.8.1115 PMID: 23484876
- Owono Owono, L.C.; Ntie-Kang, F.; Keita, M.; Megnassan, E.; Frecer, V.; Miertus, S. Virtually Designed Triclosan-Based Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis and of Plasmodium falciparum. Mol. Inform., 2015, 34(5), 292-307. doi: 10.1002/minf.201400141 PMID: 27490275
- Aher, R.; Roy, K. Classification SAR modeling of diverse quinolone compounds for antimalarial potency against Plasmodium falciparum. Comb. Chem. High Throughput Screen., 2014, 17(5), 396-406. doi: 10.2174/1386207316666131230093802 PMID: 24372050
- Aher, R.B.; Roy, K. Exploring structural requirements for the inhibition of Plasmodium falciparum calcium-dependent protein kinase-4 (PfCDPK-4) using multiple in silico approaches. RSC Advances, 2016, 6(57), 51957-51982. doi: 10.1039/C6RA05692J
- Burger, P.B.; Williams, M.; Sprenger, J.; Reeksting, S.B.; Botha, M.; Müller, I.B.; Joubert, F.; Birkholtz, L.M.; Louw, A.I. A novel inhibitor of Plasmodium falciparum spermidine synthase: A twist in the tail. Malar. J., 2015, 14(1), 54. doi: 10.1186/s12936-015-0572-z PMID: 25651815
- Dow, G.S.; Koenig, M.L.; Wolf, L.; Gerena, L.; Lopez-Sanchez, M.; Hudson, T.H.; Bhattacharjee, A.K. The antimalarial potential of 4-quinolinecarbinolamines may be limited due to neurotoxicity and cross-resistance in mefloquine-resistant Plasmodium falciparum strains. Antimicrob. Agents Chemother., 2004, 48(7), 2624-2632. doi: 10.1128/AAC.48.7.2624-2632.2004 PMID: 15215119
- Savini, L.; Taramelli, D.; Basilico, N.; Parapini, S.; Rottmann, M.; Brun, R.; Lamponi, S.; Caccia, S.; Guiso, G.; Summers, R.L.; Martin, R.E.; Saponara, S.; Gorelli, B.; Novellino, E. Optimization of 4 Aminoquinoline/Clotrimazole-Based Hybrid Antimalarials: Further Structure − Activity Relationships, in vivo Studies, and Preliminary Toxicity Pro Fi Ling. 2012. Available From: https://scholar.google.com.br/schhp?hl=pt-BR&as_sdt=0,5
- Chauhan, M.; Kumar, R. A comprehensive review on bioactive fused heterocycles as purine-utilizing enzymes inhibitors. Med. Chem. Res., 2015, 24(6), 2259-2282. doi: 10.1007/s00044-014-1295-3
- Agarwal, A.; Paliwal, S.; Mishra, R.; Sharma, S.; Kumar Dwivedi, A.; Tripathi, R.; Gunjan, S. Discovery of a selective, safe and novel anti-malarial compound with activity against chloroquine resistant strain of Plasmodium falciparum. Sci. Rep., 2015, 5(1), 13838. doi: 10.1038/srep13838 PMID: 26346444
- Vyas, V.K.; Bhati, S.; Patel, S.; Ghate, M. Structure- and ligand-based drug design methods for the modeling of antimalarial agents: A review of updates from 2012 onwards. J. Biomol. Struct. Dyn., 2022, 40(20), 10481-10506. doi: 10.1080/07391102.2021.1932598 PMID: 34129805
- Kumi, R.O.; Oti, B.; Abo-Dya, N.E.; Alahmdi, M.I.; Soliman, M.E.S. Bridging the gap in malaria parasite resistance, current interventions, and the way forward from in silico perspective: A review. Molecules, 2022, 27(22), 7915. doi: 10.3390/molecules27227915 PMID: 36432016
- Batool, S.; Khan, Z.; Kamal, W.; Mushtaq, G.; Kamal, M. In silico screening for identification of novel anti-malarial inhibitors by molecular docking, pharmacophore modeling and virtual screening. Med. Chem., 2015, 11(7), 687-700. doi: 10.2174/1573406411666150305113533 PMID: 25741881
- Caballero-Alfonso, A.Y.; Cruz-Monteagudo, M.; Tejera, E.; Benfenati, E.; Borges, F.; Cordeiro, M.N.D.S.; Armijos-Jaramillo, V.; Perez-Castillo, Y. Ensemble-based modeling of chemical compounds with antimalarial activity. Curr. Top. Med. Chem., 2019, 19(11), 957-969. doi: 10.2174/1568026619666190510100313 PMID: 31074369
- Ojha, P.; Roy, K. The current status of antimalarial drug research with special reference to application of QSAR models. Comb. Chem. High Throughput Screen., 2015, 18(2), 91-128. doi: 10.2174/1386207318666141229125527 PMID: 25543681
- Rout, S.; Mahapatra, R.K. In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate. Biomed. Pharmacother., 2016, 82, 192-201. doi: 10.1016/j.biopha.2016.04.057 PMID: 27470355
- Bhattacharjee, A.K.; Geyer, J.A.; Woodard, C.L.; Kathcart, A.K.; Nichols, D.A.; Prigge, S.T.; Li, Z.; Mott, B.T.; Waters, N.C. A three-dimensional in silico pharmacophore model for inhibition of Plasmodium falciparum cyclin-dependent kinases and discovery of different classes of novel Pfmrk specific inhibitors. J. Med. Chem., 2004, 47(22), 5418-5426. doi: 10.1021/jm040108f PMID: 15481979
- Kumar Ojha, P.; Roy, K. Exploring QSAR, pharmacophore mapping and docking studies and virtual library generation for cycloguanil derivatives as PfDHFR-TS inhibitors. Med. Chem., 2011, 7(3), 173-199. doi: 10.2174/157340611795564295 PMID: 21486210
Supplementary files
