Analysis of Potential Circular RNAs in Regulating Imatinib Resistance of Gastrointestinal Stromal Tumor


Цитировать

Полный текст

Аннотация

Introduction:Recent studies have found that circular RNA is an abundant RNA species that belongs to part of the competing endogenous RNA network (ceRNA), which was proven to play an important role in the development, diagnosis and progress of diseases. However, the function of circRNAs in imatinib resistance in Gastrointestinal stromal tumor (GIST) are poorly understood so for. The present study aimed to screen and predict the potential circRNAs in imatinib resistance of GIST using microarray analysis.

Methods:We determined the expression of circular RNAs in paired normal gastric tissues (N), primary GIST (gastrointestinal stromal tumor) tissues (YC) and imatinib mesylate secondary resistance GIST tissues (C) with microarray and predicted 8677 dysregulated circular RNAs.

Results:Compared with the YC group, we identified 15 circRNAs that were up-regulated and 8 circRNAs that were down-regulated in the C group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that these host linear transcripts that differentially express circular RNAs are involved in many key biological pathways, predicting the potential tumor-genesis and drug resistance mechanismrelated to HIF-1 pathway, later we draw the cirRNA-miRNA-mRNA network involved in the HIF-1 pathway and found several dysregulated circRNAs and the relationship between circRNA-miRNAs-mRNA, such as circRNA_06551, circRNA_14668, circRNA_04497, circRNA_08683, circRNA_09923(Green, down-regulation) and circRNA_23636, circRNA_15734 (Red, up-regulation).

Conclusion:Taken together, we identified a panel of dysregulated circRNAs that may be potential biomarkers even therapy relevant to the GIST, especially imatinib secondary resistance GIST.

Об авторах

Jingyi Yan

Departments of Gastroenterology,, The First Affiliated Hospital of Wenzhou Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Xiaolei Chen

Departments of Gastroenterology,, The First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Qiantong Dong

Departments of Gastroenterology,, The First Affiliated Hospital of Wenzhou Medical University

Email: info@benthamscience.net

Ji Lin

Departments of Gastroenterology,, The First Affiliated Hospital of Wenzhou Medical University,

Email: info@benthamscience.net

Xuecheng Sun

Departments of Gastroenterology,, The First Affiliated Hospital of Wenzhou Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Kelly, C.M.; Gutierrez Sainz, L.; Chi, P. The management of metastatic GIST: Current standard and investigational therapeutics. J. Hematol. Oncol., 2021, 14(1), 2. doi: 10.1186/s13045-020-01026-6 PMID: 33402214
  2. Jia, N.; Tong, H.; Zhang, Y.; Katayama, H.; Wang, Y.; Lu, W.; Zhang, S.; Wang, J. CeRNA expression profiling identifies KIT-related circRNA-miRNA-mRNA networks in gastrointestinal stromal tumour. Front. Genet., 2019, 10, 825. doi: 10.3389/fgene.2019.00825 PMID: 31552107
  3. Heinrich, M.C.; Jones, R.L.; von Mehren, M.; Schöffski, P.; Serrano, C.; Kang, Y.K.; Cassier, P.A.; Mir, O.; Eskens, F.; Tap, W.D.; Rutkowski, P.; Chawla, S.P.; Trent, J.; Tugnait, M.; Evans, E.K.; Lauz, T.; Zhou, T.; Roche, M.; Wolf, B.B.; Bauer, S.; George, S. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): A multicentre, open-label, phase 1 trial. Lancet Oncol., 2020, 21(7), 935-946. doi: 10.1016/S1470-2045(20)30269-2 PMID: 32615108
  4. Joensuu, H.; Hohenberger, P.; Corless, C.L. Gastrointestinal stromal tumour. Lancet, 2013, 382(9896), 973-983. doi: 10.1016/S0140-6736(13)60106-3 PMID: 23623056
  5. Mohammadi, M.; Gelderblom, H. Systemic therapy of advanced/metastatic gastrointestinal stromal tumors: An update on progress beyond imatinib, sunitinib, and regorafenib. Expert Opin. Investig. Drugs, 2021, 30(2), 143-152. doi: 10.1080/13543784.2021.1857363 PMID: 33252274
  6. Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer, 2020, 6(4), 319-336. doi: 10.1016/j.trecan.2020.01.012 PMID: 32209446
  7. Bai, S.; Wu, Y.; Yan, Y.; Shao, S.; Zhang, J.; Liu, J.; Hui, B.; Liu, R.; Ma, H.; Zhang, X.; Ren, J. Construct a circRNA/miRNA/mRNA regulatory network to explore potential pathogenesis and therapy options of clear cell renal cell carcinoma. Sci. Rep., 2020, 10(1), 13659. doi: 10.1038/s41598-020-70484-2 PMID: 32788609
  8. Zhao, M.; Ma, W.; Ma, C. Circ_0067934 promotes non-small cell lung cancer development by regulating miR-1182/KLF8 axis and activating Wnt/β-catenin pathway. Biomed. Pharmacother., 2020, 129, 110461. doi: 10.1016/j.biopha.2020.110461 PMID: 32768951
  9. Geng, Y.; Bao, Y.; Deng, L.; Su, D.; Zheng, H.; Zhang, W. Circular RNA hsa_circ_0014130 inhibits apoptosis in non–small cell lung cancer by sponging miR-136-5p and upregulating BCL2. Mol. Cancer Res., 2020, 18(5), 748-756. doi: 10.1158/1541-7786.MCR-19-0998 PMID: 32060230
  10. Zhou, Y.; Zheng, X.; Xu, B.; Chen, L.; Wang, Q.; Deng, H.; Jiang, J. Circular RNA hsa_circ_0004015 regulates the proliferation, invasion, and TKI drug resistance of non-small cell lung cancer by miR-1183/PDPK1 signaling pathway. Biochem. Biophys. Res. Commun., 2019, 508(2), 527-535. doi: 10.1016/j.bbrc.2018.11.157 PMID: 30509491
  11. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30(15), 2114-2120. doi: 10.1093/bioinformatics/btu170 PMID: 24695404
  12. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010, 26(5), 589-595. doi: 10.1093/bioinformatics/btp698 PMID: 20080505
  13. Gao, Y.; Wang, J.; Zhao, F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol., 2015, 16(1), 4. doi: 10.1186/s13059-014-0571-3 PMID: 25583365
  14. Anders, S.; McCarthy, D.J.; Chen, Y.; Okoniewski, M.; Smyth, G.K.; Huber, W.; Robinson, M.D. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc., 2013, 8(9), 1765-1786. doi: 10.1038/nprot.2013.099 PMID: 23975260
  15. Enright, A.J.; John, B.; Gaul, U.; Tuschl, T.; Sander, C.; Marks, D.S. MicroRNA targets in drosophila. Genome Biol., 2003, 5(1), R1. doi: 10.1186/gb-2003-5-1-r1 PMID: 14709173
  16. Yan, J.; Chen, D.; Chen, X.; Sun, X.; Dong, Q.; Du, Z.; Wang, T. Identification of imatinib-resistant long non-coding RNAs in gastrointestinal stromal tumors. Oncol. Lett., 2019, 17(2), 2283-2295. PMID: 30675294
  17. Dennis, G., Jr; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol., 2003, 4(5), P3. doi: 10.1186/gb-2003-4-5-p3 PMID: 12734009
  18. The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res., 2019, 47(D1), D330-D338. doi: 10.1093/nar/gky1055 PMID: 30395331
  19. Wen, C.; Xu, G.; He, S.; Huang, Y.; Shi, J.; Wu, L.; Zhou, H. Screening circular RNAs related to acquired gefitinib resistance in non-small cell lung cancer cell lines. J. Cancer, 2020, 11(13), 3816-3826. doi: 10.7150/jca.39783 PMID: 32328186
  20. Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer, 2020, 19(1), 172. doi: 10.1186/s12943-020-01286-3 PMID: 33317550
  21. Huang, A.; Zheng, H.; Wu, Z.; Chen, M.; Huang, Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics, 2020, 10(8), 3503-3517. doi: 10.7150/thno.42174 PMID: 32206104
  22. Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691. doi: 10.1038/s41576-019-0158-7 PMID: 31395983
  23. Zhao, Y.; Zheng, R.; Chen, J.; Ning, D. CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC). Cancer Cell Int., 2020, 20(1), 289. doi: 10.1186/s12935-020-01390-w PMID: 32655321
  24. Xu, T.; Wang, M.; Jiang, L.; Ma, L.; Wan, L.; Chen, Q.; Wei, C.; Wang, Z. CircRNAs in anticancer drug resistance: Recent advances and future potential. Mol. Cancer, 2020, 19(1), 127. doi: 10.1186/s12943-020-01240-3 PMID: 32799866
  25. Hong, W.; Xue, M.; Jiang, J.; Zhang, Y.; Gao, X. Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J. Exp. Clin. Cancer Res., 2020, 39(1), 149. doi: 10.1186/s13046-020-01648-1 PMID: 32746878
  26. Si, W.; Li, Y.; Ye, S.; Li, Z.; Liu, Y.; Kuang, W.; Chen, D.; Zhu, M. Methyltransferase 3 mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke. Front. Mol. Neurosci., 2020, 13, 103. doi: 10.3389/fnmol.2020.00103 PMID: 32581712
  27. Hua, X.; Sun, Y.; Chen, J.; Wu, Y.; Sha, J.; Han, S.; Zhu, X. Circular RNAs in drug resistant tumors. Biomed. Pharmacother., 2019, 118, 109233. doi: 10.1016/j.biopha.2019.109233 PMID: 31351436
  28. Sang, Y.; Chen, B.; Song, X.; Li, Y.; Liang, Y.; Han, D.; Zhang, N.; Zhang, H.; Liu, Y.; Chen, T.; Li, C.; Wang, L.; Zhao, W.; Yang, Q. circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol. Ther., 2019, 27(9), 1638-1652. doi: 10.1016/j.ymthe.2019.05.011 PMID: 31153828
  29. Huang, X.; Li, Z.; Zhang, Q.; Wang, W.; Li, B.; Wang, L.; Xu, Z.; Zeng, A.; Zhang, X.; Zhang, X.; He, Z.; Li, Q.; Sun, G.; Wang, S.; Li, Q.; Wang, L.; Zhang, L.; Xu, H.; Xu, Z. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol. Cancer, 2019, 18(1), 71. doi: 10.1186/s12943-019-0969-3 PMID: 30927924
  30. Sun, G.; Li, Z.; He, Z.; Wang, W.; Wang, S.; Zhang, X.; Cao, J.; Xu, P.; Wang, H.; Huang, X.; Xia, Y.; Lv, J.; Xuan, Z.; Jiang, T.; Fang, L.; Yang, J.; Zhang, D.; Xu, H.; Xu, Z. Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J. Exp. Clin. Cancer Res., 2020, 39(1), 246. doi: 10.1186/s13046-020-01758-w PMID: 33198772
  31. Zhang, S.; Cheng, J.; Quan, C.; Wen, H.; Feng, Z.; Hu, Q.; Zhu, J.; Huang, Y.; Wu, X. circCELSR1 (hsa_circ_0063809) contributes to paclitaxel resistance of ovarian cancer cells by regulating FOXR2 expression via miR-1252. Mol. Ther. Nucleic Acids, 2020, 19, 718-730. doi: 10.1016/j.omtn.2019.12.005 PMID: 31945729
  32. Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; Liang, L.; Gu, J.; He, X.; Huang, S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 2016, 7(1), 11215. doi: 10.1038/ncomms11215 PMID: 27050392
  33. Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264. doi: 10.1038/nsmb.2959 PMID: 25664725
  34. Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806. doi: 10.1016/j.molcel.2013.08.017 PMID: 24035497
  35. Balamurugan, K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int. J. Cancer, 2016, 138(5), 1058-1066. doi: 10.1002/ijc.29519 PMID: 25784597
  36. Albadari, N.; Deng, S.; Li, W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin. Drug Discov., 2019, 14(7), 667-682. doi: 10.1080/17460441.2019.1613370 PMID: 31070059
  37. Wigerup, C.; Påhlman, S.; Bexell, D. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacol. Ther., 2016, 164, 152-169. doi: 10.1016/j.pharmthera.2016.04.009 PMID: 27139518
  38. Xu, K.; Zhan, Y.; Yuan, Z.; Qiu, Y.; Wang, H.; Fan, G.; Wang, J.; Li, W.; Cao, Y.; Shen, X.; Zhang, J.; Liang, X.; Yin, P. Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop. Mol. Ther., 2019, 27(10), 1810-1824. doi: 10.1016/j.ymthe.2019.05.017 PMID: 31208913

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024