Flavonoid and Chalcone Scaffolds as Inhibitors of BACE1: Recent Updates
- Authors: Narayanan A.1, Jayan J.1, Sudevan S.1, Dhyani A.2, Zachariah S.1, Mathew B.1
-
Affiliations:
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus
- School of Pharmacy, Graphic Era Hill University
- Issue: Vol 27, No 9 (2024)
- Pages: 1243-1256
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/644985
- DOI: https://doi.org/10.2174/1386207326666230731092409
- ID: 644985
Cite item
Full Text
Abstract
Flavonoids and chalcones are two major classes of chemical moieties that have a vast background of pharmacological activities. Chalcone is a subclass of flavonoids whose therapeutic potential has been implicated due to an array of bioactivities. A lot of research works have shown interest in investigating the neuroprotective effect of these molecules, and have revealed them to be much more potent molecules that can be used to treat neurodegenerative disorders. Beta-site APP cleaving enzyme (BACE1), which is majorly found in the brain, is one of the reasons behind the development of Alzheimers disease (AD). Flavonoids and chalcones have proven clinical data that they inhibit the production of Aβ plaques that are involved in the progression of AD. In this article, we have provided a detailed chronological review of the research work on the BACE1 inhibiting potency of both flavonoids and chalcones. Almost all the flavonoids and chalcones mentioned in this article have shown very good in vitro and in vivo BACE1 inhibiting activity. The docking studies and the structural importance of some BACE1-inhibiting flavonoids, as well as chalcones, are also mentioned here.
Keywords
About the authors
Anishma Narayanan
Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus
Email: info@benthamscience.net
Jayalakshmi Jayan
Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus
Email: info@benthamscience.net
Sachithra Sudevan
Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus
Email: info@benthamscience.net
Archana Dhyani
School of Pharmacy, Graphic Era Hill University
Email: info@benthamscience.net
Subin Zachariah
Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus
Author for correspondence.
Email: info@benthamscience.net
Bijo Mathew
Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus
Author for correspondence.
Email: info@benthamscience.net
References
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharma. Sci., 2018, 13(1), 12-23. doi: 10.1016/j.ajps.2017.08.004 PMID: 32104374
- Mathew, B.; Suresh, J.; Mathew, G.; Rasheed, S.; Vilapurathu, J.; Jayaraj, P. Flavonoids: An outstanding structural core for the inhibition of xanthine oxidase enzyme. Curr. Enzym. Inhib., 2015, 11(2), 108-115. doi: 10.2174/1573408011666150730204108
- Panche, A.N. ADD and SRC. J. Nutr. Sci., 2017, 5, 1-15.
- Bai, L.; Li, X.; He, L.; Zheng, Y.; Lu, H.; Li, J.; Zhong, L.; Tong, R.; Jiang, Z.; Shi, J.; Li, J. Antidiabetic potential of flavonoids from traditional chinese medicine: A review. Am. J. Chin. Med., 2019, 47(5), 933-957. doi: 10.1142/S0192415X19500496 PMID: 31248265
- Jing, Z.; Jun, W.; Gei-Sheng, Z.; Ya-Jie, T.; Hui-Juan, T. Study of anti-amnesic effect and mechanismsof single and combined use of donepezil and ginko ketoester tablet on scopalamine-induced memory impairement in mice. Oxid. Med. Cell. Longev., 2019, 2019, 1-16. doi: 10.1155/2019/6138723
- Anand, P.; Singh, B. Synthesis and evaluation of novel carbamate-substituted flavanone derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Med. Chem. Res., 2013, 22(4), 1648-1659. doi: 10.1007/s00044-012-0162-3
- Rakesh, O.; Alakh, N.S.; Muruganandam, A.V.; Gireesh, K.S.; Sairam, K. Aspargus recemosus enhances memory and protects against amnesia in rodent models. Brain Cogn., 2010, 17(1), 1-9.
- Richetti, S.K.; Blank, M.; Capiotti, K.M.; Piato, A.L.; Bogo, M.R.; Vianna, M.R.; Bonan, C.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res., 2011, 217(1), 10-15. doi: 10.1016/j.bbr.2010.09.027 PMID: 20888863
- Murata, K. Chemical diversity of β-secretase inhibitors from natural resources. SAGE J., 2019, 1-17.
- Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654. doi: 10.3389/fphar.2020.592654 PMID: 33536909
- Song, K.S.; Choi, S.H.; Hur, J.M.; Park, H.J.; Yang, E.J.; Inhee, M.J. Inhibitory effects of flavonoids isolated from leaves of Petasites japonicus on β-secretase (BACE1). Food Sci. Biotechnol., 2008, 17(6), 1165-1170.
- Yin, F.; Liu, J.; Ji, X.; Wang, Y.; Zidichouski, J.; Zhang, J. Silibinin: A novel inhibitor of Aβ aggregation. Neurochem. Int., 2011, 58(3), 399-403. doi: 10.1016/j.neuint.2010.12.017 PMID: 21185897
- Mathew, B.; Parambi, D.G.T.; Sivasankarapillai, V.S.; Uddin, M.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V. Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol. Disord. Drug Targets, 2019, 18(6), 432-445. doi: 10.2174/1871527318666190610111246 PMID: 31187716
- Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from June 2011 2014). Expert Opin. Ther. Pat., 2015, 25(3), 351-366. doi: 10.1517/13543776.2014.995627 PMID: 25598152
- Mathew, B.; Oh, J.M.; Baty, R.S.; Batiha, G.S.; Parambi, D.G.T.; Gambacorta, N. Piperazine-substituted chalcones: A new class of neurological disorders. Environ. Sci. Poluut. Res., 2021, 28, 38855-38866. doi: 10.1007/s11356-021-13320-y PMID: 33743158
- Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem., 2012, 19(2), 209-225. doi: 10.2174/092986712803414132 PMID: 22320299
- Zhou, B.; Xing, C. Diverse Molecular Targets for Chalcones with Varied Bioactivities. Med. Chem. (Los Angeles), 2015, 5(8), 388-404. doi: 10.4172/2161-0444.1000291 PMID: 26798565
- Haniu, M.; Denis, P.; Young, Y.; Mendiaz, E.A.; Fuller, J.; Hui, J.O.; Bennett, B.D.; Kahn, S.; Ross, S.; Burgess, T.; Katta, V.; Rogers, G.; Vassar, R.; Citron, M. Characterization of Alzheimers β-Secretase Protein BACE. J. Biol. Chem., 2000, 275(28), 21099-21106. doi: 10.1074/jbc.M002095200 PMID: 10887202
- Mathew, B.; Koyimparambath, V.P.; Oh, J.M.; Khames, M.A.; Nair, A.S.; Nath, L.R. Trimethoxylated halogenated chalcones as dual inhibitors of MAO-B nad BACE-1 for treatment of neurodegenerative disorders. Pharmaceutics, 2021, 13, 1-16.
- Hussain, I.; Powell, D.; Howlett, D.R.; Tew, D.G.; Meek, T.D.; Chapman, C.; Gloger, I.S.; Murphy, K.E.; Southan, C.D.; Ryan, D.M.; Smith, T.S.; Simmons, D.L.; Walsh, F.S.; Dingwall, C.; Christie, G. Identification of a novel aspartic protease (Asp 2) as β-secretase. Mol. Cell. Neurosci., 1999, 14(6), 419-427. doi: 10.1006/mcne.1999.0811 PMID: 10656250
- Bennett, B.D.; Denis, P.; Haniu, M.; Teplow, D.B.; Kahn, S.; Louis, J.C.; Citron, M.; Vassar, R. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimers β -secretase. J. Biol. Chem., 2000, 275(48), 37712-37717. doi: 10.1074/jbc.M005339200 PMID: 10956649
- Vassar, R.; Bennett, B.D.; Babu-Khan, S.; Kahn, S.; Mendiaz, E.A.; Denis, P.; Teplow, D.B.; Ross, S.; Amarante, P.; Loeloff, R.; Luo, Y.; Fisher, S.; Fuller, J.; Edenson, S.; Lile, J.; Jarosinski, M.A.; Biere, A.L.; Curran, E.; Burgess, T.; Louis, J.C.; Collins, F.; Treanor, J.; Rogers, G.; Citron, M. β-secretase cleavage of Alzheimers amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440), 735-741. doi: 10.1126/science.286.5440.735 PMID: 10531052
- Marcinkiewicz, M.; Seidah, N.G. Coordinated expression of β-amyloid precursor protein and the putative β-secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J. Neurochem., 2000, 75(5), 2133-2143. doi: 10.1046/j.1471-4159.2000.0752133.x PMID: 11032903
- Ahmed, R.R.; Holler, C.J.; Webb, R.L.; Li, F.; Beckett, T.L.; Murphy, M.P. BACE1 and BACE2 enzymatic activities in Alzheimers disease. J. Neurochem., 2010, 112(4), 1045-1053. doi: 10.1111/j.1471-4159.2009.06528.x PMID: 19968762
- Chen, J.; Wang, J.; Yin, B.; Pang, L.; Wang, W.; Zhu, W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem. Neurosci., 2019, 10(10), 4303-4318. doi: 10.1021/acschemneuro.9b00348 PMID: 31545898
- Chen, J.; Zhang, S.; Wang, W.; Sun, H.; Zhang, Q.; Liu, X. Binding of Inhibitors to BACE1 Affected by pH-Dependent Protonation: An Exploration from Multiple Replica Gaussian Accelerated Molecular Dynamics and MM-GBSA Calculations. ACS Chem. Neurosci., 2021, 12(14), 2591-2607. doi: 10.1021/acschemneuro.0c00813 PMID: 34185514
- Cole, S.; Vassar, R. BACE1 structure and function in health and Alzheimers disease. Curr. Alzheimer Res., 2008, 5(2), 100-120. doi: 10.2174/156720508783954758 PMID: 18393796
- Bennett, B.D.; Babu-Khan, S.; Loeloff, R.; Louis, J.C.; Curran, E.; Citron, M.; Vassar, R. Expression analysis of BACE2 in brain and peripheral tissues. J. Biol. Chem., 2000, 275(27), 20647-20651. doi: 10.1074/jbc.M002688200 PMID: 10749877
- Yan, R.; Vassar, R. Targeting the β secretase BACE1 for Alzheimers disease therapy. Lancet Neurol., 2014, 13(3), 319-329. doi: 10.1016/S1474-4422(13)70276-X PMID: 24556009
- Sathya, M.; Premkumar, P.; Karthick, C.; Moorthi, P.; Jayachandran, K.S.; Anusuyadevi, M. BACE1 in Alzheimers disease. Clin. Chim. Acta, 2012, 414, 171-178. doi: 10.1016/j.cca.2012.08.013 PMID: 22926063
- Zhao, J.; Liu, X.; Xia, W.; Zhang, Y.; Wang, C. Targeting amyloidogenic processing of APP in alzheimers disease. Front Mol. Nuerosci, 2020, 13, 137.
- Malamas, M.S.; Barnes, K.; Johnson, M.; Hui, Y.; Zhou, P.; Turner, J.; Hu, Y.; Wagner, E.; Fan, K.; Chopra, R.; Olland, A.; Bard, J.; Pangalos, M.; Reinhart, P.; Robichaud, A.J. Di-substituted pyridinyl aminohydantoins as potent and highly selective human β-secretase (BACE1) inhibitors. Bioorg. Med. Chem., 2010, 18(2), 630-639. doi: 10.1016/j.bmc.2009.12.007 PMID: 20045648
- Hunt, K.W.; Cook, A.W.; Watts, R.J.; Clark, C.T.; Vigers, G.; Smith, D.; Metcalf, A.T.; Gunawardana, I.W.; Burkard, M.; Cox, A.A.; Geck Do, M.K.; Dutcher, D.; Thomas, A.A.; Rana, S.; Kallan, N.C.; DeLisle, R.K.; Rizzi, J.P.; Regal, K.; Sammond, D.; Groneberg, R.; Siu, M.; Purkey, H.; Lyssikatos, J.P.; Marlow, A.; Liu, X.; Tang, T.P. Spirocyclic β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors: From hit to lowering of cerebrospinal fluid (CSF) amyloid β in a higher species. J. Med. Chem., 2013, 56(8), 3379-3403. doi: 10.1021/jm4002154 PMID: 23537249
- Gabr, M.T.; Abdel-Raziq, M.S. Structure-based design, synthesis, and evaluation of structurally rigid donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(17), 2910-2913. doi: 10.1016/j.bmcl.2018.07.019 PMID: 30017317
- Evin, G.; Kenche, V.B. BACE Inhibitors as Potential Therapeutics for Alzheimer s disease. Recent Pat. CNS Drug Discov., 2007, 188-199.
- Kandasamy, S.; Magudeeswaran, S.; Govindasamy, H.; Lakshmanan, M.; Poomani, K. Investigation of Intermolecular interactions and Stability of Verubecestat in the active site of BACE1: Development of First model from QM/MM based Charge density and MD Analysis. J. Biomol. Struct. Dyn., 2049, 37(7), 2339-2354. doi: 10.1080/07391102.2018.1479661 PMID: 30044206
- Prati, F.; Bottegoni, G.; Bolognesi, M.L.; Cavalli, A. BACE-1 inhibitors: From recent single-target molecules to multitarget compounds for Alzheimers disease. J. Med. Chem., 2018, 61(3), 619-637. doi: 10.1021/acs.jmedchem.7b00393 PMID: 28749667
- Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimers disease. Chem. Soc. Rev., 2014, 43(19), 6765-6813. doi: 10.1039/C3CS60460H PMID: 24691405
- Schneider, L.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R. Clinical trials and late-stage drug development for Alzheimers disease: An appraisal from 1984 to 2014. J. Inter. Med., 2014, 251-283.
- Hu, X.; Das, B.; Hou, H.; He, W.; Yan, R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J. Exp. Med., 2018, 215(3), 927-940. doi: 10.1084/jem.20171831 PMID: 29444819
- Liu, S.; Fu, R.; Cheng, X.; Chen, S.P.; Zhou, L.H. Exploring the binding of BACE-1 inhibitors using comparative binding energy analysis (COMBINE). BMC Struct. Biol., 2012, 12(1), 21. doi: 10.1186/1472-6807-12-21 PMID: 22925713
- Wessels, A.M.; Voss, T.; Aisen, P.S.; Dupre, N.; Shering, C.; Lines, C. Cognitive outcomes in trials of two BACE inhibitors in Alzheime s disease. JAD, 2020, 1-10.
- Naushad, M.; Durairajan, S.S.K.; Bera, A.K.; Senapati, S.; Li, M.; Li, M. Natural compounds with anti-BACE1 activity as promising therapeutic drugs for treating alzheimerʼs disease. Planta Med., 2019, 85(17), 1316-1325. doi: 10.1055/a-1019-9819 PMID: 31618777
- Gu, T.; Wu, W.Y.; Dong, Z.X.; Yu, S.P.; Sun, Y.; Zhong, Y.; Lu, Y.T.; Li, N.G. Development and Structural Modification of BACE1 Inhibitors. Molecules, 2016, 22(1), 4. doi: 10.3390/molecules22010004 PMID: 28025519
- Keith, D. Green MYF and SG-T. Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules, 2018, 23, 1-22.
- Woltering, T.J.; Wostl, W.; Hilpert, H.; Rogers-Evans, M.; Pinard, E.; Mayweg, A.; Göbel, M.; Banner, D.W.; Benz, J.; Travagli, M.; Pollastrini, M.; Marconi, G.; Gabellieri, E.; Guba, W.; Mauser, H.; Andreini, M.; Jacobsen, H.; Power, E.; Narquizian, R. BACE1 inhibitors: A head group scan on a series of amides. Bioorg. Med. Chem. Lett., 2013, 23(14), 4239-4243. doi: 10.1016/j.bmcl.2013.05.003 PMID: 23735744
- Miranda, A.; Montiel, E.; Ulrich, H.; Paz, C. Selective Secretase Targeting for Alzheimers Disease Therapy. J. Alzheimers Dis., 2021, 81(1), 1-17. doi: 10.3233/JAD-201027 PMID: 33749645
- Hsiao, C.C.; Rombouts, F.; Gijsen, H.J.M. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg. Med. Chem. Lett., 2019, 29(6), 761-777. doi: 10.1016/j.bmcl.2018.12.049 PMID: 30709653
- Jeon, S.Y.; Bae, K.; Seong, Y.H.; Song, K.S. Green tea catechins as a BACE1 (β-Secretase) inhibitor. Bioorg. Med. Chem. Lett., 2003, 13(22), 3905-3908. doi: 10.1016/j.bmcl.2003.09.018 PMID: 14592472
- Mohamed Yusof, N.I.S.; Abdullah, Z.L.; Othman, N.; Mohd Fauzi, F. Structure-activity relationship analysis of flavonoids and its inhibitory activity against BACE1 enzyme toward a better therapy for alzheimers disease. Front Chem., 2022, 10, 874615. doi: 10.3389/fchem.2022.874615 PMID: 35832462
- Tran, T.S.; Le, M.T.; Nguyen, T.C.V.; Tran, T.H.; Tran, T.D.; Thai, K.M. Synthesis, in silico and in vitro evaluation for acetylcholinesterase and BACE-1 inhibitory activity of some N-substituted-4-phenothiazine-chalcones. Molecules, 2020, 25(17), 3916. doi: 10.3390/molecules25173916 PMID: 32867308
- Choi, Y.H.; Yon, G.H.; Hong, K.S.; Yoo, D.S.; Choi, C.W.; Park, W. In vitro BACE-1 inhibitory phenolic components from the seeds of psoralea corylifolia. Plant Meda, 2008, 4(11), 1405-8.
- Zhu, Z.; Li, C.; Wang, X.; Yang, Z. State key laboratory of drug research, shanghai institute of materia medica, chinese academy of sciences, shanghai, China. J. Neurochem., 2010, 114, 374-385.
- Jung, H.A.; Yokozawa, T.; Kim, B.W.; Jung, J.H.; Choi, J.S. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases. Am. J. Chin. Med., 2010, 38(2), 415-429. doi: 10.1142/S0192415X10007944 PMID: 20387235
- Kang, J.; Cho, J.; Curtis-Long, M.; Ryu, H.; Kim, J.; Kim, H.; Yuk, H.; Kim, D.; Park, K. Inhibitory evaluation of sulfonamide chalcones on β-secretase and acylcholinesterase. Molecules, 2012, 18(1), 140-153. doi: 10.3390/molecules18010140 PMID: 23344193
- Park, S.H.; Yang, E.J.; Kim, S.I.; Song, K.S. β-Secretase (BACE1)-inhibiting C-methylrotenoids from Abronia nana suspension cultures. Bioorg. Med. Chem. Lett., 2014, 24(13), 2945-2948. doi: 10.1016/j.bmcl.2014.04.060
- Cox, C.J.; Choudhry, F.; Peacey, E.; Perkinton, M.S.; Richardson, J.C.; Howlett, D.R.; Lichtenthaler, S.F.; Francis, P.T.; Williams, R.J. Dietary (−)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing. Neurobiol. Aging, 2015, 36(1), 178-187. doi: 10.1016/j.neurobiolaging.2014.07.032 PMID: 25316600
- Zou, Z.; Xu, P.; Zhang, G.; Cheng, F.; Chen, K.; Li, J. Selagintri flavonoids with BACE1 inhibitory activity from the fern Selaginella doederleinii. Phytochemistry, 2017, 134, 114-121. PMID: 27889245
- Yang, S.; Liu, W.; Lu, S.; Tian, Y.; Wang, W.; Ling, T.; Liu, R. A novel multifunctional compound camellikaempferoside B decreases Aβ production, Interferes with Aβ aggregation, and prohibits Aβ-mediated neurotoxicity and neuroinflammation. ACS Chem. Neurosci., 2016, 7(4), 505-518. doi: 10.1021/acschemneuro.6b00091 PMID: 27015590
- Youn, K.; Yu, Y.; Lee, J.; Jeong, W.S.; Ho, C.T.; Jun, M. Polymethoxyflavones: novel β-secretase (BACE1) inhibitors from citrus peels. Nutrients, 2017, 9(9), 973. doi: 10.3390/nu9090973 PMID: 28869548
- Ali, M.Y.; Jannat, S.; Edraki, N.; Das, S.; Chang, W.K.; Kim, H.C.; Park, S.K.; Chang, M.S. Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem. Biol. Interact., 2019, 309, 108707. doi: 10.1016/j.cbi.2019.06.020 PMID: 31194956
- Youn, K.; Jun, M. Biological evaluation and docking analysis of potent BACE1 inhibitors from Boesenbergia rotunda. Nutrients, 2019, 11(3), 662. doi: 10.3390/nu11030662 PMID: 30893825
- Ribaudo, G.; Coghi, P.; Zanforlin, E.; Law, B.Y.K.; Wu, Y.Y.J.; Han, Y.; Qiu, A.C.; Qu, Y.Q.; Zagotto, G.; Wong, V.K.W. Semi-synthetic isoflavones as BACE-1 inhibitors against Alzheimers disease. Bioorg. Chem., 2019, 87, 474-483. doi: 10.1016/j.bioorg.2019.03.034 PMID: 30927588
- Prajapati, R.; Park, S.E.; Park, H.J.; Jung, H.A.; Choi, J.S. Identification of a Potent and Selective Human Monoamine Oxidase-A Inhibitor, Glycitein, an Isoflavone Isolated from Pueraria lobata Flowers. ACS Food Sci. Technol., 2021, 1(4), 538-550. doi: 10.1021/acsfoodscitech.0c00152
- Ahuja, A.; Tyagi, P.K.; Tyagi, S.; Kumar, A.; Kumar, M.; Sharifi-Rad, J. Potential of Pueraria tuberosa (Willd.) DC. to rescue cognitive decline associated with BACE1 protein of Alzheimers disease on Drosophila model: An integrated molecular modeling and in vivo approach. Int. J. Biol. Macromol., 2021, 179, 586-600. doi: 10.1016/j.ijbiomac.2021.03.032 PMID: 33705837
- Krishnendu, PR.; Vishal, PK.; Vaishnav, B.; Arjun, B; Subin, MZ Formulating the structural aspects of various benzimidazole cognates. Curr. Topic Med. Chem., 2022, 22(6), 473-492.
- Mathew, B.; Koyimparambath, V.P.; Oh, J.M.; Khames, M.A.; Nair, A.S.; Nath, L.R. Trimethozylated halogenated chalcones as dual inhibitors of MAO-B and BACE-1 for treatment of neurodegenerative disorders. Pharmaceutics, 2021, 13, 1-16.
- Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated CoumarinChalcones as Multifunctional Monoamine Oxidase-B and Butyrylcholinesterase Inhibitors. ACS Omega, 2021, 6(42), 28182-28193. doi: 10.1021/acsomega.1c04252 PMID: 34723016
Supplementary files
