Computational Approaches: A New Frontier in Cancer Research
- Authors: Srivastava S.1, Jain P.1
-
Affiliations:
- Department of Pharmacy, IIMT College of Pharmacy
- Issue: Vol 27, No 13 (2024)
- Pages: 1861-1876
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/645255
- DOI: https://doi.org/10.2174/0113862073265604231106112203
- ID: 645255
Cite item
Full Text
Abstract
Cancer is a broad category of disease that can start in virtually any organ or tissue of the body when aberrant cells assault surrounding organs and proliferate uncontrollably. According to the most recent statistics, cancer will be the cause of 10 million deaths worldwide in 2020, accounting for one death out of every six worldwide. The typical approach used in anti-cancer research is highly time-consuming and expensive, and the outcomes are not particularly encouraging. Computational techniques have been employed in anti-cancer research to advance our understanding. Recent years have seen a significant and exceptional impact on anticancer research due to the rapid development of computational tools for novel drug discovery, drug design, genetic studies, genome characterization, cancer imaging and detection, radiotherapy, cancer metabolomics, and novel therapeutic approaches. In this paper, we examined the various subfields of contemporary computational techniques, including molecular docking, artificial intelligence, bioinformatics, virtual screening, and QSAR, and their applications in the study of cancer.
About the authors
Shubham Srivastava
Department of Pharmacy, IIMT College of Pharmacy
Author for correspondence.
Email: info@benthamscience.net
Pushpendra Jain
Department of Pharmacy, IIMT College of Pharmacy
Email: info@benthamscience.net
References
- Mak, L.; Liggi, S.; Tan, L.; Kusonmano, K.; Rollinger, J.M.; Koutsoukas, A.; Glen, R.C.; Kirchmair, J. Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism. Curr. Pharm. Des., 2013, 19(4), 532-577. doi: 10.2174/138161213804581855 PMID: 23016852
- Cui, W.; Aouidate, A.; Wang, S.; Yu, Q.; Li, Y.; Yuan, S. Discovering anti-cancer drugs via computational methods. Front. Pharmacol., 2020, 11, 733. doi: 10.3389/fphar.2020.00733 PMID: 32508653
- Massard, C.; Michiels, S.; Ferté, C.; Le Deley, M.C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; Ngo-Camus, M.; Bahleda, R.; Gazzah, A.; Varga, A.; Postel-Vinay, S.; Loriot, Y.; Even, C.; Breuskin, I.; Auger, N.; Job, B.; De Baere, T.; Deschamps, F.; Vielh, P.; Scoazec, J.Y.; Lazar, V.; Richon, C.; Ribrag, V.; Deutsch, E.; Angevin, E.; Vassal, G.; Eggermont, A.; André, F.; Soria, J.C. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: Results of the MOSCATO 01 trial. Cancer Discov., 2017, 7(6), 586-595. doi: 10.1158/2159-8290.CD-16-1396 PMID: 28365644
- Meric-Bernstam, F.; Mills, G.B. Overcoming implementation challenges of personalized cancer therapy. Nat. Rev. Clin. Oncol., 2012, 9(9), 542-548. doi: 10.1038/nrclinonc.2012.127 PMID: 22850751
- Flaherty, K.T.; Hodi, F.S.; Fisher, D.E. From genes to drugs: targeted strategies for melanoma. Nat. Rev. Cancer, 2012, 12(5), 349-361. doi: 10.1038/nrc3218 PMID: 22475929
- Higgins, M.J.; Baselga, J. Targeted therapies for breast cancer. J. Clin. Invest., 2011, 121(10), 3797-3803. doi: 10.1172/JCI57152 PMID: 21965336
- Hanna, T.P.; Kangolle, A.C.T. Cancer control in developing countries: using health data and health services research to measure and improve access, quality and efficiency. BMC Int. Health Hum. Rights, 2010, 10(1), 24. doi: 10.1186/1472-698X-10-24 PMID: 20942937
- WHO-Cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer
- Cancer statistics. Available from: https://www.cancer.gov/about-cancer/understanding/statistics
- Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem. Biol. Interact., 2008, 171(2), 165-176. doi: 10.1016/j.cbi.2006.12.006 PMID: 17229415
- Prada-Gracia, D.; Huerta-Yépez, S.; Moreno-Vargas, L.M. Application of computational methods for anticancer drug discovery, design, and optimization. Boletín Médico Del Hosp Infant México, 2016, 73(6), 411-423. doi: 10.1016/j.bmhime.2017.11.040
- Sudhakar, A. History of cancer, ancient and modern treatment methods. J. Cancer Sci. Ther., 2009, 1(2), 1-4. PMID: 20740081
- Overington, J.P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov., 2006, 5(12), 993-996. doi: 10.1038/nrd2199 PMID: 17139284
- Reymond, J.L.; Blum, L.C.; Van Deursen, R. Exploring the chemical space of known and unknown organic small molecules at www.gdb.unibe.ch. Chimia (Aarau), 2011, 65(11), 863-7.
- Brogi, S.; Kladi, M.; Vagias, C.; Papazafiri, P.; Roussis, V.; Tafi, A. Pharmacophore modeling for qualitative prediction of antiestrogenic activity. J. Chem. Inf. Model., 2009, 49(11), 2489-2497. doi: 10.1021/ci900254b PMID: 19877675
- Brogi, S.; Papazafiri, P.; Roussis, V.; Tafi, A. 3D-QSAR using pharmacophore-based alignment and virtual screening for discovery of novel MCF-7 cell line inhibitors. Eur. J. Med. Chem., 2013, 67, 344-351. doi: 10.1016/j.ejmech.2013.06.048 PMID: 23880359
- Zaccagnini, L.; Brogi, S.; Brindisi, M.; Gemma, S.; Chemi, G.; Legname, G. Identification of novel fluorescent probes preventing PrPScreplication in prion diseases. Eur. J. Med. Chem., 2017, 127, 859-887. doi: 10.1016/j.ejmech.2016.10.064
- Vallone, A.; DAlessandro, S.; Brogi, S.; Brindisi, M.; Chemi, G.; Alfano, G.; Lamponi, S.; Lee, S.G.; Jez, J.M.; Koolen, K.J.M.; Dechering, K.J.; Saponara, S.; Fusi, F.; Gorelli, B.; Taramelli, D.; Parapini, S.; Caldelari, R.; Campiani, G.; Gemma, S.; Butini, S. Antimalarial agents against both sexual and asexual parasites stages: structure-activity relationships and biological studies of the Malaria Box compound 1-5-(4-bromo-2-chlorophenyl)furan-2-yl-N-(piperidin-4-yl)methylmethanamine (MMV019918) and analogues. Eur. J. Med. Chem., 2018, 150, 698-718.
- Brogi, S. Computational approaches for drug discovery. Molecules, 2019, 24(17), 3061. doi: 10.3390/molecules24173061 PMID: 31443558
- Sebastian, A.M.; Peter, D. Artificial intelligence in cancer research: Trends, challenges and future directions. Life (Basel), 2022, 12(12), 1991. doi: 10.3390/life12121991 PMID: 36556356
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov., 2021, 11(4), 900-915. doi: 10.1158/2159-8290.CD-21-0090 PMID: 33811123
- Xie, J.; Luo, X.; Deng, X.; Tang, Y.; Tian, W.; Cheng, H.; Zhang, J.; Zou, Y.; Guo, Z.; Xie, X. Advances in artificial intelligence to predict cancer immunotherapy efficacy. Front. Immunol., 2023, 13, 1076883. doi: 10.3389/fimmu.2022.1076883 PMID: 36685496
- Hephzibah Cathryn, R.; Udhaya Kumar, S.; Younes, S.; Zayed, H.; George Priya Doss, C. Chapter Three - A review of bioinformatics tools and web servers in different microarray platforms used in cancer research. In: Advances in Protein Chemistry and Structural Biology; , 2022; 131, pp. 85-164. doi: 10.1016/bs.apcsb.2022.05.002
- Brenner, C. Applications of bioinformatics in cancer. Cancers (Basel), 2019, 11(11), 1630. doi: 10.3390/cancers11111630 PMID: 31652939
- Beg, A.; Parveen, R. Role of Bioinformatics in cancer research and drug development. Translational Bioinformatics in Healthcare and Medicine; Elsevier, 2021, pp. 141-148. doi: 10.1016/B978-0-323-89824-9.00011-2
- de Oliveira, T.A.; da Silva, M.P.; Maia, E.H.B.; da Silva, A.M.; Taranto, A.G. Virtual Screening algorithms in drug discovery: A review focused on machine and deep learning methods. Drugs Drug Candidates, 2023, 2(2), 311-334. doi: 10.3390/ddc2020017
- Gimeno, A.; Ojeda-Montes, M.; Tomás-Hernández, S.; Cereto-Massagué, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. The light and dark sides of virtual screening: What is there to know? Int. J. Mol. Sci., 2019, 20(6), 1375. doi: 10.3390/ijms20061375 PMID: 30893780
- Maicheen, C.; Ungwitayatorn, J. Molecular docking study of chromone derivatives as dual inhibitor against plasmepsin ii and falcipain-2. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2020, 47(1), 98-113.
- Agarwal, S.; Mehrotra, R. An overview of molecular simulation. JSM Chem., 2016, 4(2), 1024-1028.
- Stephen, N. Cancer Drug Design and Discovery No Title, 2nd ed; Elsevier, 2014. doi: 10.1016/C2011-0-07765-7
- Sliwoski, G.R.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery prediction of protein structure and ensembles from limited experimental data view project antibody modeling, antibody design and antigen-antibody interactions view project. Comput. Methods Drug Discov., 2014, 66(1), 334-395.
- National Cancer Institute Informatics Technology for Cancer Research. Available from: https://itcr.cancer.gov/informatics-tools-table
- PBD-101. Available from: https://pdb101.rcsb.org/browse/cancer
- Basith, S.; Cui, M.; Macalino, S.J.Y.; Choi, S. Expediting the design, discovery and development of anticancer drugs using computational approaches. Curr. Med. Chem., 2017, 24(42), 4753-4778. PMID: 27593958
- Monticolo, F.; Chiusano, M.L. Computational approaches for cancer-fighting: from gene expression to functional foods. Cancers (Basel), 2021, 13(16), 4207. doi: 10.3390/cancers13164207 PMID: 34439361
- Berardi, R.; Morgese, F.; Rinaldi, S.; Torniai, M.; Mentrasti, G.; Scortichini, L.; Giampieri, R. Benefits and limitations of a multidisciplinary approach in cancer patient management. Cancer Manag. Res., 2020, 12, 9363-9374. doi: 10.2147/CMAR.S220976 PMID: 33061625
- Jain, S.; Naicker, D.; Raj, R.; Patel, V.; Hu, Y.C.; Srinivasan, K.; Jen, C.P. Computational intelligence in cancer diagnostics: A contemporary review of smart phone apps, current problems, and future research potentials. Diagnostics (Basel), 2023, 13(9), 1563. doi: 10.3390/diagnostics13091563 PMID: 37174954
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med., 2019, 380(14), 1347-1358. doi: 10.1056/NEJMra1814259 PMID: 30943338
- Sherbet, G.; Woo, W.L.; Dlay, S. Application of artificial intelligence-based technology in cancer management: A commentary on the deployment of artificial neural networks. Anticancer Res., 2018, 38(12), 6607-6613. doi: 10.21873/anticanres.13027 PMID: 30504368
- Nagarajan, N.; Yapp, E.K.Y.; Le, N.Q.K.; Kamaraj, B.; Al-Subaie, A.M.; Yeh, H.Y. Application of computational biology and artificial intelligence technologies in cancer precision drug discovery. BioMed Res. Int., 2019, 2019, 8427042. doi: 10.1155/2019/8427042
- Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A.H. Deep Learning for Identifying Metastatic Breast Cancer. arXiv, 2016, 1-6.
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118. doi: 10.1038/nature21056 PMID: 28117445
- Luo, G.; Sun, G.; Wang, K.; Dong, S.; Zhang, H. A novel left ventricular volumes prediction method based on deep learning network in cardiac MRI. Comput. Cardiol., 2010, 2016(43), 89-92.
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci., 2019, 40(8), 592-604. doi: 10.1016/j.tips.2019.06.004 PMID: 31320117
- Nitta, N.; Sugimura, T.; Isozaki, A.; Mikami, H.; Hiraki, K.; Sakuma, S.; Iino, T.; Arai, F.; Endo, T.; Fujiwaki, Y.; Fukuzawa, H.; Hase, M.; Hayakawa, T.; Hiramatsu, K.; Hoshino, Y.; Inaba, M.; Ito, T.; Karakawa, H.; Kasai, Y.; Koizumi, K.; Lee, S.; Lei, C.; Li, M.; Maeno, T.; Matsusaka, S.; Murakami, D.; Nakagawa, A.; Oguchi, Y.; Oikawa, M.; Ota, T.; Shiba, K.; Shintaku, H.; Shirasaki, Y.; Suga, K.; Suzuki, Y.; Suzuki, N.; Tanaka, Y.; Tezuka, H.; Toyokawa, C.; Yalikun, Y.; Yamada, M.; Yamagishi, M.; Yamano, T.; Yasumoto, A.; Yatomi, Y.; Yazawa, M.; Di Carlo, D.; Hosokawa, Y.; Uemura, S.; Ozeki, Y.; Goda, K. Intelligent image-activated cell sorting. Cell, 2018, 175(1), 266-276.e13. doi: 10.1016/j.cell.2018.08.028 PMID: 30166209
- Tripathy, R.K.; Mahanta, S.; Paul, S. Artificial intelligence-based classification of breast cancer using cellular images. RSC Advances, 2014, 4(18), 9349-9355. doi: 10.1039/c3ra47489e
- von Lilienfeld, O.A. Quantum machine learning in chemical compound space. Angew. Chem. Int. Ed., 2018, 57(16), 4164-4169. doi: 10.1002/anie.201709686 PMID: 29216413
- Zhou, Z.; Li, X.; Zare, R.N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci., 2017, 3(12), 1337-1344. doi: 10.1021/acscentsci.7b00492 PMID: 29296675
- Coley, C.W.; Barzilay, R.; Jaakkola, T.S.; Green, W.H.; Jensen, K.F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci., 2017, 3(5), 434-443. doi: 10.1021/acscentsci.7b00064 PMID: 28573205
- Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv., 2018, 4(7), eaap7885. doi: 10.1126/sciadv.aap7885 PMID: 30050984
- Hofmarcher, M.; Rumetshofer, E.; Clevert, D.A.; Hochreiter, S.; Klambauer, G. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J. Chem. Inf. Model., 2019, 59(3), 1163-1171. doi: 10.1021/acs.jcim.8b00670 PMID: 30840449
- Klambauer, G.; Hochreiter, S.; Rarey, M. Machine learning in drug discovery. J. Chem. Inf. Model., 2019, 59(3), 945-946. doi: 10.1021/acs.jcim.9b00136 PMID: 30905159
- Yin, Z.; Ai, H.; Zhang, L.; Ren, G.; Wang, Y.; Zhao, Q.; Liu, H. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints. J. Appl. Toxicol., 2019, 39(10), 1366-1377. doi: 10.1002/jat.3785 PMID: 30763981
- Machado, J.F.; Silva, R.D.; Melo, R.; Correia, J.D.G. Less exploited GPCRs in precision medicine: Targets for molecular imaging and theranostics. Molecules, 2019, 24(1), 1-29. PMID: 31861256
- Born, J.; Manica, M.; Oskooei, A.; Cadow, J.; Rodríguez Martínez, M. PaccmannRL: Designing anticancer drugs from transcriptomic data via reinforcement learning. In: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics); , 2020; 12074 LNBI, p. 231-3.
- Lind, A.P.; Anderson, P.C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One, 2019, 14(7), e0219774. doi: 10.1371/journal.pone.0219774 PMID: 31295321
- Hossain, M.A.; Saiful Islam, S.M.; Quinn, J.M.W.; Huq, F.; Moni, M.A. Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. J. Biomed. Inform., 2019, 100, 103313. doi: 10.1016/j.jbi.2019.103313 PMID: 31655274
- Paik, E.S.; Lee, J.W.; Park, J.Y.; Kim, J.H.; Kim, M.; Kim, T.J.; Choi, C.H.; Kim, B.G.; Bae, D.S.; Seo, S.W. Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods. J. Gynecol. Oncol., 2019, 30(4), e65. doi: 10.3802/jgo.2019.30.e65 PMID: 31074247
- McDonald, J.F. Back to the future - The integration of big data with machine learning is re-establishing the importance of predictive correlations in ovarian cancer diagnostics and therapeutics. Gynecol. Oncol., 2018, 149(2), 230-231. doi: 10.1016/j.ygyno.2018.03.053 PMID: 29572028
- Li, Q.; Qi, L.; Feng, Q.X.; Liu, C.; Sun, S.W.; Zhang, J.; Yang, G.; Ge, Y.Q.; Zhang, Y.D.; Liu, X.S. Machine learningbased computational models derived from large-scale radiographic-radiomic images can help predict adverse histopathological status of gastric cancer. Clin. Transl. Gastroenterol., 2019, 10(10), e00079. doi: 10.14309/ctg.0000000000000079 PMID: 31577560
- Taninaga, J.; Nishiyama, Y.; Fujibayashi, K.; Gunji, T.; Sasabe, N.; Iijima, K.; Naito, T. Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A case-control study. Sci. Rep., 2019, 9(1), 12384. doi: 10.1038/s41598-019-48769-y PMID: 31455831
- Liu, C.; Qi, L.; Feng, Q.X.; Sun, S.W.; Zhang, Y.D.; Liu, X.S. Performance of a machine learning-based decision model to help clinicians decide the extent of lymphadenectomy (D1 vs. D2) in gastric cancer before surgical resection. Abdom. Radiol. (N.Y.), 2019, 44(9), 3019-3029. doi: 10.1007/s00261-019-02098-w PMID: 31201432
- Arnaldo, S.; Cuocolo, R.; Renata, D.G.; Anna, N.; Valeria, R.; Antonio, T. Deep myometrial infiltration of endometrial cancer on MRI: A radiomics-powered machine learning pilot study. Acad. Radiol., 2020, 28(5), 737-744. doi: 10.1016/j.acra.2020.02.028
- Günakan, E.; Atan, S.; Haberal, A.N. Küçükyıldız, İ.A.; Gökçe, E.; Ayhan, A. A novel prediction method for lymph node involvement in endometrial cancer: machine learning. Int. J. Gynecol. Cancer, 2019, 29(2), 320-324. doi: 10.1136/ijgc-2018-000033 PMID: 30718313
- Ciallella, H.L.; Zhu, H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol., 2019, 32(4), 536-547. doi: 10.1021/acs.chemrestox.8b00393 PMID: 30907586
- Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol., 2020, 60(1), 573-589. doi: 10.1146/annurev-pharmtox-010919-023324 PMID: 31518513
- Réda, C.; Kaufmann, E.; Delahaye-Duriez, A. Machine learning applications in drug development. Comput. Struct. Biotechnol. J., 2019, 18, 241-252. PMID: 33489002
- Brown, N.; Hirst, J. In Silico Medicinal Chemistry. Computational Methods to Support Drug Design. In Silico Med. Chem., 2015, 232. Available from: https://www.google.co.in/books/edition/In_Silico_Medicinal_Chemistry/-mooDwAAQBAJ?hl=en&gbpv=0
- Pereira, J.C.; Caffarena, E.R.; dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model., 2016, 56(12), 2495-2506. doi: 10.1021/acs.jcim.6b00355 PMID: 28024405
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today, 2021, 26(1), 80-93. doi: 10.1016/j.drudis.2020.10.010 PMID: 33099022
- Awale, M.; Reymond, J.L. Polypharmacology browser PPB2: Target prediction combining nearest neighbors with machine learning. J. Chem. Inf. Model., 2019, 59(1), 10-17. doi: 10.1021/acs.jcim.8b00524 PMID: 30558418
- Durrant, J.D.; McCammon, J.A. NNScore 2.0: A neural-network receptor-ligand scoring function. J. Chem. Inf. Model., 2011, 51(11), 2897-2903. doi: 10.1021/ci2003889 PMID: 22017367
- Zhang, W.; Lee, A.M.; Jena, S.; Huang, Y.; Ho, Y.; Tietz, K.T.; Miller, C.R.; Su, M.C.; Mentzer, J.; Ling, A.L.; Li, Y.; Dehm, S.M.; Huang, R.S. Computational drug discovery for castration-resistant prostate cancers through in vitro drug response modeling. Proc. Natl. Acad. Sci. USA, 2023, 120(17), e2218522120. doi: 10.1073/pnas.2218522120 PMID: 37068243
- Alqahtani, A. Application of artificial intelligence in discovery and development of anticancer and antidiabetic therapeutic agents. Evid. Based Compl. Alternat. Med., 2022, 2022, 6201067. doi: 10.1155/2022/6201067
- Cassidy, W.J.; Taylor, B. Artificial Intelligence in Oncology Drug Discovery and Development; IntechOpen, 2020. Available from: https://www.intechopen.com/books/artificial-intelligence-in-oncology-drug-discovery-and-development
- Gayvert, K.M.; Madhukar, N.S.; Elemento, O. A data-driven approach to predicting successes and failures of clinical trials. Cell Chem. Biol., 2016, 23(10), 1294-1301. doi: 10.1016/j.chembiol.2016.07.023 PMID: 27642066
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; Volkov, Y.; Zholus, A.; Shayakhmetov, R.R.; Zhebrak, A.; Minaeva, L.I.; Zagribelnyy, B.A.; Lee, L.H.; Soll, R.; Madge, D.; Xing, L.; Guo, T.; Aspuru-Guzik, A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol., 2019, 37(9), 1038-1040. doi: 10.1038/s41587-019-0224-x PMID: 31477924
- Raies, A.; Tulodziecka, E.; Stainer, J.; Middleton, L.; Dhindsa, R.S.; Hill, P.; Engkvist, O.; Harper, A.R.; Petrovski, S.; Vitsios, D. Author Correction: DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets. Commun. Biol., 2023, 6(1), 710. doi: 10.1038/s42003-023-05086-5 PMID: 37433831
- Liu, L.; Chen, X.; Hu, C.; Zhang, D.; Shao, Z.; Jin, Q.; Yang, J.; Xie, H.; Liu, B.; Hu, M.; Ke, K. Synthetic lethality-based identification of targets for anticancer drugs in the human signaling network. Sci. Rep., 2018, 8(1), 8440. doi: 10.1038/s41598-018-26783-w PMID: 29855504
- Wang, L.; Song, Y.; Wang, H.; Zhang, X.; Wang, M.; He, J.; Li, S.; Zhang, L.; Li, K.; Cao, L. Advances of artificial intelligence in anti-cancer drug design: A review of the past decade. Pharmaceuticals (Basel), 2023, 16(2), 253. doi: 10.3390/ph16020253 PMID: 37259400
- Ren, F.; Ding, X.; Zheng, M.; Korzinkin, M.; Cai, X.; Zhu, W.; Mantsyzov, A.; Aliper, A.; Aladinskiy, V.; Cao, Z.; Kong, S.; Long, X.; Man Liu, B.H.; Liu, Y.; Naumov, V.; Shneyderman, A.; Ozerov, I.V.; Wang, J.; Pun, F.W.; Polykovskiy, D.A.; Sun, C.; Levitt, M.; Aspuru-Guzik, A.; Zhavoronkov, A. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. (Camb.), 2023, 14(6), 1443-1452. doi: 10.1039/D2SC05709C PMID: 36794205
- Li, T.; Shetty, S.; Kamath, A.; Jaiswal, A.; Jiang, X.; Ding, Y. CancerGPT: Few-shot drug pair synergy prediction using large pre-trained language models. ArXiv, 2023, arXiv:2304.10946v1. PMID: 37131872
- Celebi, R.; Bear Dont Walk, O., IV; Movva, R.; Alpsoy, S.; Dumontier, M. In-silico prediction of synergistic anti-cancer drug combinations using multi-omics data. Sci. Rep., 2019, 9(1), 8949. doi: 10.1038/s41598-019-45236-6 PMID: 31222109
- Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ, 2019, 7, e7702. doi: 10.7717/peerj.7702 PMID: 31592346
- Nicolle, R.; Raffenne, J.; Paradis, V.; Couvelard, A.; de Reynies, A.; Blum, Y.; Cros, J. Prognostic biomarkers in pancreatic cancer: Avoiding errata when using the TCGA dataset. Cancers (Basel), 2019, 11(1), 126. doi: 10.3390/cancers11010126 PMID: 30669703
- Laakkonen, P.; Vuorinen, K. Homing peptides as targeted delivery vehicles. Integr. Biol. (Camb), 2010, 2(7-8), 326-337.
- Sharma, A.; Kapoor, P.; Gautam, A.; Chaudhary, K.; Kumar, R.; Chauhan, J.S. Computational approach for designing tumor homing peptides. Sci. Rep., 2013, 3, 1607. doi: 10.1038/srep01607
- Shoombuatong, W.; Schaduangrat, N.; Pratiwi, R.; Nantasenamat, C. THPep: A machine learning-based approach for predicting tumor homing peptides. Comput. Biol. Chem., 2019, 80(April), 441-451. doi: 10.1016/j.compbiolchem.2019.05.008 PMID: 31151025
- Kapoor, P.; Singh, H.; Gautam, A.; Chaudhary, K.; Kumar, R.; Raghava, G.P.S. TumorHoPe: a database of tumor homing peptides. PLoS One, 2012, 7(4), e35187. doi: 10.1371/journal.pone.0035187 PMID: 22523575
- Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids, 2012, 2012, 1-13. doi: 10.1155/2012/967347 PMID: 23316341
- Bayat, A. Science, medicine, and the future: Bioinformatics. BMJ, 2002, 324(7344), 1018-1022. doi: 10.1136/bmj.324.7344.1018 PMID: 11976246
- Mitra, A.K.; Mukherjee, U.K.; Harding, T.; Jang, J.S.; Stessman, H.; Li, Y.; Abyzov, A.; Jen, J.; Kumar, S.; Rajkumar, V.; Van Ness, B. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors. Leukemia, 2016, 30(5), 1094-1102. doi: 10.1038/leu.2015.361 PMID: 26710886
- Scherf, U.; Ross, D.T.; Waltham, M.; Smith, L.H.; Lee, J.K.; Tanabe, L.; Kohn, K.W.; Reinhold, W.C.; Myers, T.G.; Andrews, D.T.; Scudiero, D.A.; Eisen, M.B.; Sausville, E.A.; Pommier, Y.; Botstein, D.; Brown, P.O.; Weinstein, J.N. A gene expression database for the molecular pharmacology of cancer. Nat. Genet., 2000, 24(3), 236-244. doi: 10.1038/73439 PMID: 10700175
- Li, K.; Du, Y.; Li, L.; Wei, D. Bioinformatics approaches for anti-cancer drug discovery. Curr. Drug Targets, 2020, 21(1), 3-17. doi: 10.2174/1389450120666190923162203
- Marstrand, T.T.; Borup, R.; Willer, A.; Borregaard, N.; Sandelin, A.; Porse, B.T.; Theilgaard-Mönch, K. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia, 2010, 24(7), 1265-1275. doi: 10.1038/leu.2010.95 PMID: 20508621
- Hashemzadeh, S.; Ramezani, F.; Rafii-Tabar, H. Study of molecular mechanism of the interaction between MEK1/2 and trametinib with docking and molecular dynamic simulation. Interdiscip. Sci., 2019, 11(1), 115-124. doi: 10.1007/s12539-018-0305-4 PMID: 30465279
- de Matos, M.; Posa, I.; Carvalho, F.; Morais, V.; Grosso, A.; de Almeida, S. A systematic pan-cancer analysis of genetic heterogeneity reveals associations with epigenetic modifiers. Cancers (Basel), 2019, 11(3), 391. doi: 10.3390/cancers11030391 PMID: 30897760
- Wooller, S.K.; Benstead-Hume, G.; Chen, X.; Ali, Y.; Pearl, F.M.G. Bioinformatics in translational drug discovery. Biosci. Rep., 2017, 37(4), BSR20160180. doi: 10.1042/BSR20160180 PMID: 28487472
- Zhang, Y.; Tang, X.; Pang, Y.; Huang, L.; Wang, D.; Yuan, C.; Hu, X.; Qu, L. The potential mechanism of bufadienolide-like chemicals on breast cancer via bioinformatics analysis. Cancers (Basel), 2019, 11(1), 91. doi: 10.3390/cancers11010091 PMID: 30646630
- Kumar, V.; Krishna, S.; Siddiqi, M.I. Virtual screening strategies: Recent advances in the identification and design of anti-cancer agents. Methods, 2015, 71(C), 64-70. doi: 10.1016/j.ymeth.2014.08.010 PMID: 25171960
- Purushottamachar, P.; Khandelwal, A.; Chopra, P.; Maheshwari, N.; Gediya, L.K.; Vasaitis, T.S.; Bruno, R.D.; Clement, O.O.; Njar, V.C.O. First pharmacophore-based identification of androgen receptor down-regulating agents: Discovery of potent anti-prostate cancer agents. Bioorg. Med. Chem., 2007, 15(10), 3413-3421. doi: 10.1016/j.bmc.2007.03.019 PMID: 17383188
- Füllbeck, M.; Huang, X.; Dumdey, R.; Frommel, C.; Dubiel, W.; Preissner, R. Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells. BMC Cancer, 2005, 5(1), 97. doi: 10.1186/1471-2407-5-97 PMID: 16083495
- Wang, Z.; Lu, Y.; Seibel, W.; Miller, D.D.; Li, W. Identifying novel molecular structures for advanced melanoma by ligand-based virtual screening. J. Chem. Inf. Model., 2009, 49(6), 1420-1427. doi: 10.1021/ci800445a PMID: 19445498
- Siddiquee, K.; Zhang, S.; Guida, W.C.; Blaskovich, M.A.; Greedy, B.; Lawrence, H.R.; Yip, M.L.R.; Jove, R.; McLaughlin, M.M.; Lawrence, N.J.; Sebti, S.M.; Turkson, J. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc. Natl. Acad. Sci. USA, 2007, 104(18), 7391-7396. doi: 10.1073/pnas.0609757104 PMID: 17463090
- Nolan, K.A.; Dunstan, M.S.; Caraher, M.C.; Scott, K.A.; Leys, D.; Stratford, I.J. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling. Mol. Cancer Ther., 2012, 11(1), 194-203. doi: 10.1158/1535-7163.MCT-11-0543 PMID: 22090421
- Lu, Y.; Nikolovska-Coleska, Z.; Fang, X.; Gao, W.; Shangary, S.; Qiu, S.; Qin, D.; Wang, S. Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. J. Med. Chem., 2006, 49(13), 3759-3762.
- Krishna, S.; Singh, D.K.; Meena, S.; Datta, D.; Siddiqi, M.I.; Banerjee, D. Pharmacophore-based screening and identification of novel human ligase I inhibitors with potential anticancer activity. J. Chem. Inf. Model., 2014, 54(3), 781-792. doi: 10.1021/ci5000032 PMID: 24593844
- Dokla, E.M.; Mahmoud, A.H.; Elsayed, M.S.A.; El-Khatib, A.H.; Linscheid, M.W.; Abouzid, K.A. Applying ligands profiling using multiple extended electron distribution based field templates and feature trees similarity searching in the discovery of new generation of urea-based antineoplastic kinase inhibitors. PLoS One, 2012, 7(11), e49284. doi: 10.1371/journal.pone.0049284 PMID: 23185312
- Ren, J.X.; Li, L.L.; Zheng, R.L.; Xie, H.Z.; Cao, Z.X.; Feng, S.; Pan, Y.L.; Chen, X.; Wei, Y.Q.; Yang, S.Y. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J. Chem. Inf. Model., 2011, 51(6), 1364-1375. doi: 10.1021/ci100464b PMID: 21618971
- Massarotti, A.; Theeramunkong, S.; Mesenzani, O.; Caldarelli, A.; Genazzani, A.A.; Tron, G.C. Identification of novel antitubulin agents by using a virtual screening approach based on a 7-point pharmacophore model of the tubulin colchi-site. Chem. Biol. Drug Des., 2011, 78(6), 913-922. doi: 10.1111/j.1747-0285.2011.01245.x PMID: 22039890
- Kong, X.; Qin, J.; Li, Z.; Vultur, A.; Tong, L.; Feng, E.; Rajan, G.; Liu, S.; Lu, J.; Liang, Z.; Zheng, M.; Zhu, W.; Jiang, H.; Herlyn, M.; Liu, H.; Marmorstein, R.; Luo, C. Development of a novel class of B-RafV600E-selective inhibitors through virtual screening and hierarchical hit optimization. Org. Biomol. Chem., 2012, 10(36), 7402-7417. doi: 10.1039/c2ob26081f PMID: 22875039
- Lung, J.; Hung, M.S.; Lin, Y.C.; Hung, C.H.; Chen, C.C.; Lee, K.D.; Tsai, Y.H. Virtual screening and in vitro evaluation of PD-1 dimer stabilizers for uncoupling PD-1/PD-L1 interaction from natural products. Molecules, 2020, 25(22), 529.
- Aziz, M.; Ejaz, S.A.; Zargar, S.; Akhtar, N.; Aborode, A.T.A.; A Wani, T. Batiha, G.E.; Siddique, F.; Alqarni, M.; Akintola, A.A. Deep learning and structure-based virtual screening for drug discovery against NEK7: A novel target for the treatment of cancer. Molecules, 2022, 27(13), 4098. doi: 10.3390/molecules27134098 PMID: 35807344
- Singh, S.P.; Konwar, B.K. Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Springerplus, 2012, 1(1), 69. doi: 10.1186/2193-1801-1-69 PMID: 23556141
- Talambedu, U.; Sushil, K.; Arvind, K.; Mahesh, K.; Da, M.; Syed, F.; Peyush, G.; Hp, P.; Veena, P. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia. J. Biomed. Res., 2014, 28(5), 406-415. doi: 10.7555/JBR.28.20130110 PMID: 25332713
- Umar, A.B.; Uzairu, A.; Shallangwa, G.A.; Uba, S. QSAR modelling and molecular docking studies for anti-cancer compounds against melanoma cell line SK-MEL-2. Heliyon, 2020, 6(3), e03640. doi: 10.1016/j.heliyon.2020.e03640 PMID: 32258485
- Ammad-ud-din. M.; Georgii, E.; Gönen, M.; Laitinen, T.; Kallioniemi, O.; Wennerberg, K.; Poso, A.; Kaski, S. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization. J. Chem. Inf. Model., 2014, 54(8), 2347-2359. doi: 10.1021/ci500152b PMID: 25046554
- Martin, Y.C. 3D QSAR: Current state, scope, and limitations. Perspect. Drug Discov. Des., 1998, 12/14, 3-23. doi: 10.1023/A:1017037831628
- Peter, R. Ashton, Matthew C. T. Fyfe, Sarah K. Hickingbottom, J. Fraser Stoddart AJPW and DJW. Hammett correlations beyond the molecule. J. Chem. Soc. Perkin Trans. 2, 1998. doi: 10.1039/a802406e
- Abdulrahman, H.L.; Uzairu, A.; Uba, S. QSAR, ligand based design and pharmacokinetic studies of parviflorons derivatives as anti-breast cancer drug compounds against MCF-7 cell line. Chem. Africa, 2021, 4(1), 175-187. doi: 10.1007/s42250-020-00207-7
- Drews, J. Drug discovery: A historical perspective. Science, 2000, 287(5460), 1960-1964. doi: 10.1126/science.287.5460.1960
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet., 2015, 16(3), 172-183. doi: 10.1038/nrg3871 PMID: 25645873
- Dees, N.D.; Zhang, Q.; Kandoth, C.; Wendl, M.C.; Schierding, W.; Koboldt, D.C.; Mooney, T.B.; Callaway, M.B.; Dooling, D.; Mardis, E.R.; Wilson, R.K.; Ding, L. MuSiC: Identifying mutational significance in cancer genomes. Genome Res., 2012, 22(8), 1589-1598. doi: 10.1101/gr.134635.111 PMID: 22759861
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; Kiezun, A.; Hammerman, P.S.; McKenna, A.; Drier, Y.; Zou, L.; Ramos, A.H.; Pugh, T.J.; Stransky, N.; Helman, E.; Kim, J.; Sougnez, C.; Ambrogio, L.; Nickerson, E.; Shefler, E.; Cortés, M.L.; Auclair, D.; Saksena, G.; Voet, D.; Noble, M.; DiCara, D.; Lin, P.; Lichtenstein, L.; Heiman, D.I.; Fennell, T.; Imielinski, M.; Hernandez, B.; Hodis, E.; Baca, S.; Dulak, A.M.; Lohr, J.; Landau, D.A.; Wu, C.J.; Melendez-Zajgla, J.; Hidalgo-Miranda, A.; Koren, A.; McCarroll, S.A.; Mora, J.; Lee, R.S.; Crompton, B.; Onofrio, R.; Parkin, M.; Winckler, W.; Ardlie, K.; Gabriel, S.B.; Roberts, C.W.M.; Biegel, J.A.; Stegmaier, K.; Bass, A.J.; Garraway, L.A.; Meyerson, M.; Golub, T.R.; Gordenin, D.A.; Sunyaev, S.; Lander, E.S.; Getz, G. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013, 499(7457), 214-218. doi: 10.1038/nature12213 PMID: 23770567
- Hua, X.; Xu, H.; Yang, Y.; Zhu, J.; Liu, P.; Lu, Y. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies. Am. J. Hum. Genet., 2013, 93(3), 439-451. doi: 10.1016/j.ajhg.2013.07.003 PMID: 23954162
- Youn, A.; Simon, R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics, 2011, 27(2), 175-181. doi: 10.1093/bioinformatics/btq630 PMID: 21169372
- Reimand, J.; Bader, G.D. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol. Syst. Biol., 2013, 9(1), 637. doi: 10.1038/msb.2012.68 PMID: 23340843
- Gonzalez-Perez, A.; Lopez-Bigas, N. Functional impact bias reveals cancer drivers. Nucleic Acids Res., 2012, 40(21), e169. doi: 10.1093/nar/gks743 PMID: 22904074
- Tamborero, D.; Gonzalez-Perez, A.; Lopez-Bigas, N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics, 2013, 29(18), 2238-2244. doi: 10.1093/bioinformatics/btt395 PMID: 23884480
- Tian, R.; Basu, M.K.; Capriotti, E. ContrastRank: a new method for ranking putative cancer driver genes and classification of tumor samples. Bioinformatics, 2014, 30(17), i572-i578. doi: 10.1093/bioinformatics/btu466 PMID: 25161249
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet., 2013, 45(10), 1113-1120. doi: 10.1038/ng.2764 PMID: 24071849
- Hudson, T.J.; Anderson, W.; Artez, A.; Barker, A.D.; Bell, C.; Bernabé, R.R.; Bhan, M.K.; Calvo, F.; Eerola, I.; Gerhard, D.S.; Guttmacher, A.; Guyer, M.; Hemsley, F.M.; Jennings, J.L.; Kerr, D.; Klatt, P.; Kolar, P.; Kusada, J.; Lane, D.P.; Laplace, F.; Youyong, L.; Nettekoven, G.; Ozenberger, B.; Peterson, J.; Rao, T.S.; Remacle, J.; Schafer, A.J.; Shibata, T.; Stratton, M.R.; Vockley, J.G.; Watanabe, K.; Yang, H.; Yuen, M.M.; Knoppers, B.M.; Bobrow, M.; Cambon-Thomsen, A.; Dressler, L.G.; Dyke, S.O.; Joly, Y.; Kato, K.; Kennedy, K.L.; Nicolás, P.; Parker, M.J.; Rial-Sebbag, E.; Romeo-Casabona, C.M.; Shaw, K.M.; Wallace, S.; Wiesner, G.L.; Zeps, N.; Lichter, P.; Biankin, A.V.; Chabannon, C.; Chin, L.; Clément, B.; de Alava, E.; Degos, F.; Ferguson, M.L.; Geary, P.; Hayes, D.N.; Hudson, T.J.; Johns, A.L.; Kasprzyk, A.; Nakagawa, H.; Penny, R.; Piris, M.A.; Sarin, R.; Scarpa, A.; Shibata, T.; van de Vijver, M.; Futreal, P.A.; Aburatani, H.; Bayés, M.; Botwell, D.D.; Campbell, P.J.; Estivill, X.; Gerhard, D.S.; Grimmond, S.M.; Gut, I.; Hirst, M.; López-Otín, C.; Majumder, P.; Marra, M.; McPherson, J.D.; Nakagawa, H.; Ning, Z.; Puente, X.S.; Ruan, Y.; Shibata, T.; Stratton, M.R.; Stunnenberg, H.G.; Swerdlow, H.; Velculescu, V.E.; Wilson, R.K.; Xue, H.H.; Yang, L.; Spellman, P.T.; Bader, G.D.; Boutros, P.C.; Campbell, P.J.; Flicek, P.; Getz, G.; Guigó, R.; Guo, G.; Haussler, D.; Heath, S.; Hubbard, T.J.; Jiang, T.; Jones, S.M.; Li, Q.; López-Bigas, N.; Luo, R.; Muthuswamy, L.; Ouellette, B.F.; Pearson, J.V.; Puente, X.S.; Quesada, V.; Raphael, B.J.; Sander, C.; Shibata, T.; Speed, T.P.; Stein, L.D.; Stuart, J.M.; Teague, J.W.; Totoki, Y.; Tsunoda, T.; Valencia, A.; Wheeler, D.A.; Wu, H.; Zhao, S.; Zhou, G.; Stein, L.D.; Guigó, R.; Hubbard, T.J.; Joly, Y.; Jones, S.M.; Kasprzyk, A.; Lathrop, M.; López-Bigas, N.; Ouellette, B.F.; Spellman, P.T.; Teague, J.W.; Thomas, G.; Valencia, A.; Yoshida, T.; Kennedy, K.L.; Axton, M.; Dyke, S.O.; Futreal, P.A.; Gerhard, D.S.; Gunter, C.; Guyer, M.; Hudson, T.J.; McPherson, J.D.; Miller, L.J.; Ozenberger, B.; Shaw, K.M.; Kasprzyk, A.; Stein, L.D.; Zhang, J.; Haider, S.A.; Wang, J.; Yung, C.K.; Cros, A.; Liang, Y.; Gnaneshan, S.; Guberman, J.; Hsu, J.; Bobrow, M.; Chalmers, D.R.; Hasel, K.W.; Joly, Y.; Kaan, T.S.; Kennedy, K.L.; Knoppers, B.M.; Lowrance, W.W.; Masui, T.; Nicolás, P.; Rial-Sebbag, E.; Rodriguez, L.L.; Vergely, C.; Yoshida, T.; Grimmond, S.M.; Biankin, A.V.; Bowtell, D.D.; Cloonan, N.; deFazio, A.; Eshleman, J.R.; Etemadmoghadam, D.; Gardiner, B.B.; Kench, J.G.; Scarpa, A.; Sutherland, R.L.; Tempero, M.A.; Waddell, N.J.; Wilson, P.J.; McPherson, J.D.; Gallinger, S.; Tsao, M.S.; Shaw, P.A.; Petersen, G.M.; Mukhopadhyay, D.; Chin, L.; DePinho, R.A.; Thayer, S.; Muthuswamy, L.; Shazand, K.; Beck, T.; Sam, M.; Timms, L.; Ballin, V.; Lu, Y.; Ji, J.; Zhang, X.; Chen, F.; Hu, X.; Zhou, G.; Yang, Q.; Tian, G.; Zhang, L.; Xing, X.; Li, X.; Zhu, Z.; Yu, Y.; Yu, J.; Yang, H.; Lathrop, M.; Tost, J.; Brennan, P.; Holcatova, I.; Zaridze, D.; Brazma, A.; Egevard, L.; Prokhortchouk, E.; Banks, R.E.; Uhlén, M.; Cambon-Thomsen, A.; Viksna, J.; Ponten, F.; Skryabin, K.; Stratton, M.R.; Futreal, P.A.; Birney, E.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Martin, S.; Reis-Filho, J.S.; Richardson, A.L.; Sotiriou, C.; Stunnenberg, H.G.; Thoms, G.; van de Vijver, M.; vant Veer, L.; Calvo, F.; Birnbaum, D.; Blanche, H.; Boucher, P.; Boyault, S.; Chabannon, C.; Gut, I.; Masson-Jacquemier, J.D.; Lathrop, M.; Pauporté, I.; Pivot, X.; Vincent-Salomon, A.; Tabone, E.; Theillet, C.; Thomas, G.; Tost, J.; Treilleux, I.; Calvo, F.; Bioulac-Sage, P.; Clément, B.; Decaens, T.; Degos, F.; Franco, D.; Gut, I.; Gut, M.; Heath, S.; Lathrop, M.; Samuel, D.; Thomas, G.; Zucman-Rossi, J.; Lichter, P.; Eils, R.; Brors, B.; Korbel, J.O.; Korshunov, A.; Landgraf, P.; Lehrach, H.; Pfister, S.; Radlwimmer, B.; Reifenberger, G.; Taylor, M.D.; von Kalle, C.; Majumder, P.P.; Sarin, R.; Rao, T.S.; Bhan, M.K.; Scarpa, A.; Pederzoli, P.; Lawlor, R.A.; Delledonne, M.; Bardelli, A.; Biankin, A.V.; Grimmond, S.M.; Gress, T.; Klimstra, D.; Zamboni, G.; Shibata, T.; Nakamura, Y.; Nakagawa, H.; Kusada, J.; Tsunoda, T.; Miyano, S.; Aburatani, H.; Kato, K.; Fujimoto, A.; Yoshida, T.; Campo, E.; López-Otín, C.; Estivill, X.; Guigó, R.; de Sanjosé, S.; Piris, M.A.; Montserrat, E.; González-Díaz, M.; Puente, X.S.; Jares, P.; Valencia, A.; Himmelbauer, H.; Quesada, V.; Bea, S.; Stratton, M.R.; Futreal, P.A.; Campbell, P.J.; Vincent-Salomon, A.; Richardson, A.L.; Reis-Filho, J.S.; van de Vijver, M.; Thomas, G.; Masson-Jacquemier, J.D.; Aparicio, S.; Borg, A.; Børresen-Dale, A.L.; Caldas, C.; Foekens, J.A.; Stunnenberg, H.G.; vant Veer, L.; Easton, D.F.; Spellman, P.T.; Martin, S.; Barker, A.D.; Chin, L.; Collins, F.S.; Compton, C.C.; Ferguson, M.L.; Gerhard, D.S.; Getz, G.; Gunter, C.; Guttmacher, A.; Guyer, M.; Hayes, D.N.; Lander, E.S.; Ozenberger, B.; Penny, R.; Peterson, J.; Sander, C.; Shaw, K.M.; Speed, T.P.; Spellman, P.T.; Vockley, J.G.; Wheeler, D.A.; Wilson, R.K.; Hudson, T.J.; Chin, L.; Knoppers, B.M.; Lander, E.S.; Lichter, P.; Stein, L.D.; Stratton, M.R.; Anderson, W.; Barker, A.D.; Bell, C.; Bobrow, M.; Burke, W.; Collins, F.S.; Compton, C.C.; DePinho, R.A.; Easton, D.F.; Futreal, P.A.; Gerhard, D.S.; Green, A.R.; Guyer, M.; Hamilton, S.R.; Hubbard, T.J.; Kallioniemi, O.P.; Kennedy, K.L.; Ley, T.J.; Liu, E.T.; Lu, Y.; Majumder, P.; Marra, M.; Ozenberger, B.; Peterson, J.; Schafer, A.J.; Spellman, P.T.; Stunnenberg, H.G.; Wainwright, B.J.; Wilson, R.K.; Yang, H. International network of cancer genome projects. Nature, 2010, 464(7291), 993-998. doi: 10.1038/nature08987 PMID: 20393554
- Wu, Y.; Cheng, Y.; Wang, X.; Fan, J.; Gao, Q. Spatial omics: Navigating to the golden era of cancer research. Clin. Transl. Med., 2022, 12(1), e696. doi: 10.1002/ctm2.696 PMID: 35040595
- Bergom, H.E.; Shabaneh, A.; Day, A.; Ali, A.; Boytim, E.; Tape, S.; Lozada, J.R.; Shi, X.; Kerkvliet, C.P.; McSweeney, S.; Pitzen, S.P.; Ludwig, M.; Antonarakis, E.S.; Drake, J.M.; Dehm, S.M.; Ryan, C.J.; Wang, J.; Hwang, J. ALAN is a computational approach that interprets genomic findings in the context of tumor ecosystems. Commun. Biol., 2023, 6(1), 417. doi: 10.1038/s42003-023-04795-1 PMID: 37059746
- Jiang, P.; Sinha, S.; Aldape, K.; Hannenhalli, S.; Sahinalp, C.; Ruppin, E. Big data in basic and translational cancer research. Nat. Rev. Cancer, 2022, 22(11), 625-639. doi: 10.1038/s41568-022-00502-0 PMID: 36064595
- Kim, T.; Rao, J. "SMART" cytology: The next generation cytology for precision diagnosis. Semin. Diagn. Pathol., 2023, 40(2), 95-99. doi: 10.1053/j.semdp.2023.01.001 PMID: 36639316
- Yang, S.; Yang, Z.; Yang, J. 4mCBERT: A computing tool for the identification of DNA N4-methylcytosine sites by sequence- and chemical-derived information based on ensemble learning strategies. Int. J. Biol. Macromol., 2023, 231, 123180. doi: 10.1016/j.ijbiomac.2023.123180 PMID: 36646347
- Bhatt, M.; Shende, P. Advancement in machine learning: A strategic lookout from cancer identification to treatment. Arch. Comput. Methods Eng., 2023, 30(4), 2777-2792. doi: 10.1007/s11831-023-09886-0
- Rajitha Perera, R.P. BRDriver: Breast cancer driver gene predictor. bioRxiv, 2023, 0-4. Available from: https://www.biorxiv.org/content/10.1101/2023.01.09.523362v1?rss=1&utm_source=researcher_app&utm_medium=referral&utm_campaign=RESR_MRKT_Researcher_inbound
Supplementary files
