MiR-301b-3p can be used as a Potential Marker for the Diagnosis of Lung Adenocarcinoma


Cite item

Full Text

Abstract

Background:The involvement of aberrantly expressed miR-301b-3p has been discovered in diverse human tumors. Our study was primarily centered around the role of miR-301b-3p in diagnosing lung adenocarcinoma (LUAD).

Method:We used the TCGA database to download the TCGA-LUAD dataset and selected miR- 301b-3p as the object of our study by differential expression analysis of miRNAs combined with previous studies. The LUAD diagnostic model was constructed utilizing machine learning based on miR-301b-3p expression. The predictive performance of the diagnostic model was found to be excellent by ROC curves combined with the clinical information of the dataset samples. GSEA, GO, and KEGG enrichment analyses demonstrated that miR-301b-3p may mediate the cell cycle by regulating the expression of hormones. Subsequently, combined with tumor immunity and mutation analysis, it was found that patients in the low-expression group had better immune infiltration, indicating that their response rate to immunotherapy may be relatively high. Finally, a mouse xenograft model was constructed to verify how miR-301b-3p affected LUAD progression in mice.

Result:The results illustrated that overexpressed miR-301b-3p could cause faster tumor growth in mice. On the contrary, the growth of LUAD could be impeded by the downregulated miR-301b-3p expression. It was suggested that miR-301b-3p had a crucial part in LUAD progression.

Conclusion:Overall, the diagnostic performance of the LUAD diagnostic model constructed based on miR-301b-3p is great, and the model can be used as a potential diagnostic marker for LUAD to provide new ideas for clinical diagnosis.

About the authors

Weibo Qi

Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University

Author for correspondence.
Email: info@benthamscience.net

Niu Niu

Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University

Email: info@benthamscience.net

Junjie Zhao

Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University

Email: info@benthamscience.net

Haitao Liu

Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University

Email: info@benthamscience.net

Fan Yang

Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University

Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Sainz de Aja, J.; Dost, A.F.M.; Kim, C.F. Alveolar progenitor cells and the origin of lung cancer. J. Intern. Med., 2021, 289(5), 629-635. doi: 10.1111/joim.13201 PMID: 33340175
  3. Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311. doi: 10.1016/S0140-6736(16)30958-8 PMID: 27574741
  4. Wu, G.; Jochems, A.; Refaee, T.; Ibrahim, A.; Yan, C.; Sanduleanu, S.; Woodruff, H.C.; Lambin, P. Structural and functional radiomics for lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(12), 3961-3974. doi: 10.1007/s00259-021-05242-1 PMID: 33693966
  5. Church, T.R.; Black, W.C.; Aberle, D.R.; Berg, C.D.; Clingan, K.L.; Duan, F.; Fagerstrom, R.M.; Gareen, I.F.; Gierada, D.S.; Jones, G.C.; Mahon, I.; Marcus, P.M.; Sicks, J.D.; Jain, A.; Baum, S. Results of initial low-dose computed tomographic screening for lung cancer. N. Engl. J. Med., 2013, 368(21), 1980-1991. doi: 10.1056/NEJMoa1209120 PMID: 23697514
  6. Hill, M.; Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model. Mech., 2021, 14(4), dmm047662. doi: 10.1242/dmm.047662 PMID: 33973623
  7. Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol., 2011, 13(4), 423-433. doi: 10.1038/ncb2210 PMID: 21423178
  8. Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; Ludwig, N.; Fasching, P.A.; Strick, R.; Rübner, M.; Beckmann, M.W.; Meese, E.; Keller, A.; Schrauder, M.G. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep., 2018, 8(1), 11584. doi: 10.1038/s41598-018-29917-2 PMID: 30072748
  9. Shao, C.; Yang, F.; Qin, Z.; Jing, X.; Shu, Y.; Shen, H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: A systematic review with meta-analysis. BMC Cancer, 2019, 19(1), 1103. doi: 10.1186/s12885-019-6297-6 PMID: 31727002
  10. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616 PMID: 19910308
  11. Yang, F.; Wang, X.; Ma, H.; Li, J. Transformers-sklearn: A toolkit for medical language understanding with transformer-based models. BMC Med. Inform. Decis. Mak., 2021, 21(S2)(Suppl. 2), 90. doi: 10.1186/s12911-021-01459-0 PMID: 34330244
  12. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  13. Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
  14. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
  15. Skidmore, Z.L.; Wagner, A.H.; Lesurf, R.; Campbell, K.M.; Kunisaki, J.; Griffith, O.L.; Griffith, M. GenVisR: Genomic Visualizations in R. Bioinformatics, 2016, 32(19), 3012-3014. doi: 10.1093/bioinformatics/btw325 PMID: 27288499
  16. Liu, H.; Wang, Y.; Wang, Y.; Wu, D.; Zhang, H. miR-199a-3p plays an anti-tumorigenic role in lung adenocarcinoma by suppressing anterior gradient 2. Bioengineered, 2021, 12(1), 7859-7871. doi: 10.1080/21655979.2021.1967009 PMID: 34632938
  17. Chen, J.; Cheng, L.; Zou, W.; Wang, R.; Wang, X.; Chen, Z. ADAMTS9-AS1 constrains breast cancer cell invasion and proliferation via sequestering miR-301b-3p. Front. Cell Dev. Biol., 2021, 9, 719993. doi: 10.3389/fcell.2021.719993 PMID: 34900984
  18. Lu, X.; Duan, J.; Zhou, R.; Xu, Y. MiR-301b-3p promotes the occurrence and development of breast cancer cells via targeting HOXA5. Crit. Rev. Eukaryot. Gene Expr., 2021, 31(3), 35-44. doi: 10.1615/CritRevEukaryotGeneExpr.2021038215 PMID: 34369713
  19. Moya, L.; Meijer, J.; Schubert, S.; Matin, F.; Batra, J. Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289 Expression as Biomarker for Prostate Cancer Diagnosis. Int. J. Mol. Sci., 2019, 20(5), 1154. doi: 10.3390/ijms20051154 PMID: 30845775
  20. Raychaudhuri, M.; Bronger, H.; Buchner, T.; Kiechle, M.; Weichert, W.; Avril, S. MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res. Treat., 2017, 162(3), 511-521. doi: 10.1007/s10549-017-4132-9 PMID: 28181130
  21. Xiong, J.; Zhang, L.; Tang, R.; Zhu, Z. MicroRNA-301b-3p facilitates cell proliferation and migration in colorectal cancer by targeting HOXB1. Bioengineered, 2021, 12(1), 5839-5849. doi: 10.1080/21655979.2021.1962483 PMID: 34488545
  22. Nave, O. A mathematical model for treatment using chemo-immunotherapy. Heliyon, 2022, 8(4), e09288. doi: 10.1016/j.heliyon.2022.e09288 PMID: 35520602
  23. Wang, J.; Zhao, L.; Peng, X.; Liu, K.; Zhang, C.; Chen, X.; Han, Y.; Lai, Y. Evaluation of miR‐130 family members as circulating biomarkers for the diagnosis of bladder cancer. J. Clin. Lab. Anal., 2020, 34(12), e23517. doi: 10.1002/jcla.23517 PMID: 32761678
  24. Dias, F.; Teixeira, A.L.; Nogueira, I.; Morais, M.; Maia, J.; Bodo, C.; Ferreira, M.; Silva, A.; Vilhena, M.; Lobo, J.; Sequeira, J.P.; Maurício, J.; Oliveira, J.; Kok, K.; Costa-Silva, B.; Medeiros, R. Extracellular vesicles enriched in hsa-miR-301a-3p and hsa-miR-1293 dynamics in clear cell renal cell carcinoma patients: Potential Biomarkers of Metastatic Disease. Cancers (Basel), 2020, 12(6), 1450. doi: 10.3390/cancers12061450 PMID: 32498409
  25. Wang, S.; Chen, Q.; Liu, S.; Zhang, W.; Ji, B.; Liu, Y. The Impact of Aberrant Hepatic Artery on Resection Margin and Outcomes of Laparoscopic Pancreatoduodenectomy: A Single-Center Report. World J. Surg., 2021, 45(10), 3183-3190. doi: 10.1007/s00268-021-06231-z PMID: 34258649
  26. Yang, R.; Liu, Z.; Cao, H.; Shi, Y. LINC01089, suppressed by YY1, inhibits lung cancer progression by targeting miR-301b-3p/HPDG axis. Cell Biol. Toxicol., 2022, 36(6), 1063-1077. PMID: 34561789
  27. Liu, H.; Ma, X.; Niu, N.; Zhao, J.; Lu, C.; Yang, F.; Qi, W. MIR-301b-3p promotes lung adenocarcinoma cell proliferation, migration and invasion by targeting DLC1. Technol. Cancer Res. Treat., 2021, 20, 1533033821990036. doi: 10.1177/1533033821990036 PMID: 33754907
  28. Niu, N.; Ma, X.; Liu, H.; Zhao, J.; Lu, C.; Yang, F.; Qi, W. DLC1 inhibits lung adenocarcinoma cell proliferation, migration and invasion via regulating MAPK signaling pathway. Exp. Lung Res., 2021, 47(4), 173-182. doi: 10.1080/01902148.2021.1885524 PMID: 33678109
  29. Dong, X.; Chang, M.; Song, X.; Ding, S.; Xie, L.; Song, X. Plasma MIR ‐1247‐5p, MIR ‐301b‐3p and MIR ‐105‐5p as potential biomarkers for early diagnosis of non‐small cell lung cancer. Thorac. Cancer, 2021, 12(4), 539-548. doi: 10.1111/1759-7714.13800 PMID: 33372399

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers