DOCK4 is a Novel Prognostic Biomarker and Correlated with Immune Infiltrates in Colon Adenocarcinoma
- Authors: Xie X.1, Lu Y.2, Wang B.1, Yin X.1, Chen J.1
-
Affiliations:
- Department of General Surgery, Wenjiang District Peoples Hospital of Chengdu
- Department of Otorhinolaryngology, Suining Central Hospital
- Issue: Vol 27, No 8 (2024)
- Pages: 1119-1130
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/644958
- DOI: https://doi.org/10.2174/1386207326666230912094101
- ID: 644958
Cite item
Full Text
Abstract
Background:Dedicator for cytokinesis 4 (DOCK4) is a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. However, the functions of DOCK4 concerning the tumor microenvironment (TME) in colon adenocarcinoma (COAD) remain uncertain.
Methods:The TIMER and GEPIA databases were used to analyze the DOCK4 expression between COAD tissues and adjunct normal tissues. The PrognoScan database was used to assess the prognosis of DOCK4 expression in COAD. The co-expression networks of DOCK4 in COAD were constructed by the LinkedOmics website. Furthermore, the correlation between DOCK4 expression and TME of COAD was explored using TIMER and TISIDB databases. Finally, the clone formation assay was used to further verify the function of DOCK4 in COAD. The Western blotting assay was used to confirm the mechanism related to DOCK4 in COAD.
Results:The DOCK4 expression was different significantly in COAD tissues and paracancerous tissues. The DOCK4 was found to play a poor role in the prognosis of patients with COAD. The DOCK4 was found to participate in the TME by promoting immune evasion of COAD. The reduction of DOCK4 expression inhibited the clone formation and Ras-associated protein 1A (Rap1A) expression of HCT116 cells.
Conclusions:DOCK4 potentially plays an important role in the regulation of TME in COAD. DOCK4 facilitates the development through the Rap1A pathway, thus becoming a novel prognostic biomarker in COAD.
Keywords
About the authors
Xingjiang Xie
Department of General Surgery, Wenjiang District Peoples Hospital of Chengdu
Author for correspondence.
Email: info@benthamscience.net
Yi Lu
Department of Otorhinolaryngology, Suining Central Hospital
Email: info@benthamscience.net
Bo Wang
Department of General Surgery, Wenjiang District Peoples Hospital of Chengdu
Email: info@benthamscience.net
Xiaobin Yin
Department of General Surgery, Wenjiang District Peoples Hospital of Chengdu
Email: info@benthamscience.net
Jianfeng Chen
Department of General Surgery, Wenjiang District Peoples Hospital of Chengdu
Email: info@benthamscience.net
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
- Garborg, K.; Holme, Ø.; Løberg, M.; Kalager, M.; Adami, H.O.; Bretthauer, M. Current status of screening for colorectal cancer. Ann. Oncol., 2013, 24(8), 1963-1972. doi: 10.1093/annonc/mdt157 PMID: 23619033
- Edwards, B.K.; Ward, E.; Kohler, B.A.; Eheman, C.; Zauber, A.G.; Anderson, R.N.; Jemal, A.; Schymura, M.J.; Lansdorp-Vogelaar, I.; Seeff, L.C.; van Ballegooijen, M.; Goede, S.L.; Ries, L.A.G. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer, 2010, 116(3), 544-573. doi: 10.1002/cncr.24760 PMID: 19998273
- Calon, A.; Espinet, E.; Palomo-Ponce, S.; Tauriello, D.V.F.; Iglesias, M.; Céspedes, M.V.; Sevillano, M.; Nadal, C.; Jung, P.; Zhang, X.H.F.; Byrom, D.; Riera, A.; Rossell, D.; Mangues, R.; Massagué, J.; Sancho, E.; Batlle, E. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell, 2012, 22(5), 571-584. doi: 10.1016/j.ccr.2012.08.013 PMID: 23153532
- Picard, E.; Verschoor, C.P.; Ma, G.W.; Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in colorectal cancer. Front. Immunol., 2020, 11, 369. doi: 10.3389/fimmu.2020.00369 PMID: 32210966
- Cao, H.; Xu, E.; Liu, H.; Wan, L.; Lai, M. Epithelialmesenchymal transition in colorectal cancer metastasis: A system review. Pathol. Res. Pract., 2015, 211(8), 557-569. doi: 10.1016/j.prp.2015.05.010 PMID: 26092594
- Dou, R.; Liu, K.; Yang, C.; Zheng, J.; Shi, D.; Lin, X.; Wei, C.; Zhang, C.; Fang, Y.; Huang, S.; Song, J.; Wang, S.; Xiong, B. EMT‐cancer cells‐derived exosomal miR‐27b‐3p promotes circulating tumour cells‐mediated metastasis by modulating vascular permeability in colorectal cancer. Clin. Transl. Med., 2021, 11(12), e595. doi: 10.1002/ctm2.595 PMID: 34936736
- Wang, H.; Liu, J.; Li, J.; Zang, D.; Wang, X.; Chen, Y.; Gu, T.; Su, W.; Song, N. Identification of gene modules and hub genes in colon adenocarcinoma associated with pathological stage based on WGCNA analysis. Cancer Genet., 2020, 242, 1-7. doi: 10.1016/j.cancergen.2020.01.052 PMID: 32036224
- Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10. doi: 10.1186/s12943-018-0928-4 PMID: 30646912
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437. doi: 10.1038/nm.3394 PMID: 24202395
- Maker, A.V. Precise identification of immunotherapeutic targets for solid malignancies using clues within the tumor microenvironmentEvidence to turn on the LIGHT. OncoImmunology, 2016, 5(1), e1069937. doi: 10.1080/2162402X.2015.1069937 PMID: 26942091
- Qiu, C.; Shi, W.; Wu, H.; Zou, S.; Li, J.; Wang, D.; Liu, G.; Song, Z.; Xu, X.; Hu, J.; Geng, H. Identification of molecular subtypes and a prognostic signature based on inflammation-related genes in colon adenocarcinoma. Front. Immunol., 2021, 12, 769685. doi: 10.3389/fimmu.2021.769685 PMID: 35003085
- Katz, S.C.; Bamboat, Z.M.; Maker, A.V.; Shia, J.; Pillarisetty, V.G.; Yopp, A.C.; Hedvat, C.V.; Gonen, M.; Jarnagin, W.R.; Fong, Y.; DAngelica, M.I.; DeMatteo, R.P. Regulatory T cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann. Surg. Oncol., 2013, 20(3), 946-955. doi: 10.1245/s10434-012-2668-9 PMID: 23010736
- Maker, A.V.; Ito, H.; Mo, Q.; Weisenberg, E.; Qin, L.X.; Turcotte, S.; Maithel, S.; Shia, J.; Blumgart, L.; Fong, Y.; Jarnagin, W.R.; DeMatteo, R.P.; DAngelica, M.I. Genetic evidence that intratumoral T-cell proliferation and activation are associated with recurrence and survival in patients with resected colorectal liver metastases. Cancer Immunol. Res., 2015, 3(4), 380-388. doi: 10.1158/2326-6066.CIR-14-0212 PMID: 25600439
- Lazarus, J.; Maj, T.; Smith, J.J.; Perusina Lanfranca, M.; Rao, A.; DAngelica, M.I.; Delrosario, L.; Girgis, A.; Schukow, C.; Shia, J.; Kryczek, I.; Shi, J.; Wasserman, I.; Crawford, H.; Nathan, H.; Pasca Di Magliano, M.; Zou, W.; Frankel, T.L. Spatial and phenotypic immune profiling of metastatic colon cancer. JCI Insight, 2018, 3(22), e121932. doi: 10.1172/jci.insight.121932 PMID: 30429368
- Yajnik, V.; Paulding, C.; Sordella, R.; McClatchey, A.I.; Saito, M.; Wahrer, D.C.R.; Reynolds, P.; Bell, D.W.; Lake, R.; van den Heuvel, S.; Settleman, J.; Haber, D.A. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Cell, 2003, 112(5), 673-684. doi: 10.1016/S0092-8674(03)00155-7 PMID: 12628187
- Mei, Y.; Li, K.; Zhang, Z.; Li, M.; Yang, H.; Wang, H.; Huang, X.; Li, X.; Shi, S.; Yang, H. miR-33b-3p acts as a tumor suppressor by targeting DOCK4 in prostate cancer. Front. Oncol., 2021, 11, 740452. doi: 10.3389/fonc.2021.740452 PMID: 34804930
- Debruyne, D.N.; Turchi, L.; Burel-Vandenbos, F.; Fareh, M.; Almairac, F.; Virolle, V.; Figarella-Branger, D.; Baeza-Kallee, N.; Lagadec, P.; kubiniek, V.; Paquis, P.; Fontaine, D.; Junier, M-P.; Chneiweiss, H.; Virolle, T. DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-367 cluster expression. Oncogene, 2018, 37(2), 241-254. doi: 10.1038/onc.2017.323 PMID: 28925399
- Aladowicz, E.; Granieri, L.; Marocchi, F.; Punzi, S.; Giardina, G.; Ferrucci, P.F.; Mazzarol, G.; Capra, M.; Viale, G.; Confalonieri, S.; Gandini, S.; Lotti, F.; Lanfrancone, L.; Shc, D. ShcD binds DOCK4, promotes ameboid motility and metastasis dissemination, predicting poor prognosis in melanoma. Cancers (Basel), 2020, 12(11), 3366. doi: 10.3390/cancers12113366 PMID: 33202906
- Zhao, Q.; Zhong, J.; Lu, P.; Feng, X.; Han, Y.; Ling, C.; Guo, W.; Zhou, W.; Yu, F.; Li, J. DOCK4 is a platinum-chemosensitive and prognostic-related biomarker in ovarian cancer. PPAR Res., 2021, 2021, 1-12. doi: 10.1155/2021/6629842 PMID: 33613670
- Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res., 2017, 77(21), e108-e110. doi: 10.1158/0008-5472.CAN-17-0307 PMID: 29092952
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102. doi: 10.1093/nar/gkx247 PMID: 28407145
- Mizuno, H.; Kitada, K.; Nakai, K.; Sarai, A. PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Med. Genomics, 2009, 2(1), 18. doi: 10.1186/1755-8794-2-18 PMID: 19393097
- Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963. doi: 10.1093/nar/gkx1090 PMID: 29136207
- Ru, B.; Wong, C.N.; Tong, Y.; Zhong, J.Y.; Zhong, S.S.W.; Wu, W.C.; Chu, K.C.; Wong, C.Y.; Lau, C.Y.; Chen, I.; Chan, N.W.; Zhang, J.; Wren, J. TISIDB: An integrated repository portal for tumorimmune system interactions. Bioinformatics, 2019, 35(20), 4200-4202. doi: 10.1093/bioinformatics/btz210 PMID: 30903160
- Wu, Y.; Zhou, J.; Li, Y.; Zhou, Y.; Cui, Y.; Yang, G.; Hong, Y. Rap1A Regulates Osteoblastic Differentiation via the ERK and p38 Mediated Signaling. PLoS One, 2015, 10(11), e0143777. doi: 10.1371/journal.pone.0143777 PMID: 26599016
- Haggar, F.; Boushey, R. Colorectal cancer epidemiology: Incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg., 2009, 22(4), 191-197. doi: 10.1055/s-0029-1242458 PMID: 21037809
- OConnell, J.B.; Maggard, M.A.; Ko, C.Y. Colon cancer survival rates with the new American joint committee on Cancer J Natl Cancer Inst., 2004, 96(19), 1420-1425.
- Mahajan, U.M.; Langhoff, E.; Goni, E.; Costello, E.; Greenhalf, W.; Halloran, C.; Ormanns, S.; Kruger, S.; Boeck, S.; Ribback, S.; Beyer, G.; Dombroswki, F.; Weiss, F.U.; Neoptolemos, J.P.; Werner, J.; DHaese, J.G.; Bazhin, A.; Peterhansl, J.; Pichlmeier, S.; Büchler, M.W.; Kleeff, J.; Ganeh, P.; Sendler, M.; Palmer, D.H.; Kohlmann, T.; Rad, R.; Regel, I.; Lerch, M.M.; Mayerle, J. Immune cell and stromal signature associated with progression-free survival of patients with resected pancreatic ductal adenocarcinoma. Gastroenterology, 2018, 155(5), 1625-1639.e2. doi: 10.1053/j.gastro.2018.08.009 PMID: 30092175
- Bilotta, M.T.; Antignani, A.; Fitzgerald, D.J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol., 2022, 13, 954992. doi: 10.3389/fimmu.2022.954992 PMID: 36341428
- Singh, P.P.; Sharma, P.K.; Krishnan, G.; Lockhart, A.C. Immune checkpoints and immunotherapy for colorectal cancer. Gastroenterol. Rep. (Oxf.), 2015, 3(4), gov053. doi: 10.1093/gastro/gov053 PMID: 26510455
- Kalyan, A.; Kircher, S.; Shah, H.; Mulcahy, M.; Benson, A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol., 2018, 9(1), 160-169. doi: 10.21037/jgo.2018.01.17 PMID: 29564182
- Glaire, M.A.; Ryan, N.A.J.; Ijsselsteijn, M.E.; Kedzierska, K.; Obolenski, S.; Ali, R.; Crosbie, E.J.; Bosse, T.; Miranda, N.F.C.C.; Church, D.N. Discordant prognosis of mismatch repair deficiency in colorectal and endometrial cancer reflects variation in antitumour immune response and immune escape. J. Pathol., 2022, 257(3), 340-351. doi: 10.1002/path.5894 PMID: 35262923
- Kunimura, K.; Uruno, T.; Fukui, Y. DOCK family proteins: Key players in immune surveillance mechanisms. Int. Immunol., 2020, 32(1), 5-15. doi: 10.1093/intimm/dxz067 PMID: 31630188
- Ge, W.; Cai, W.; Bai, R.; Hu, W.; Wu, D.; Zheng, S.; Hu, H. A novel 4-gene prognostic signature for hypermutated colorectal cancer. Cancer Manag. Res., 2019, 11, 1985-1996. doi: 10.2147/CMAR.S190963 PMID: 30881123
- Yu, J.; Wu, W.K.K.; Li, X.; He, J.; Li, X.X.; Ng, S.S.M.; Yu, C.; Gao, Z.; Yang, J.; Li, M.; Wang, Q.; Liang, Q.; Pan, Y.; Tong, J.H.; To, K.F.; Wong, N.; Zhang, N.; Chen, J.; Lu, Y.; Lai, P.B.S.; Chan, F.K.L.; Li, Y.; Kung, H.F.; Yang, H.; Wang, J.; Sung, J.J.Y. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer. Gut, 2015, 64(4), 636-645. doi: 10.1136/gutjnl-2013-306620 PMID: 24951259
- Yu, J.R.; Tai, Y.; Jin, Y.; Hammell, M.C.; Wilkinson, J.E.; Roe, J.S.; Vakoc, C.R.; Van Aelst, L. TGF-β/Smad signaling through DOCK4 facilitates lung adenocarcinoma metastasis. Genes Dev., 2015, 29(3), 250-261. doi: 10.1101/gad.248963.114 PMID: 25644601
- Westbrook, J.A.; Wood, S.L.; Cairns, D.A.; McMahon, K.; Gahlaut, R.; Thygesen, H.; Shires, M.; Roberts, S.; Marshall, H.; Oliva, M.R.; Dunning, M.J.; Hanby, A.M.; Selby, P.J.; Speirs, V.; Mavria, G.; Coleman, R.E.; Brown, J.E. Identification and validation of DOCK4 as a potential biomarker for risk of bone metastasis development in patients with early breast cancer. J. Pathol., 2019, 247(3), 381-391. doi: 10.1002/path.5197 PMID: 30426503
- Hiramoto, K.; Negishi, M.; Katoh, H. Dock4 is regulated by RhoG and promotes Rac-dependent cell migration. Exp. Cell Res., 2006, 312(20), 4205-4216. doi: 10.1016/j.yexcr.2006.09.006 PMID: 17027967
- Wang, Y.Y.; Yan, L.; Yang, S.; Xu, H.N.; Chen, T.T.; Dong, Z.Y.; Chen, S.L.; Wang, W.R.; Yang, Q.L.; Chen, C.J. Long noncoding RNA AC073284.4 suppresses epithelialmesenchymal transition by sponging miR‐18b‐5p in paclitaxel‐resistant breast cancer cells. J. Cell. Physiol., 2019, 234(12), 23202-23215. doi: 10.1002/jcp.28887 PMID: 31215650
- Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D.; Bast, M.A.; Rosenwald, A.; Muller-Hermelink, H.K.; Rimsza, L.M.; Campo, E.; Delabie, J.; Braziel, R.M.; Cook, J.R.; Tubbs, R.R.; Jaffe, E.S.; Lenz, G.; Connors, J.M.; Staudt, L.M.; Chan, W.C.; Gascoyne, R.D. Tumor-associated macrophages and survival in classic Hodgkins lymphoma. N. Engl. J. Med., 2010, 362(10), 875-885. doi: 10.1056/NEJMoa0905680 PMID: 20220182
- Nishikawa, H.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol., 2014, 27, 1-7. doi: 10.1016/j.coi.2013.12.005 PMID: 24413387
- Koelzer, V.H.; Canonica, K.; Dawson, H.; Sokol, L.; Karamitopoulou-Diamantis, E.; Lugli, A.; Zlobec, I. Phenotyping of tumor-associated macrophages in colorectal cancer: Impact on single cell invasion (tumor budding) and clinicopathological outcome. OncoImmunology, 2016, 5(4), e1106677. doi: 10.1080/2162402X.2015.1106677 PMID: 27141391
- Sinicrope, F.A.; Rego, R.L.; Ansell, S.M.; Knutson, K.L.; Foster, N.R.; Sargent, D.J. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology, 2009, 137(4), 1270-1279. doi: 10.1053/j.gastro.2009.06.053 PMID: 19577568
- Fiegle, E.; Doleschel, D.; Koletnik, S.; Rix, A.; Weiskirchen, R.; Borkham-Kamphorst, E.; Kiessling, F.; Lederle, W. Dual CTLA-4 and PD-L1 blockade inhibits tumor growth and liver metastasis in a highly aggressive orthotopic mouse model of colon cancer. Neoplasia, 2019, 21(9), 932-944. doi: 10.1016/j.neo.2019.07.006 PMID: 31412307
- van Willigen, W.W.; Bloemendal, M.; Gerritsen, W.R.; Schreibelt, G.; de Vries, I.J.M.; Bol, K.F. Dendritic cell cancer therapy: Vaccinating the right patient at the right time. Front. Immunol., 2018, 9, 2265. doi: 10.3389/fimmu.2018.02265 PMID: 30327656
- Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.; Zhang, M.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Sears, C.L.; Anders, R.A.; Pardoll, D.M.; Housseau, F. The vigorous immune micro-environment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov., 2015, 5(1), 43-51. doi: 10.1158/2159-8290.CD-14-0863 PMID: 25358689
- Azimi, F.; Scolyer, R.A.; Rumcheva, P.; Moncrieff, M.; Murali, R.; McCarthy, S.W.; Saw, R.P.; Thompson, J.F. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J. Clin. Oncol., 2012, 30(21), 2678-2683. doi: 10.1200/JCO.2011.37.8539 PMID: 22711850
- Hattori, M.; Minato, N. Rap1 GTPase: Functions, regulation, and malignancy. J. Biochem., 2003, 134(4), 479-484. doi: 10.1093/jb/mvg180 PMID: 14607972
- Crosas-Molist, E.; Samain, R.; Kohlhammer, L.; Orgaz, J.L.; George, S.L.; Maiques, O.; Barcelo, J.; Sanz-Moreno, V. Rho GTPase signaling in cancer progression and dissemination. Physiol. Rev., 2022, 102(1), 455-510. doi: 10.1152/physrev.00045.2020 PMID: 34541899
- Huang, M.; Liang, C.; Li, S.; Zhang, J.; Guo, D.; Zhao, B.; Liu, Y.; Peng, Y.; Xu, J.; Liu, W.; Guo, G.; Shi, L. Two Autism/Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front. Cell. Neurosci., 2020, 13, 577. doi: 10.3389/fncel.2019.00577 PMID: 32009906
Supplementary files
