Testosterone with Silymarin Improves Diabetes-obesity Comorbidity Complications by Modulating Inflammatory Responses and CYP7A1/ACC Gene Expressions in Rats
- Authors: Zhu D.1, Du Y.2, Zhu L.3, Alahmadi T.4, Hussein-Al-Ali S.H.5, Wang Q.6
-
Affiliations:
- Department of Endocrinology,, Daqing Oilfield General Hospital
- Department of Endocrinology, Daqing Oilfields General Hospital
- Department of Endocrinology, Yantai Penglai People's Hospital
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University
- Department of Chemistry, Faculty of Science, Isra University
- Department of Endocrinology, The Third People's Hospital of Gansu Province, Lanzhou, Gansu Province, 730000, China
- Issue: Vol 27, No 13 (2024)
- Pages: 1999-2012
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/645266
- DOI: https://doi.org/10.2174/0113862073272401231108054024
- ID: 645266
Cite item
Full Text
Abstract
Background::The co-morbidity of DMOB has become increasingly problematic among the world's population because of a high-calorie diet and sedentary lifestyle. DMOB is associated with lower testosterone (TN) levels, the male sex hormone. The phytochemical compound silymarin (SN) exerts antidiabetic activity by modifying β-cells and anti-obesity activity by inhibiting adipogenesis by methylxanthine.
Aim::The goal of this study was to find out how well testosterone (TN) with silymarin (SN) protects against oxidative stress and inflammation in the liver of the experimental rats with type 2 diabetes (T2D) and obesity (DMOB).
Objectives::The present study evaluates the efficacy of TN and SN combination (TNSN) on the levels of the potential parameters, such as body mass, serum marker enzymes, fasting glucose levels, HbA1c levels, lipid profile, enzymatic and non-enzymatic antioxidants, proinflammatory cytokines, gene expression pathways, and histopathology in a DMOB comorbidity rat model.
Methods::Male Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) for 20 weeks with an administration of a single dose of streptozotocin (STZ) i.p. injection (30 mg/kg) on the 9th week of the study. The procedure was to develop the DMOB co-morbidity model in the experimental animals. Co-treatment of TN and SN administration were followed throughout the experiment. Rats were sacrificed after overnight fasting to collect serum and liver tissue samples. Samples were analyzed using a clinical chemistry automated analyzer, spectrophotometry, and quantitative real-time PCR (qPCR) methods and protocols.
Results::Analyses of body mass changes, serum marker enzymes, fasting glucose levels, HbA1c levels, lipid profiles, enzymatic and non-enzymatic antioxidants, TNF-α, IL-6, adiponectin, CYP7A1, ACC expression pathways, and histopathology showed significant abnormal levels (P ≤ 0.05) in the pathological group. These were efficiently treated to normal by the administration of TNSN.
Conclusion::These results concluded that TNSN exerted protective efficacy against the liver abnormalities in the co-morbidity of the DMOB rat model.
Keywords
About the authors
Dongli Zhu
Department of Endocrinology,, Daqing Oilfield General Hospital
Email: info@benthamscience.net
Yuanyuan Du
Department of Endocrinology, Daqing Oilfields General Hospital
Email: info@benthamscience.net
Lili Zhu
Department of Endocrinology, Yantai Penglai People's Hospital
Email: info@benthamscience.net
Tahani Alahmadi
Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University
Email: info@benthamscience.net
Samer Hasan Hussein-Al-Ali
Department of Chemistry, Faculty of Science, Isra University
Email: info@benthamscience.net
Qinhu Wang
Department of Endocrinology, The Third People's Hospital of Gansu Province, Lanzhou, Gansu Province, 730000, China
Author for correspondence.
Email: info@benthamscience.net
References
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract., 2022, 183, 109118. doi: 10.1016/j.diabres.2021.109118 PMID: 34883189
- Song, Z.H.; Wang, X.L.; Wang, X.F.; Liu, J.; Luo, S.Q.; Xu, S.S.; Cheng, X.; Bai, J.; Dong, L.; Zhang, C.; Zhou, J.B. Gaps of medication treatment management between guidelines and real-world for inpatients with type 2 diabetes in china from pharmacists perspective. Front. Endocrinol., 2022, 13, 900114. doi: 10.3389/fendo.2022.900114 PMID: 35707460
- Ke, C.; Narayan, K.M.V.; Chan, J.C.N.; Jha, P.; Shah, B.R. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nat. Rev. Endocrinol., 2022, 18(7), 413-432. doi: 10.1038/s41574-022-00669-4 PMID: 35508700
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006, 444(7121), 840-846. doi: 10.1038/nature05482 PMID: 17167471
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet Diabetes Endocrinol., 2021, 9(7), 446-461. doi: 10.1016/S2213-8587(21)00118-2 PMID: 34097869
- Kalra, S. Diabesity. J. Pak. Med. Assoc., 2013, 63(4), 532-534. PMID: 23905459
- Hossain, P.; Kawar, B.; El Nahas, M. Obesity and diabetes in the developing world--a growing challenge. N. Engl. J. Med., 2007, 356(3), 213-215. doi: 10.1056/NEJMp068177 PMID: 17229948
- Al Amiri, E.; Abdullatif, M.; Abdulle, A.; Al Bitar, N.; Afandi, E.Z.; Parish, M.; Darwiche, G. The prevalence, risk factors, and screening measure for prediabetes and diabetes among Emirati overweight/obese children and adolescents. BMC Public Health, 2015, 15(1), 1298. doi: 10.1186/s12889-015-2649-6 PMID: 26704130
- Wang, Y.; Liang, X.; Zhou, Z.; Hou, Z.; Yang, J.; Gao, Y.; Yang, C.; Chen, T.; Li, C. Prevalence and numbers of diabetes patients with elevated BMI in China: Evidence from a nationally representative cross-sectional study. Int. J. Environ. Res. Public Health, 2022, 19(5), 2989. doi: 10.3390/ijerph19052989 PMID: 35270682
- Ge, Q.; Li, M.; Xu, Z.; Qi, Z.; Zheng, H.; Cao, Y.; Huang, H.; Duan, X.; Zhuang, X. Comparison of different obesity indices associated with type 2 diabetes mellitus among different sex and age groups in Nantong, China: a cross-section study. BMC Geriatr., 2022, 22(1), 20. doi: 10.1186/s12877-021-02713-w PMID: 34979974
- Ioannidis, I. The road from obesity to type 2 diabetes. Angiology, 2008, 59(2)(Suppl.), 39S-43S. doi: 10.1177/0003319708318583 PMID: 18505743
- Sharma, S.; Rehman Ansari, M.H.; Sharma, K.; Singh, R.K.; Ali, S.; Alam, M.M.; Zaman, M.S.; Alam, P.; Akhter, M. Pyrazoline scaffold: Hit identification to lead synthesis and biological evaluation as antidiabetic agents. Future Med. Chem., 2023, 15(1), 9-24. doi: 10.4155/fmc-2022-0141 PMID: 36655571
- Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995. doi: 10.2174/1389557521666210401090028 PMID: 33797375
- Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577. doi: 10.2174/1389557521666210315162354 PMID: 33719961
- Salehi, B.; Ata, A. Sharopov,; Ramírez-Alarcón,; Ruiz-Ortega,; Abdulmajid Ayatollahi,; Tsouh Fokou,; Kobarfard,; Amiruddin Zakaria,; Iriti,; Taheri,; Martorell,; Sureda,; Setzer,; Durazzo,; Lucarini,; Santini,; Capasso,; Ostrander,; Atta-ur-Rahman,; Choudhary, M.I.,; Cho, W.C.,; Sharifi-Rad, J. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551. doi: 10.3390/biom9100551 PMID: 31575072
- Rahman, M.M.; Islam, M.R.; Shohag, S.; Hossain, M.E.; Rahaman, M.S.; Islam, F.; Ahmed, M.; Mitra, S.; Khandaker, M.U.; Idris, A.M.; Chidambaram, K.; Emran, T.B.; Cavalu, S. The multifunctional role of herbal products in the management of diabetes and obesity: A comprehensive review. Molecules, 2022, 27(5), 1713. doi: 10.3390/molecules27051713 PMID: 35268815
- Corona, G.; Vena, W.; Pizzocaro, A.; Vignozzi, L.; Sforza, A.; Maggi, M. Testosterone therapy in diabetes and pre‐diabetes. Andrology, 2023, 11(2), 204-214. doi: 10.1111/andr.13367 PMID: 36542412
- Kapoor, D.; Goodwin, E.; Channer, K.S.; Jones, T.H. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol., 2006, 154(6), 899-906. doi: 10.1530/eje.1.02166 PMID: 16728551
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark. Insights, 2016, 11, BMI.S38440. doi: 10.4137/BMI.S38440 PMID: 27398023
- Chen, Y.; Wu, Y.; Yang, Y.; Xu, Z.; Tong, J.; Li, Z.; Zhou, X.; Li, C. Transcriptomic and proteomic analysis of potential therapeutic target genes in the liver of metformin treated Sprague Dawley rats with type 2 diabetes mellitus. Int. J. Mol. Med., 2018, 41(6), 3327-3341. doi: 10.3892/ijmm.2018.3535 PMID: 29512687
- Mehta, S.; Sharma, A.K.; Singh, R.K. Development and validation of HPTLC method for simultaneous estimation of bioactive components in combined extracts of three hepatoprotective plants. J. Liq. Chromatogr. Relat. Technol., 2021, 44(7-8), 375-381. doi: 10.1080/10826076.2021.1939046
- Feng, B.; Huang, B.; Jing, Y.; Shen, S.; Feng, W.; Wang, W.; Meng, R.; Zhu, D. Silymarin ameliorates the disordered glucose metabolism of mice with diet-induced obesity by activating the hepatic SIRT1 pathway. Cell. Signal., 2021, 84, 110023. doi: 10.1016/j.cellsig.2021.110023 PMID: 33901577
- Hadi, A.; Pourmasoumi, M.; Mohammadi, H.; Symonds, M.; Miraghajani, M. The effects of silymarin supplementation on metabolic status and oxidative stress in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med., 2018, 41, 311-319. doi: 10.1016/j.ctim.2018.08.010 PMID: 30477860
- Skottová, N.; Krecman, V. Silymarin as a potential hypocholesterolaemic drug. Physiol. Res., 1998, 47(1), 1-7. PMID: 9708694
- Yang, H.; Xie, J.; Wang, N.; Zhou, Q.; Lu, Y.; Qu, Z.; Wang, H. Effects of Miao sour soup on hyperlipidemia in high‐fat diet‐induced obese rats via the AMPK signaling pathway. Food Sci. Nutr., 2021, 9(8), 4266-4277. doi: 10.1002/fsn3.2394 PMID: 34401077
- Song, C.; Liu, D.; Yang, S.; Cheng, L.; Xing, E.; Chen, Z. Sericin enhances the insulin PI3K/AKT signaling pathway in the liver of a type 2 diabetes rat model. Exp. Ther. Med., 2018, 16(4), 3345-3352. doi: 10.3892/etm.2018.6615 PMID: 30250521
- Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, S.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.A.; Rad, B.L. Induction of diabetes by Streptozotocin in rats. Indian J. Clin. Biochem., 2007, 22(2), 60-64. doi: 10.1007/BF02913315 PMID: 23105684
- Johar, D.; Maher, A.; Aboelmagd, O.; Hammad, A.; Morsi, M.; Warda, H.F.; Awad, H.I.; Mohamed, T.A.; Zaky, S. Whole-food phytochemicals antioxidative potential in alloxan-diabetic rats. Toxicol. Rep., 2018, 5, 240-250. doi: 10.1016/j.toxrep.2018.01.002 PMID: 29854595
- Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of andrographis paniculata: An update. Phytomed. Plus, 2021, 1(4), 100085.
- Singh, R.K.; Mehta, S.; Sharma, A.K. Ethnobotany, pharmacological activities and bioavailability studies on "king of bitters" (Kalmegh): A review (2010-2020). Comb. Chem. High Throughput Screen., 2022, 25(5), 788-807. doi: 10.2174/1386207324666210310140611 PMID: 33745423
- Mehta, S.; Sharma, A.K.; Singh, R.K. Method validation for the simultaneous estimation of three-bioactive components in combined extracts of three hepatoprotective plants using RP-HPLC method. J. Appl. Pharm. Sci., 2021, 11(07), 127-131.
- Khalil, E.A.M. Hormonal profile and histopathological study on the influence of silymarin on both female and male albino rats. Egypt. J. Hosp. Med., 2003, 13(1), 112-122. doi: 10.21608/ejhm.2003.18236
- Haider, K.S.; Haider, A.; Saad, F.; Doros, G.; Hanefeld, M.; Dhindsa, S.; Dandona, P.; Traish, A. Remission of type 2 diabetes following long‐term treatment with injectable testosterone undecanoate in patients with hypogonadism and type 2 diabetes: 11‐year data from a real‐world registry study. Diabetes Obes. Metab., 2020, 22(11), 2055-2068. doi: 10.1111/dom.14122 PMID: 32558149
- Mattack, N.; Devi, R.; Kutum, T.; Patgiri, D. The evaluation of serum levels of testosterone in type 2 diabetic men and its relation with lipid profile. J. Clin. Diagn. Res., 2015, 9(1), BC04-BC07. doi: 10.7860/JCDR/2015/11049.5381 PMID: 25737972
- Yao, Q.; Wang, B.; An, X.; Zhang, J.; Ding, L. Testosterone level and risk of type 2 diabetes in men: A systematic review and meta-analysis. Endocr. Connect., 2018, 7(1), 220-231. doi: 10.1530/EC-17-0253 PMID: 29233816
- Alrabadi, N.; Al-Rabadi, G.J.; Maraqa, R.; Sarayrah, H.; Alzoubi, K.H.; Alqudah, M.; Al-udatt, D.G. Androgen effect on body weight and behaviour of male and female rats: Novel insight on the clinical value. Andrologia, 2020, 52(10), e13730. doi: 10.1111/and.13730 PMID: 32629528
- Caliber, M.; Saad, F. Testosterone therapy for prevention and reversal of type 2 diabetes in men with low testosterone. Curr. Opin. Pharmacol., 2021, 58, 83-89. doi: 10.1016/j.coph.2021.04.002 PMID: 33993064
- Maksymets, T.; Karpyshyn, N.; Gutor, T.; Sklyarova, H.; Sklyarov, E. Influence of risk factors on insulin resistance in patients with overweight and obesity. Wiad. Lek., 2018, 71(3 pt 1), 558-560.
- Mohamed, J. H, N.N.A.; H, Z.A.; B, B.S. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J., 2016, 16(2), e132-e141. doi: 10.18295/squmj.2016.16.02.002 PMID: 27226903
- Korkmaz, G.G.; Uzun, H.; Cakatay, U.; Aydin, S. Melatonin ameliorates oxidative damage in hyperglycemia-induced liver injury. Clin. Invest. Med., 2012, 35(6), 370. doi: 10.25011/cim.v35i6.19209 PMID: 23217563
- Kheiripour, N.; Karimi, J.; Khodadadi, I.; Tavilani, H.; Taghi Goodarzi, M.; Hashemnia, M. Hepatoprotective effects of silymarin on liver injury via irisin upregulation and oxidative stress reduction in rats with type 2 diabetes. Iran. J. Med. Sci., 2019, 44(2), 108-117. PMID: 30936597
- Haider, A.; Gooren, L.J.G.; Padungtod, P.; Saad, F. Improvement of the metabolic syndrome and of non-alcoholic liver steatosis upon treatment of hypogonadal elderly men with parenteral testosterone undecanoate. Exp. Clin. Endocrinol. Diabetes, 2010, 118(3), 167-171. doi: 10.1055/s-0029-1202774 PMID: 19472103
- Pitteloud, N.; Hardin, M.; Dwyer, A.A.; Valassi, E.; Yialamas, M.; Elahi, D.; Hayes, F.J. Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. J. Clin. Endocrinol. Metab., 2005, 90(5), 2636-2641. doi: 10.1210/jc.2004-2190 PMID: 15713702
- Zhang, J.; Meng, G.; Zhang, C.; Lin, L.; Xu, N.; Liu, M.; Cui, F.; Jia, L. The antioxidative effects of acidic-, alkalic-, and enzymatic-extractable mycelium zinc polysaccharides by Pleurotus djamor on liver and kidney of streptozocin-induced diabetic mice. BMC Complement. Altern. Med., 2015, 15(1), 440. doi: 10.1186/s12906-015-0964-1 PMID: 26683206
- Xiao, F.; Gao, F.; Zhou, S.; Wang, L. The therapeutic effects of silymarin for patients with glucose/lipid metabolic dysfunction. medicine, 2020, 99(40), e22249. doi: 10.1097/MD.0000000000022249 PMID: 33019400
- Intapad, S.; Dasinger, J.H.; Fahling, J.M.; Backstrom, M.A.; Alexander, B.T. Testosterone is protective against impaired glucose metabolism in male intrauterine growth-restricted offspring. PLoS One, 2017, 12(11), e0187843. doi: 10.1371/journal.pone.0187843 PMID: 29145418
- Leutner, M.; Matzhold, C.; Bellach, L.; Wohlschläger-Krenn, E.; Winker, R.; Nistler, S.; Endler, G.; Thurner, S.; Klimek, P.; Kautzky-Willer, A. Increase in testosterone levels is related to a lower risk of conversion of prediabetes to manifest diabetes in prediabetic males. Wien. Klin. Wochenschr., 2022, 134(1-2), 1-6. doi: 10.1007/s00508-021-01903-1 PMID: 34223999
- Turer, A.T.; Scherer, P.E. Adiponectin: Mechanistic insights and clinical implications. Diabetologia, 2012, 55(9), 2319-2326. doi: 10.1007/s00125-012-2598-x PMID: 22688349
- Abdel-Moneim, A.M.; Al-Kahtani, M.A.; El-Kersh, M.A.; Al-Omair, M.A. Free Radical-Scavenging, Anti-Inflammatory/Anti-fibrotic and hepatoprotective actions of taurine and silymarin against CCl4 induced rat liver damagE. PLoS One, 2015, 10(12), e0144509. doi: 10.1371/journal.pone.0144509 PMID: 26659465
- Xu, A.; Chan, K.W.; Hoo, R.L.C.; Wang, Y.; Tan, K.C.B.; Zhang, J.; Chen, B.; Lam, M.C.; Tse, C.; Cooper, G.J.S.; Lam, K.S.L. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J. Biol. Chem., 2005, 280(18), 18073-18080. doi: 10.1074/jbc.M414231200 PMID: 15760892
- Guenther, M.; James, R.; Marks, J.; Zhao, S.; Szabo, A.; Kidambi, S. Adiposity distribution influences circulating adiponectin levels. Transl. Res., 2014, 164(4), 270-277. doi: 10.1016/j.trsl.2014.04.008 PMID: 24811003
- Guan, C.; Fu, S.; Zhen, D.; Yang, K.; An, J.; Wang, Y.; Ma, C.; Jiang, N.; Zhao, N.; Liu, J.; Yang, F.; Tang, X. Metabolic (dysfunction)-associated fatty liver disease in chinese patients with type 2 diabetes from a subcenter of the national metabolic management center. J. Diabetes Res., 2022, 2022, 1-9. doi: 10.1155/2022/8429847 PMID: 35127953
- Illingworth, D.R. Lipid-lowering drugs. Drugs, 1987, 33(3), 259-279. doi: 10.2165/00003495-198733030-00003 PMID: 3552597
- Kumari, A.; Singh, R.K. Synthesis, molecular docking and biological evaluation of N ‐substituted indole derivatives as potential anti‐inflammatory and antioxidant agents. Chem. Biodivers., 2022, 19(9), e202200290. doi: 10.1002/cbdv.202200290 PMID: 35818885
- Rovira-Llopis, S.; Bañuls, C.; de Marañon, A.M.; Diaz-Morales, N.; Jover, A.; Garzon, S.; Rocha, M.; Victor, V.M.; Hernandez-Mijares, A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic. Biol. Med., 2017, 108, 155-162. doi: 10.1016/j.freeradbiomed.2017.03.029 PMID: 28359952
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808. doi: 10.1172/JCI200319246 PMID: 14679176
- Kumari, A.; Silakari, O.; Singh, R.K. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed. Pharmacother., 2018, 103, 662-679.
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract., 2014, 105(2), 141-150. doi: 10.1016/j.diabres.2014.04.006 PMID: 24798950
- Singhai, M.; Faizy, A.; Goyal, R.; Siddiqui, S.S. Evaluation of TNF-α and IL-6 levels in obese and non-obese diabetics: Pre- and postinsulin effects. N. Am. J. Med. Sci., 2012, 4(4), 180-184. doi: 10.4103/1947-2714.94944 PMID: 22536561
- Tzanavari, T.; Giannogonas, P.; Karalis, K.P. TNF-α and obesity. Curr. Dir. Autoimmun., 2010, 11, 145-156. doi: 10.1159/000289203 PMID: 20173393
- Kojta, I. Chacińska, M.; Błachnio-Zabielska, A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients, 2020, 12(5), 1305. doi: 10.3390/nu12051305 PMID: 32375231
- Zaulet, M.; Kevorkian, S.E.M.; Dinescu, S.; Cotoraci, C.; Suciu, M.; Herman, H.; Buburuzan, L.; Badulescu, L.; Ardelean, A.; Hermenean, A. Protective effects of silymarin against bisphenol A-induced hepatotoxicity in mouse liver. Exp. Ther. Med., 2017, 13(3), 821-828. doi: 10.3892/etm.2017.4066 PMID: 28450905
- Tremellen, K.; McPhee, N.; Pearce, K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin. Androl., 2017, 27(1), 5. doi: 10.1186/s12610-017-0049-8 PMID: 28286655
- Malkin, C.J.; Pugh, P.J.; West, J.N.; van Beek, E.J.R.; Jones, T.H.; Channer, K.S. Testosterone therapy in men with moderate severity heart failure: A double-blind randomized placebo controlled trial. Eur. Heart J., 2006, 27(1), 57-64. doi: 10.1093/eurheartj/ehi443 PMID: 16093267
- Malkin, C.J.; Pugh, P.J.; Jones, R.D.; Kapoor, D.; Channer, K.S.; Jones, T.H. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J. Clin. Endocrinol. Metab., 2004, 89(7), 3313-3318. doi: 10.1210/jc.2003-031069 PMID: 15240608
- Miranda, L.M.O.; Agostini, L.D.C.; Lima, W.G.; Camini, F.C.; Costa, D.C. Silymarin attenuates hepatic and pancreatic redox imbalance independent of glycemic regulation in the alloxan-induced diabetic rat model. Biomed. Environ. Sci., 2020, 33(9), 690-700. PMID: 33106214
- Kumar, V.; Sahoo, A.; Khadka, P.; Chauhan, D.; Bawadood, A.S.; Rahman, M. Ascorbic acid-rich Moringa oleifera Lam. extract inhibits hepatorenal toxicity and enhances the endogenous antioxidant levels in streptozotocin-induced type-II diabetes. INNOSC Theranost. Pharmacol. Sci., 2019, 2(2), 25-35. doi: 10.36922/itps.v2i2.476
- Abdel-Magid, A.F. Treatment of obesity and related disorders with acetyl-CoA carboxylase inhibitors. ACS Med. Chem. Lett., 2013, 4(1), 16-17. doi: 10.1021/ml3004044 PMID: 24900556
- Griffith, D.A.; Kung, D.W.; Esler, W.P.; Amor, P.A.; Bagley, S.W.; Beysen, C.; Carvajal-Gonzalez, S.; Doran, S.D.; Limberakis, C.; Mathiowetz, A.M.; McPherson, K.; Price, D.A.; Ravussin, E.; Sonnenberg, G.E.; Southers, J.A.; Sweet, L.J.; Turner, S.M.; Vajdos, F.F. Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J. Med. Chem., 2014, 57(24), 10512-10526. doi: 10.1021/jm5016022 PMID: 25423286
- Goodman, Z.D.; Pan, X.J.; Ge, C.L.; Guo, Y.T.; Zhang, P.F.; Yan, T.T.; Zhou, J.Y.; He, Q.X.; Goodman, Z.D. The impact of obesity on liver histology. Clin. Liver Dis., 2014, 18(1), 33-40. doi: 10.1016/j.cld.2013.09.010 PMID: 24274863
- Kelly, D.M.; Nettleship, J.E.; Akhtar, S.; Muraleedharan, V.; Sellers, D.J.; Brooke, J.C.; McLaren, D.S.; Channer, K.S.; Jones, T.H. Testosterone suppresses the expression of regulatory enzymes of fatty acid synthesis and protects against hepatic steatosis in cholesterol-fed androgen deficient mice. Life Sci., 2014, 109(2), 95-103. doi: 10.1016/j.lfs.2014.06.007 PMID: 24953607
- Chiang, J.Y.L. Bile acids: Regulation of synthesis. J. Lipid Res., 2009, 50(10), 1955-1966. doi: 10.1194/jlr.R900010-JLR200 PMID: 19346330
- Li, T.; Francl, J.M.; Boehme, S.; Ochoa, A.; Zhang, Y.; Klaassen, C.D.; Erickson, S.K.; Chiang, J.Y.L. Glucose and insulin induction of bile acid synthesis: Mechanisms and implication in diabetes and obesity. J. Biol. Chem., 2012, 287(3), 1861-1873. doi: 10.1074/jbc.M111.305789 PMID: 22144677
- Li, T.; Chanda, D.; Zhang, Y.; Choi, H.S.; Chiang, J.Y.L. Glucose stimulates cholesterol 7α-hydroxylase gene transcription in human hepatocytes. J. Lipid Res., 2010, 51(4), 832-842. doi: 10.1194/jlr.M002782 PMID: 19965590
- Li, T.; Owsley, E.; Matozel, M.; Hsu, P.; Novak, C.M.; Chiang, J.Y.L. Transgenic expression of cholesterol 7α-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology, 2010, 52(2), 678-690. doi: 10.1002/hep.23721 PMID: 20623580
- Gu, M.; Zhao, P.; Huang, J.; Zhao, Y.; Wang, Y.; Li, Y.; Li, Y.; Fan, S.; Ma, Y.M.; Tong, Q.; Yang, L.; Ji, G.; Huang, C. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front. Pharmacol., 2016, 7, 345. doi: 10.3389/fphar.2016.00345 PMID: 27733832
Supplementary files
