LncRNA LINC00847 Accelerates Melanoma Progression by Regulating MiR-133a-3p/TGFBR1 Axis


Citar

Texto integral

Resumo

Aims:Growing evidence has suggested that lncRNAs play a regulatory role in tumorigenesis. Dysregulation of a newly identified lncRNA (LINC00847) has been involved in several tumors. Nevertheless, the expression and roles of lncRNAs in skin melanoma remain unclear. Therefore, we attempted to investigate the expressions and roles of lncRNAs in this study.

Materials and Methods:Expression levels of LINC00847 were quantified in tissue samples from the TCGA database and clinically recruited participants. LINC00847 was inhibited in cells by transfecting with si-LINC00847 or si-NC. Expressions of LINC00847 and miR-133a-3p were determined using RT-qPCR, and the TGFBR1 level was determined using Western blotting. Targeting sites of LINC00847 with miR-133a-3p and miR-133a-3p with TGFBR1 were predicted by bioinformatic tools and proved by dual-luciferase reporter system and RNA immunoprecipitation. Cell proliferation, invasion, and migration abilities were assessed using CCK8, cell colony formation, cell wound scratch, and transwell assay, respectively.

Results:In both TCGA and clinical cohorts, the expression of LINC00847 was abnormally upregulated in skin melanoma tissues than that of benign nevus. Besides, LINC00847 expression increased more markedly in A375 and SK-MEL-28 cells than in normal epidermal melanocytes (HEMa-LP cells). LINC00847 knockdown remarkably restrained skin melanoma cell proliferation, metastasis, and wound healing rate. Furthermore, miR-133a-3p/TGFBR1 was the downstream target for LINC00847. LINC00847 negatively regulated miR-133a-3p expression in skin melanoma cells. Both miR-133a-3p inhibitors and TGFBR1 vector transfection reversed the effect of LINC00847 silence in skin melanoma cells.

Conclusion:LINC00847 was highly expressed in skin melanoma, and its overexpression accelerated the malignant tumor behavior of skin melanoma cells. The miR-133a-3p /TGFBR1 axis was involved in the roles of LINC00847 in skin melanoma.

Sobre autores

Lei Jiang

Department of Aesthetic, Plastic and Burn Surgery, he Affiliated Yantai Yuhuangding Hospital of Qingdao University

Email: info@benthamscience.net

Xiufang Shi

Department of Aesthetic, Plastic and Burn Surgery,, he Affiliated Yantai Yuhuangding Hospital of Qingdao University

Email: info@benthamscience.net

Yanxin Liu

Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University

Email: info@benthamscience.net

Huaxia Chen

Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University

Autor responsável pela correspondência
Email: info@benthamscience.net

Bibliografia

  1. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590. doi: 10.1097/CM9.0000000000002108 PMID: 35143424
  2. Jiang, Y.; Chen, Z.; Jieping, Z.; Dongxu, H.; Xiujuan, S. Comprehensive analysis of the prognosis and biological significance for IFIT family in skin cutaneous melanoma. Int. Immunopharmacol., 2021, 101(PT A), 108344. doi: 10.1016/j.intimp.2021.108344
  3. Watts, C.G.; McLoughlin, K.; Goumas, C.; van Kemenade, C.H.; Aitken, J.F.; Soyer, H.P.; Fernandez, P.P.; Guitera, P.; Scolyer, R.A.; Morton, R.L.; Menzies, S.W.; Caruana, M.; Kang, Y.J.; Mann, G.J.; Chakera, A.H.; Madronio, C.M.; Armstrong, B.K.; Thompson, J.F.; Cust, A.E. Association between melanoma detected during routine skin checks and mortality. JAMA Dermatol., 2021, 157(12), 1425-1436. doi: 10.1001/jamadermatol.2021.3884 PMID: 34730781
  4. Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261. doi: 10.1038/nm.3981 PMID: 26540387
  5. Safa, A.; Gholipour, M.; Dinger, M.E.; Taheri, M.; Ghafouri-Fard, S. The critical roles of lncRNAs in the pathogenesis of melanoma. Exp. Mol. Pathol., 2020, 117, 104558. doi: 10.1016/j.yexmp.2020.104558 PMID: 33096077
  6. Xu, H.L.; Tian, F.Z. Clinical significance of lncRNA MIR31HG in melanoma. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4389-4395. PMID: 32373976
  7. Tang, L.; Zhang, W.; Su, B.; Yu, B. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Res. Int., 2013, 2013, 1-7. doi: 10.1155/2013/251098 PMID: 23862139
  8. Sun, L.; Sun, P.; Zhou, Q.Y.; Gao, X.; Han, Q. Long noncoding RNA MALAT1 promotes uveal melanoma cell growth and invasion by silencing of miR-140. Am. J. Transl. Res., 2016, 8(9), 3939-3946. PMID: 27725873
  9. Chen, X.; Gao, J.; Yu, Y.; Zhao, Z.; Pan, Y. LncRNA FOXD3-AS1 promotes proliferation, invasion and migration of cutaneous malignant melanoma via regulating miR-325/MAP3K2. Biomed. Pharmacother., 2019, 120109438. doi: 10.1016/j.biopha.2019.109438 PMID: 31541886
  10. Hu, Y.; Gu, X.; Duan, Y.; Shen, Y.; Xie, X. Bioinformatics analysis of prognosis-related long non-coding RNAs in invasive breast carcinoma. Oncol. Lett., 2020, 20(1), 113-122. doi: 10.3892/ol.2020.11558 PMID: 32565939
  11. Li, H.; Chen, Y.; Wan, Q.; Shi, A.; Wang, M.; He, P.; Tang, L. Long non-coding RNA LINC00847 induced by E2F1 accelerates non-small cell lung cancer progression through targeting miR-147a/IFITM1 axis. Front. Med., 2021, 8663558. doi: 10.3389/fmed.2021.663558 PMID: 33968966
  12. Tu, L.R.; Li, W.; Liu, J.; Song, X.G.; Xu, H.W. LncRNA LINC00847 contributes to hepatocellular carcinoma progression by acting as a sponge of miR-99a to induce E2F2 expression. J. Biol. Regul. Homeost. Agents, 2020, 34(6), 2195-2203. PMID: 33426857
  13. Safarpour-Dehkordi, M.; Doosti, A.; Jami, M.S. Integrative analysis of lncrnas in kidney cancer to discover a new lncRNA (LINC00847) as a therapeutic target for staphylococcal enterotoxin tst gene. Cell J., 2020, 22(S1), 101-109. PMID: 32779439
  14. Nuñez-Olvera, S.I.; Aguilar-Arnal, L.; Cisneros-Villanueva, M.; Hidalgo-Miranda, A.; Marchat, L.A.; Salinas-Vera, Y.M.; Ramos-Payán, R.; Pérez-Plasencia, C.; Carlos-Reyes, Á.; Puente-Rivera, J.; López-Camarillo, C. Breast cancer cells reprogram the oncogenic lncRNAs/mRNAs coexpression networks in three-dimensional microenvironment. Cells, 2022, 11(21), 3458. doi: 10.3390/cells11213458 PMID: 36359853
  15. Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222. doi: 10.1038/nrd.2016.246 PMID: 28209991
  16. Tomczak, K.; Czerwińska, P.; Wiznerowicz, M. Review the cancer genome atlas (TCGA): An immeasurable source of knowledge. Contemp. Oncol., 2015, 1A, 68-77. doi: 10.5114/wo.2014.47136 PMID: 25691825
  17. Wang, L.; Liqiang, C.; Chunxia, W.; Jie, L.; Guiping, Y.; Chengying, L. LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis. Hum. Cell, 2020, 33(1), 195-204.
  18. Li, H.; Gao, C.; Liu, L.; Zhuang, J.; Yang, J.; Liu, C.; Zhou, C.; Feng, F.; Sun, C. 7-lncRNA assessment model for monitoring and prognosis of breast cancer patients: Based on cox regression and co-expression analysis. Front. Oncol., 2019, 9, 1348. doi: 10.3389/fonc.2019.01348 PMID: 31850229
  19. Gong, Y.; Ren, J.; Liu, K.; Tang, L.M. Tumor suppressor role of miR-133a in gastric cancer by repressing IGF1R. World J. Gastroenterol., 2015, 21(10), 2949-2958. doi: 10.3748/wjg.v21.i10.2949 PMID: 25780292
  20. Li, W.; Chen, A.; Xiong, L.; Chen, T.; Tao, F.; Lu, Y.; He, Q.; Zhao, L.; Ou, R.; Xu, Y. miR-133a acts as a tumor suppressor in colorectal cancer by targeting eIF4A1. Tumour Biol., 2017, 39(5) doi: 10.1177/1010428317698389 PMID: 28466778
  21. Xu, Y.; Zhang, L.; Xia, L.; Zhu, X. MicroRNA 133a 3p suppresses malignant behavior of non small cell lung cancer cells by negatively regulating ERBB2. Oncol. Lett., 2021, 21(6), 457. doi: 10.3892/ol.2021.12718 PMID: 33907567
  22. Qin, Y.; Dang, X.; Li, W.; Ma, Q. miR-133a functions as a tumor suppressor and directly targets FSCN1 in pancreatic cancer. Oncol. Res., 2014, 21(6), 353-363. doi: 10.3727/096504014X14024160459122 PMID: 25198665
  23. Sun, L.; Guo, Z.; Sun, J.; Li, J.; Dong, Z.; Zhang, Y.; Chen, J.; Kan, Q.; Yu, Z. MiR-133a acts as an anti-oncogene in Hepatocellular carcinoma by inhibiting FOSL2 through TGF-β/Smad3 signaling pathway. Biomed. Pharmacother., 2018, 107, 168-176. doi: 10.1016/j.biopha.2018.07.151 PMID: 30086463
  24. Wang, X.; Zhu, L.; Lin, X.; Huang, Y.; Lin, Z. MiR-133a-3p inhibits the malignant progression of oesophageal cancer by targeting CDCA8. J. Biochem., 2021, 170(6), 689-698. doi: 10.1093/jb/mvab071 PMID: 34117764
  25. Han, S.; Ding, X.; Wang, S. miR-133a-3p regulates hepatocellular carcinoma progression through targeting CORO1C. Cancer Manag. Res., 2020, 12, 8685-8693.
  26. Dong, X.; Su, H.; Jiang, F.; Li, H.; Shi, G.; Fan, L. miR 133a, directly targeted USP39, suppresses cell proliferation and predicts prognosis of gastric cancer. Oncol. Lett., 2018, 15(6), 8311-8318. doi: 10.3892/ol.2018.8421 PMID: 29805563
  27. Wang, L.L.; Du, L.T.; Li, J.; Liu, Y.M.; Qu, A.L.; Yang, Y.M.; Zhang, X.; Zheng, G.X.; Wang, C.X. Decreased expression of miR-133a correlates with poor prognosis in colorectal cancer patients. World J. Gastroenterol., 2014, 20(32), 11340-11346. doi: 10.3748/wjg.v20.i32.11340 PMID: 25170220
  28. Zhou, Y.; Yan, J.; Chen, H.; Zhou, W.; Yang, J. MicroRNA-133a-3p inhibits lung adenocarcinoma development and cisplatin resistance through targeting GINS4. Cells Tissues Organs, 2022. doi: 10.1159/000527684 PMID: 36273455
  29. Li, Q.; Wang, Y.; He, J. MiR‐133a‐3p attenuates resistance of non‐small cell lung cancer cells to gefitinib by targeting SPAG5. J. Clin. Lab. Anal., 2021, 35(7), e23853. doi: 10.1002/jcla.23853 PMID: 34057242
  30. Wei, L.; Peng, Y.; Shao, N.; Zhou, P. Downregulation of Tim-1 inhibits the proliferation, migration and invasion of glioblastoma cells via the miR-133a/TGFBR1 axis and the restriction of Wnt/β-catenin pathway. Cancer Cell Int., 2021, 21(1), 347. doi: 10.1186/s12935-021-02036-1 PMID: 34225723
  31. Mulder, E.E.A.P.; Dwarkasing, J.T.; Tempel, D.; Spek, A.; Bosman, L.; Verver, D.; Mooyaart, A.L.; Veldt, A.A.M.; Verhoef, C.; Nijsten, T.E.C.; Grunhagen, D.J.; Hollestein, L.M. Validation of a clinicopathological and gene expression profile model for sentinel lymph node metastasis in primary cutaneous melanoma. Br. J. Dermatol., 2021, 184(5), 944-951. doi: 10.1111/bjd.19499 PMID: 32844403
  32. Wang, H.; Zhang, Q.; Wang, B.; Wu, W.; Wei, J.; Li, P.; Huang, R. miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1. Eur. J. Cell Biol., 2018, 97(4), 257-268. doi: 10.1016/j.ejcb.2018.03.006 PMID: 29588073
  33. Wang, H.X.; Sharma, C.; Knoblich, K.; Granter, S.R.; Hemler, M.E. EWI-2 negatively regulates TGF-β signaling leading to altered melanoma growth and metastasis. Cell Res., 2015, 25(3), 370-385. doi: 10.1038/cr.2015.17 PMID: 25656846
  34. Busse, A.; Keilholz, U. Role of TGF-β in melanoma. Curr. Pharm. Biotechnol., 2011, 12(12), 2165-2175. doi: 10.2174/138920111798808437 PMID: 21619542
  35. Larson, C.; Oronsky, B.; Carter, C.A.; Oronsky, A.; Knox, S.J.; Sher, D.; Reid, T.R. TGF-beta: A master immune regulator. Expert Opin. Ther. Targets, 2020, 24(5), 427-438. doi: 10.1080/14728222.2020.1744568 PMID: 32228232
  36. Hao, Y.; Baker, D.; ten Dijke, P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci., 2019, 20(11), 2767. doi: 10.3390/ijms20112767 PMID: 31195692

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bentham Science Publishers, 2024