Identification of PLAC8 as a Potential Biomarker for the Diagnosis of Interstitial Cystitis


Цитировать

Полный текст

Аннотация

Background::Interstitial cystitis is a diagnosis of exclusion due to the complexity of its etiology and pathology, which is a chronic disease with an unknown etiology. To our knowledge, few studies were performed to identify predictive biomarkers for interstitial cystitis.

Objective::This study aimed to identify and validate potential biomarkers for interstitial cystitis (IC).

Methods::The interstitial cystitis datasets were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by using the R package and were subjected to functional and pathway enrichment analysis. Key biomarkers of interstitial cystitis were identified by using Lasso regression analysis and the SVM-RFE algorithm. The diagnostic value of key biomarkers was validated in internal and external datasets, and pathways that relate to biomarkers of interstitial cystitis were screened. The ssGSEA was employed to identify the immune cells closely related to biomarkers. The expression of PLAC8 in patients with interstitial cystitis was detected by immune-histochemistry (IHC).

Results::Sixteen differentially expressed genes associated with interstitial cystitis were identified, which were primarily linked to the biological process of the chemokine signaling pathway. PLAC8, identified as a biomarker for interstitial cystitis, was validated to express a significantly different between IC and normal bladder tissues. PLAC8-related pathways were analyzed, with a focus on NF-κB, TNF, Toll-like receptor, chemokine, IL-17, and JAK-STAT signaling pathways. PLAC8 was proved to be closely related to immune activations, which is similar to the pathogenesis of IC, which is a chronic dysregulated immune disease. Meanwhile, we also observed a higher level of PLAC8 in IC tissues.

Conclusion::PLAC8 has promising application prospects as a biomarker for interstitial cystitis diagnosis. These findings could aid in the diagnosis and treatment of interstitial cystitis.

Об авторах

Peng Li

Department of Urology, The Affiliated Hospital of Qingdao Binhai University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Mingwei Xu

Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science

Email: info@benthamscience.net

Zhilei Zhang

Department of Urology, The Affiliated Hospital of Qingdao Binhai University

Email: info@benthamscience.net

Xiangyan Zhang

Department of Urology, Affiliated Hospital of Qingdao University

Email: info@benthamscience.net

Fei Xie

Department of Urology, The Affiliated Hospital of Qingdao University

Email: info@benthamscience.net

Xiaofei Zhang

Department of Gastroenterology, Qingdao Municipal Hospital

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. van de Merwe, J.P.; Nordling, J.; Bouchelouche, P.; Bouchelouche, K.; Cervigni, M.; Daha, L.K.; Elneil, S.; Fall, M.; Hohlbrugger, G.; Irwin, P.; Mortensen, S.; van Ophoven, A.; Osborne, J.L.; Peeker, R.; Richter, B.; Riedl, C.; Sairanen, J.; Tinzl, M.; Wyndaele, J.J. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: An ESSIC proposal. Eur. Urol., 2008, 53(1), 60-67. doi: 10.1016/j.eururo.2007.09.019 PMID: 17900797
  2. Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.L.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; Kim, J.C.; Lee, K.S. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol., 2020, 27(7), 578-589. doi: 10.1111/iju.14234 PMID: 32291805
  3. Dellis, A.E.; Papatsoris, A.G. Bridging pharmacotherapy and minimally invasive surgery in interstitial cystitis/bladder pain syndrome treatment. Expert Opin. Pharmacother., 2018, 19(12), 1369-1373. doi: 10.1080/14656566.2018.1505865 PMID: 30074829
  4. Peeker, R.; Fall, M. Toward a precise definition of interstitial cystitis: Further evidence of differences in classic and nonulcer disease. J. Urol., 2002, 167(6), 2470-2472. doi: 10.1016/S0022-5347(05)65006-9 PMID: 11992059
  5. Elia, I.; Haigis, M.C. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat. Metab., 2021, 3(1), 21-32. doi: 10.1038/s42255-020-00317-z PMID: 33398194
  6. Dohi, T.; Fujihashi, K.; Koga, T.; Etani, Y.; Yoshino, N.; Kawamura, Y.I.; McGhee, J.R. CD4+CD45RBHi interleukin-4 defective T cells elicit antral gastritis and duodenitis. Am. J. Pathol., 2004, 165(4), 1257-1268. doi: 10.1016/S0002-9440(10)63385-8 PMID: 15466391
  7. Akiyama, Y.; Homma, Y.; Maeda, D. Pathology and terminology of interstitial cystitis/bladder pain syndrome: A review. Histol. Histopathol., 2019, 34(1), 25-32. PMID: 30015351
  8. Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol., 2020, 30(16), R921-R925. doi: 10.1016/j.cub.2020.06.081 PMID: 32810447
  9. Fall, M.; Peeker, R. Bladder pain syndrome/interstitial cystitis-treatment options; Urogenital Pain in Clinical Practice, 2008.
  10. White, C.M.; Fan, C.; Song, J.; Tsikouris, J.P.; Chow, M. An evaluation of the hemostatic effects of hydrophilic, alcohol, and lipophilic extracts of notoginseng. Pharmacotherapy, 2001, 21(7), 773-777. doi: 10.1592/phco.21.9.773.34561 PMID: 11444574
  11. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
  12. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  13. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 2010, 33(1), 1-22. doi: 10.18637/jss.v033.i01 PMID: 20808728
  14. Wang, H.; Lengerich, B.J.; Aragam, B.; Xing, E.P. Precision Lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data. Bioinformatics, 2019, 35(7), 1181-1187. doi: 10.1093/bioinformatics/bty750 PMID: 30184048
  15. Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457. doi: 10.1038/nmeth.3337 PMID: 25822800
  16. Akiyama, Y.; Luo, Y.; Hanno, P.M.; Maeda, D.; Homma, Y. Interstitial cystitis/bladder pain syndrome: The evolving landscape, animal models and future perspectives. Int. J. Urol., 2020, 27(6), 491-503. doi: 10.1111/iju.14229 PMID: 32246572
  17. Parsons, C.L.; Lilly, J.D.; Stein, P. Epithelial dysfunction in nonbacterial cystitis (interstitial cystitis). J. Urol., 1991, 145(4), 732-735. doi: 10.1016/S0022-5347(17)38437-9 PMID: 2005689
  18. Towner, R.A.; Wisniewski, A.B.; Wu, D.H.; Van Gordon, S.B.; Smith, N.; North, J.C.; McElhaney, R.; Aston, C.E.; Shobeiri, S.A.; Kropp, B.P.; Greenwood-Van Meerveld, B.; Hurst, R.E. A feasibility study to determine whether clinical contrast enhanced magnetic resonance imaging can detect increased bladder permeability in patients with interstitial cystitis. J. Urol., 2016, 195(3), 631-638. doi: 10.1016/j.juro.2015.08.077 PMID: 26307161
  19. Tian, G.; Wu, C.; Li, J.; Liang, B.; Zhang, F.; Fan, X.; Li, Z.; Wang, Y.; Li, Z.; Liu, D.; Lai-Han Leung, E.; Chen, J. Network pharmacology based investigation into the effect and mechanism of Modified Sijunzi Decoction against the subtypes of chronic atrophic gastritis. Pharmacol. Res., 2019, 144, 158-166. doi: 10.1016/j.phrs.2019.04.012 PMID: 30991106
  20. Ruggiero, E.; Nicolay, J.P.; Fronza, R.; Arens, A.; Paruzynski, A.; Nowrouzi, A.; Ürenden, G.; Lulay, C.; Schneider, S.; Goerdt, S.; Glimm, H.; Krammer, P.H.; Schmidt, M.; von Kalle, C. High-resolution analysis of the human T-cell receptor repertoire. Nat. Commun., 2015, 6(1), 8081. doi: 10.1038/ncomms9081 PMID: 26324409
  21. Kim, H.J. Update on the pathology and diagnosis of interstitial cystitis/bladder pain syndrome: A review. Int. Neurourol. J., 2006, 20(1), 13-17. doi: 10.5213/inj.1632522.261 PMID: 27032552
  22. Mao, M.; Cheng, Y.; Yang, J.; Chen, Y.; Xu, L.; Zhang, X.; Li, Z.; Chen, C.; Ju, S.; Zhou, J.; Wang, L. Multifaced roles of PLAC8 in cancer. Biomark. Res., 2021, 9(1), 73. doi: 10.1186/s40364-021-00329-1 PMID: 34627411
  23. Lee, C.L.; Huang, C.J.; Yang, S.H.; Chang, C.C.; Huang, C.C.; Chien, C.C.; Yang, R.N. Discovery of genes from feces correlated with colorectal cancer progression. Oncol. Lett., 2016, 12(5), 3378-3384. doi: 10.3892/ol.2016.5069 PMID: 27900008
  24. Uehara, H.; Takahashi, T.; Izumi, K. Induction of retinol-binding protein 4 and placenta-specific 8 expression in human prostate cancer cells remaining in bone following osteolytic tumor growth inhibition by osteoprotegerin. Int. J. Oncol., 2013, 43(2), 365-374. doi: 10.3892/ijo.2013.1954 PMID: 23708710
  25. Gong, K.; Gong, Z.J.; Lu, P.X.; Ni, X.; Shen, S.; Liu, H.; Wang, J.W.; Zhang, D.X.; Liu, H.B.; Suo, T. PLAC8 overexpression correlates with PD-L1 upregulation and acquired resistance to chemotherapies in gallbladder carcinoma. Biochem. Biophys. Res. Commun., 2019, 516(3), 983-990. doi: 10.1016/j.bbrc.2019.06.121 PMID: 31272718
  26. Hutchinson, M.R.; Zhang, Y.; Brown, K.; Coats, B.D.; Shridhar, M.; Sholar, P.W.; Patel, S.J.; Crysdale, N.Y.; Harrison, J.A.; Maier, S.F.; Rice, K.C.; Watkins, L.R. Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: Involvement of toll-like receptor 4 (TLR4). Eur. J. Neurosci., 2008, 28(1), 20-29. doi: 10.1111/j.1460-9568.2008.06321.x PMID: 18662331
  27. Milligan, ED; Watkins, LR Pathological and protective roles of glia in chronic pain. Nat. Rev. Neurosci., 2009, 10(1), 23-36. doi: 10.1038/nrn2533
  28. Teraguchi, S.; Saputri, D.S.; Llamas-Covarrubias, M.A.; Davila, A.; Diez, D.; Nazlica, S.A.; Rozewicki, J.; Ismanto, H.S.; Wilamowski, J.; Xie, J.; Xu, Z.; Loza-Lopez, M.J.; van Eerden, F.J.; Li, S.; Standley, D.M. Methods for sequence and structural analysis of B and T cell receptor repertoires. Comput. Struct. Biotechnol. J., 2020, 18, 2000-2011. doi: 10.1016/j.csbj.2020.07.008 PMID: 32802272
  29. de Oliveira, M.G.; Mónica, F.Z.; Calmasini, F.B.; Alexandre, E.C.; Tavares, E.B.G.; Soares, A.G.; Costa, S.K.P.; Antunes, E. Deletion or pharmacological blockade of TLR4 confers protection against cyclophosphamide-induced mouse cystitis. Am. J. Physiol. Renal Physiol., 2018, 315(3), F460-F468. doi: 10.1152/ajprenal.00100.2018 PMID: 29717937
  30. Rogulski, K.; Li, Y.; Rothermund, K.; Pu, L.; Watkins, S.; Yi, F.; Prochownik, E.V. Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt–Mdm2–p53 pathway. Oncogene, 2005, 24(51), 7524-7541. doi: 10.1038/sj.onc.1208897 PMID: 16170375
  31. Jimenez-Preitner, M.; Berney, X.; Uldry, M.; Vitali, A.; Cinti, S.; Ledford, J.G.; Thorens, B. Plac8 is an inducer of C/EBPβ required for brown fat differentiation, thermoregulation, and control of body weight. Cell Metab., 2011, 14(5), 658-670. doi: 10.1016/j.cmet.2011.08.008 PMID: 21982742
  32. Galaviz-Hernandez, C.; Stagg, C.; de Ridder, G.; Tanaka, T.S.; Ko, M.S.H.; Schlessinger, D.; Nagaraja, R. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene, 2003, 309(2), 81-89. doi: 10.1016/S0378-1119(03)00508-0 PMID: 12758124
  33. Machado, G.M.; Ferreira, A.R.; Pivato, I.; Fidelis, A.; Spricigo, J.F.; Paulini, F.; Lucci, C.M.; Franco, M.M.; Dode, M.A. Post‐hatching development of in vitro bovine embryos from day 7 to 14 in vivo versus in vitro. Mol. Reprod. Dev., 2013, 80(11), 936-947. doi: 10.1002/mrd.22230 PMID: 24022836
  34. Shi, L.; Xiao, L.; Heng, B.; Mo, S.; Chen, W.; Su, Z. Overexpression of placenta specific 8 is associated with malignant progression and poor prognosis of clear cell renal cell carcinoma. Int. Urol. Nephrol., 2017, 49(7), 1165-1176. doi: 10.1007/s11255-017-1578-y PMID: 28349447
  35. Wu, J.; Wang, X.; Shang, A.; Vella, G.; Li, D. PLAC8 inhibits oral squamous cell carcinogenesis and epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt/GSK3β signaling pathways. Oncol. Lett., 2020, 20(5), 1-1.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024