Identifying Oxidative Stress-Related Genes (OSRGs) as Potential Target for Treating Periodontitis Based on Bioinformatics Analysis


Cite item

Full Text

Abstract

Background:Periodontitis (PD) is a multifactorial inflammatory disease that is closely associated with periodontopathic bacteria. Numerous studies have demonstrated oxidative stress (OS) contributes to inflammation and is a prime factor in the development of PD. It is imperative to explore the function of newly discovered hub genes associated with OS in the advancement of PD, thereby identifying potential targets for therapeutic intervention.

Objectives:The goal of the current study was to identify the oxidative-stress-related genes (OSRGs) associated with periodontitis (PD) development using an integrated bioinformatics method.

Methods:DEGs from GEO gene-expression data were identified using the \"limma\" package. We obtained OSRGs from GeneCards and utilized a Venn diagram to uncover differentially expressed OSRGs (DEOSRGs). After receiving the DEOSRGs, we employed Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analytical tools to examine their possible functions and pathways in PD. Receiver operating characteristic (ROC) curves screened for hub genes of PD. RT-qPCR and western blot analysis were used to detect DEOSRG expression in mouse ligature-induced periodontitis gingival tissues.

Results:The investigation identified 273 OSRGs. Based on PPI analysis, we recognized 20 OSRGs as hub genes. GO and KEGG enrichment analysis indicated that these hub genes were predominantly enriched in leukocyte migration, lymphocyte proliferation, and humoral immune response, and associated with leukocyte trans-endothelial migration, cytokine-cytokine receptor interaction, and NF-κB signaling pathway. Following ROC analysis, VCAM1, ITGAM, FCGR3A, IL1A, PECAM1, and VCAM1were identified as PD prognostic gene. RT-qPCR and western blot analyses confirmed that the expression ITGAM, FCGR3A, and PECAM1 were significantly elevated in the gingival tissues obtained from mice.

Conclusion:This investigation revealed that ITGAM, FCGR3A, and PECAM1 may have a crucial function in the advancement of PD.

About the authors

Wei Zhou

Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology,, Shanghai Jiao Tong University

Email: info@benthamscience.net

Pengfei Zhang

Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University

Email: info@benthamscience.net

Hao li

Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sudha, K.M.; Murugesan, G.; Subaramoniam, M.; Dutta, T.; Dhanasekar, K. A comparative study of synbiotic as an add-on therapy to standard treatment in patients with aggressive periodontitis. J. Indian Soc. Periodontol., 2018, 22(5), 438-441. doi: 10.4103/jisp.jisp_155_18 PMID: 30210194
  2. Liu, Q.; Guo, S.; Huang, Y.; Wei, X.; Liu, L.; Huo, F.; Huang, P.; Wu, Y.; Tian, W. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway. Oxid. Med. Cell. Longev., 2022, 2022, 1-16. doi: 10.1155/2022/4107915 PMID: 35720191
  3. Riep, B.; Edesi-Neuß, L.; Claessen, F.; Skarabis, H.; Ehmke, B.; Flemmig, T.F.; Bernimoulin, J.P.; Göbel, U.B.; Moter, A. Are putative periodontal pathogens reliable diagnostic markers? J. Clin. Microbiol., 2009, 47(6), 1705-1711. doi: 10.1128/JCM.01387-08 PMID: 19386852
  4. Munenaga, S.; Ouhara, K.; Hamamoto, Y.; Kajiya, M.; Takeda, K.; Yamasaki, S.; Kawai, T.; Mizuno, N.; Fujita, T.; Sugiyama, E.; Kurihara, H. The involvement of C5a in the progression of experimental arthritis with Porphyromonas gingivalis infection in SKG mice. Arthritis Res. Ther., 2018, 20(1), 247. doi: 10.1186/s13075-018-1744-3 PMID: 30390695
  5. Ying, S.; Tan, M.; Feng, G.; Kuang, Y.; Chen, D.; Li, J.; Song, J. Low-intensity pulsed ultrasound regulates alveolar bone homeostasis in experimental periodontitis by diminishing oxidative stress. Theranostics, 2020, 10(21), 9789-9807. doi: 10.7150/thno.42508 PMID: 32863960
  6. Cornacchione, L.P.; Klein, B.A.; Duncan, M.J.; Hu, L.T. Interspecies Inhibition of Porphyromonas gingivalis by Yogurt-Derived Lactobacillus delbrueckii Requires Active Pyruvate Oxidase. Appl. Environ. Microbiol., 2019, 85(18), e01271-e19. doi: 10.1128/AEM.01271-19 PMID: 31285191
  7. Jeong, S.H.; Lee, J.I.E.U.N.; Kim, B.O.B.A.E.; Ko, Y.; Park, J.B. Evaluation of the effects of Cimicifugae Rhizoma on the morphology and viability of mesenchymal stem cells. Exp. Ther. Med., 2015, 10(2), 629-634. doi: 10.3892/etm.2015.2578 PMID: 26622366
  8. Oortgiesen, D.A.W.; Yu, N.; Bronckers, A.L.J.J.; Yang, F.; Walboomers, X.F.; Jansen, J.A. A three-dimensional cell culture model to study the mechano-biological behavior in periodontal ligament regeneration. Tissue Eng. Part C Methods, 2012, 18(2), 81-89. doi: 10.1089/ten.tec.2011.0367 PMID: 21913838
  9. Wang, L.; Xu, M.L.; Liu, J.; Wang, Y.; Hu, J.H.; Wang, M.H. Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages. Nutr. Res. Pract., 2015, 9(6), 579-585. doi: 10.4162/nrp.2015.9.6.579 PMID: 26634045
  10. Circu, M.L.; Aw, T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 2010, 48(6), 749-762. doi: 10.1016/j.freeradbiomed.2009.12.022 PMID: 20045723
  11. Su, H.; Gornitsky, M.; Velly, A.M.; Yu, H.; Benarroch, M.; Schipper, H.M. Salivary DNA, lipid, and protein oxidation in nonsmokers with periodontal disease. Free Radic. Biol. Med., 2009, 46(7), 914-921. doi: 10.1016/j.freeradbiomed.2009.01.008 PMID: 19280702
  12. Karna, K.K.; Choi, B.R.; You, J.H.; Shin, Y.S.; Cui, W.S.; Lee, S.W.; Kim, J.H.; Kim, C.Y.; Kim, H.K.; Park, J.K. The ameliorative effect of monotropein, astragalin, and spiraeoside on oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in varicocelized rats. BMC Complement. Altern. Med., 2019, 19(1), 333. doi: 10.1186/s12906-019-2736-9 PMID: 31771569
  13. Abidar, S.; Boiangiu, R.; Dumitru, G.; Todirascu-Ciornea, E.; Amakran, A.; Cioanca, O.; Hritcu, L.; Nhiri, M. The aqueous extract from Ceratonia siliqua leaves protects against 6-hydroxydopamine in zebrafish: Understanding the underlying mechanism. Antioxidants, 2020, 9(4), 304. doi: 10.3390/antiox9040304 PMID: 32276477
  14. Bullon, P.; Cordero, M.D.; Quiles, J.L.; Ramirez-Tortosa, M.C.; Gonzalez-Alonso, A.; Alfonsi, S.; García-Marín, R.; de Miguel, M.; Battino, M. Autophagy in periodontitis patients and gingival fibroblasts: Unraveling the link between chronic diseases and inflammation. BMC Med., 2012, 10(1), 122. doi: 10.1186/1741-7015-10-122 PMID: 23075094
  15. Ebersole, J.L.; Kirakodu, S.S.; Gonzalez, O.A. Oral microbiome interactions with gingival gene expression patterns for apoptosis, autophagy and hypoxia pathways in progressing periodontitis. Immunology, 2021, 162(4), 405-417. doi: 10.1111/imm.13292 PMID: 33314069
  16. Kuang, Y.; Hu, B.; Feng, G.; Xiang, M.; Deng, Y.; Tan, M.; Li, J.; Song, J. Metformin prevents against oxidative stress-induced senescence in human periodontal ligament cells. Biogerontology, 2020, 21(1), 13-27. doi: 10.1007/s10522-019-09838-x PMID: 31559522
  17. Chapple, I.L.C.; Milward, M.R.; Dietrich, T. The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations. J. Nutr., 2007, 137(3), 657-664. doi: 10.1093/jn/137.3.657 PMID: 17311956
  18. Chen, M.; Cai, W.; Zhao, S.; Shi, L.; Chen, Y.; Li, X.; Sun, X.; Mao, Y.; He, B.; Hou, Y.; Zhou, Y.; Zhou, Q.; Ma, J.; Huang, S. Oxidative stress‐related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta‐analysis. J. Clin. Periodontol., 2019, 46(6), 608-622. doi: 10.1111/jcpe.13112 PMID: 30989678
  19. Pacios, S.; Kang, J.; Galicia, J.; Gluck, K.; Patel, H.; Ovaydi-Mandel, A.; Petrov, S.; Alawi, F.; Graves, D.T. Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J., 2012, 26(4), 1423-1430. doi: 10.1096/fj.11-196279 PMID: 22179526
  20. Geng, F.; Liu, J.; Yin, C.; Zhang, S.; Pan, Y.; Sun, H. Porphyromonas gingivalis lipopolysaccharide induced RIPK3/MLKL-mediated necroptosis of oral epithelial cells and the further regulation in macrophage activation. J. Oral Microbiol., 2022, 14(1), 2041790. doi: 10.1080/20002297.2022.2041790 PMID: 35251521
  21. Riccia, D.N.D.; Bizzini, F.; Perilli, M.G.; Polimeni, A.; Trinchieri, V.; Amicosante, G.; Cifone, M.G. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis., 2007, 13(4), 376-385. doi: 10.1111/j.1601-0825.2006.01291.x PMID: 17577323
  22. Zhuang, Z.; Yoshizawa-Smith, S.; Glowacki, A.; Maltos, K.; Pacheco, C.; Shehabeldin, M.; Mulkeen, M.; Myers, N.; Chong, R.; Verdelis, K.; Garlet, G.P.; Little, S.; Sfeir, C. Induction of M2 macrophages prevents bone loss in murine periodontitis models. J. Dent. Res., 2019, 98(2), 200-208. doi: 10.1177/0022034518805984 PMID: 30392438
  23. Lee, S.; Kim, S.; Kim, S.; Lee, I. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ. Sci. Pollut. Res. Int., 2013, 20(2), 848-854. doi: 10.1007/s11356-012-1069-8 PMID: 22814961
  24. Zhao, M.; Tang, S.; Xin, J.; Wei, Y.; Liu, D. Reactive oxygen species induce injury of the intestinal epithelium during hyperoxia. Int. J. Mol. Med., 2018, 41(1), 322-330. PMID: 29138796
  25. Araújo, A.A.; Pereira, A.S.B.F.; Medeiros, C.A.C.X.; Brito, G.A.C.; Leitão, R.F.C.; Araújo, L.S.; Guedes, P.M.M.; Hiyari, S.; Pirih, F.Q.; Araújo Júnior, R.F. Effects of metformin on inflammation, oxidative stress, and bone loss in a rat model of periodontitis. PLoS One, 2017, 12(8), e0183506. doi: 10.1371/journal.pone.0183506 PMID: 28847008
  26. Bullon, P.; Morillo, J.M.; Ramirez-Tortosa, M.C.; Quiles, J.L.; Newman, H.N.; Battino, M. Metabolic syndrome and periodontitis: Is oxidative stress a common link? J. Dent. Res., 2009, 88(6), 503-518. doi: 10.1177/0022034509337479 PMID: 19587154
  27. Konečná, B.; Chobodová, P.; Janko, J.; Baňasová, L.; Bábíčková, J.; Celec, P.; Tóthová, Ľ. The effect of melatonin on periodontitis. Int. J. Mol. Sci., 2021, 22(5), 2390. doi: 10.3390/ijms22052390 PMID: 33673616
  28. Zhong, M.; Huang, J.; Wu, Z.; Chan, K.G.; Wang, L.; Li, J.; Lee, L.H.; Law, J.W.F. Potential roles of selectins in periodontal diseases and associated systemic diseases: Could they be targets for immunotherapy? Int. J. Mol. Sci., 2022, 23(22), 14280. doi: 10.3390/ijms232214280 PMID: 36430760
  29. Räisänen, I.T.; Umeizudike, K.A.; Pärnänen, P.; Heikkilä, P.; Tervahartiala, T.; Nwhator, S.O.; Grigoriadis, A.; Sakellari, D.; Sorsa, T. Periodontal disease and targeted prevention using aMMP-8 point-of-care oral fluid analytics in the COVID-19 era. Med. Hypotheses, 2020, 144, 110276. doi: 10.1016/j.mehy.2020.110276 PMID: 33254580
  30. Folwaczny, M.; Karnesi, E.; Berger, T.; Paschos, E. Clinical association between chronic periodontitis and the leukocyte extravasation inhibitors developmental endothelial locus-1 and pentraxin-3. Eur. J. Oral Sci., 2017, 125(4), 258-264. doi: 10.1111/eos.12357 PMID: 28643381
  31. Lam, F.W.; Brown, C.A.; Valladolid, C.; Emebo, D.C.; Palzkill, T.G.; Cruz, M.A. The vimentin rod domain blocks P-selectin-P-selectin glycoprotein ligand 1 interactions to attenuate leukocyte adhesion to inflamed endothelium. PLoS One, 2020, 15(10), e0240164. doi: 10.1371/journal.pone.0240164 PMID: 33048962
  32. Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115. doi: 10.1038/cr.2010.178 PMID: 21187859
  33. Azizidoost, S.; Asnafi, A.A.; Saki, N. Signaling–chemokine axis network in brain as a sanctuary site for metastasis. J. Cell. Physiol., 2019, 234(4), 3376-3382. doi: 10.1002/jcp.27305 PMID: 30187487
  34. Ruytinx, P.; Proost, P.; Van Damme, J.; Struyf, S. Chemokine-induced macrophage polarization in inflammatory conditions. Front. Immunol., 2018, 9, 1930. doi: 10.3389/fimmu.2018.01930 PMID: 30245686
  35. Zeng, Y.; Cao, S.; Chen, M. Integrated analysis and exploration of potential shared gene signatures between carotid atherosclerosis and periodontitis. BMC Med. Genomics, 2022, 15(1), 227. doi: 10.1186/s12920-022-01373-y PMID: 36316672
  36. Pan, Y.; Yu, C.; Huang, J.; Rong, Y.; Chen, J.; Chen, M. Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet. Lipids Health Dis., 2020, 19(1), 54. doi: 10.1186/s12944-020-01222-w PMID: 32213192
  37. Alpdogan, S.; Clemens, R.; Hescheler, J.; Neumaier, F.; Schneider, T. Non-Mendelian inheritance during inbreeding of Cav3.2 and Cav2.3 deficient mice. Sci. Rep., 2020, 10(1), 15993. doi: 10.1038/s41598-020-72912-9 PMID: 33009476
  38. Larjava, H.; Koivisto, L.; Heino, J.; Häkkinen, L. Integrins in periodontal disease. Exp. Cell Res., 2014, 325(2), 104-110. doi: 10.1016/j.yexcr.2014.03.010 PMID: 24662197
  39. Ebersole, J.L.; Orraca, L.; Novak, M.J.; Kirakodu, S.; Gonzalez-Martinez, J.; Gonzalez, O.A. Comparative analysis of gene expression patterns for oral epithelium-related functions with aging. Adv. Exp. Med. Biol., 2019, 1197, 143-163. doi: 10.1007/978-3-030-28524-1_11 PMID: 31732940
  40. Guzeldemir-Akcakanat, E.; Alkan, B.; Sunnetci-Akkoyunlu, D.; Gurel, B.; Balta, V.M.; Kan, B.; Akgun, E.; Yilmaz, E.B.; Baykal, A.T.; Cine, N.; Olgac, V.; Gumuslu, E.; Savli, H. Molecular signatures of chronic periodontitis in gingiva: A genomic and proteomic analysis. J. Periodontol., 2019, 90(6), 663-673. doi: 10.1002/JPER.18-0477 PMID: 30653263
  41. Chai, L.; Song, Y.Q.; Zee, K.Y.; Leung, W.K. SNPs of Fc-gamma receptor genes and chronic periodontitis. J. Dent. Res., 2010, 89(7), 705-710. doi: 10.1177/0022034510365444 PMID: 20439936
  42. Pavkovic, M.; Petlichkovski, A.; Karanfilski, O.; Cevreska, L.; Stojanovic, A. FC gamma receptor polymorphisms in patients with immune thrombocytopenia. Hematology, 2018, 23(3), 163-168. doi: 10.1080/10245332.2017.1377902 PMID: 28942727
  43. Ning, W.; Acharya, A.; Sun, Z.; Ogbuehi, A.C.; Li, C.; Hua, S.; Ou, Q.; Zeng, M.; Liu, X.; Deng, Y.; Haak, R.; Ziebolz, D.; Schmalz, G.; Pelekos, G.; Wang, Y.; Hu, X. Deep learning reveals key immunosuppression genes and distinct immunotypes in periodontitis. Front. Genet., 2021, 12, 648329. doi: 10.3389/fgene.2021.648329 PMID: 33777111
  44. Kobayashi, T.; Yamamoto, K.; Sugita, N.; van der Pol, W.L.; Yasuda, K.; Kaneko, S.; van de Winkel, J.G.J.; Yoshie, H. The Fc gamma receptor genotype as a severity factor for chronic periodontitis in Japanese patients. J. Periodontol., 2001, 72(10), 1324-1331. doi: 10.1902/jop.2001.72.10.1324 PMID: 11699473
  45. Privratsky, J.R.; Newman, D.K.; Newman, P.J. PECAM-1: Conflicts of interest in inflammation. Life Sci., 2010, 87(3-4), 69-82. doi: 10.1016/j.lfs.2010.06.001 PMID: 20541560
  46. Liu, Y.; Zhang, Z.; Li, W.; Tian, S. PECAM1 Combines with CXCR4 to trigger inflammatory cell infiltration and pulpitis progression through activating the NF-κB signaling pathway. Front. Cell Dev. Biol., 2020, 8, 593653. doi: 10.3389/fcell.2020.593653 PMID: 33425898
  47. Farrugia, C.; Stafford, G.P.; Potempa, J.; Wilkinson, R.N.; Chen, Y.; Murdoch, C.; Widziolek, M. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J., 2021, 288(5), 1479-1495. doi: 10.1111/febs.15486 PMID: 32681704

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers