Effect of ω-9MUFAs in Fat Emulsion on Serum Interleukin-6 in Rats with Lipopolysaccharide-induced Lung Injury


Cite item

Full Text

Abstract

Aim:This study aimed to investigate how ω-9 MUFAs in fat emulsion affect serum IL- 6 levels in rats with lipopolysaccharide (LPS)-induced lung injury.

Background:Research suggests that acute lung injury (ALI) develops acute respiratory distress syndrome (ARDS) due to the activation of many inflammatory factors. ALI may be treated by reducing inflammation. Fat emulsion is used in parenteral nutrition for critically ill patients to regulate the body's inflammatory response. It is mostly made up of ω-9 MUFAs (Clinoleic), which can regulate the inflammatory response.

Objective:The effect of ω-9MUFAs on the secretion of IL-6 in ALI rats was studied in order to provide a basis for the rational use of fat emulsion in clinical practice and provide new ideas for the diagnosis and treatment of ALI.

Methods:The control, model, and -9MUFAs groups consisted of 18 female Sprageue-Dawley (SD) young rats (180 ± 20 g). The SD young rats received normal saline and were not operated. LPS-induced ALI animals received tail vein injections of normal saline. SD young rats were first triggered with acute lung injury by LPS (3 mg/kg) and then injected with 3 mg/kg of ω-9MUFAs via the tail vein. The expression levels of IL-6, an activator of signal transduction transcription 3 (STAT3), transforming growth factor-β (TGF-β), and glycoprotein 130 (GP130) in serum and lung tissues were determined by ELISA and Western blot methods.

Results:Compared with the model group, the survival rate of rats in the ω-9 MUFAs group was significantly increased, and the difference was statistically significant (p(<0.05). Compared with the model group, the lung pathology of rats in the ω-9 MUFAs group was significantly improved, and the expression levels of IL-6, TGF-β1, GP130, IL-1 and other proteins were significantly decreased. The difference was statistically significant (p(<0.05).

Conclusion:In LPS-induced lung injury, ω-9MUFAs may alleviate symptoms by inhibiting the IL-6/GP130/STAT3 pathway.

About the authors

Zheng Qianqian

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Email: info@benthamscience.net

Mei Gui

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Email: info@benthamscience.net

Yang Min

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Email: info@benthamscience.net

Zhang Qingfeng

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Email: info@benthamscience.net

Xu Xiufen

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Email: info@benthamscience.net

Fang Zejun

Central Laboratory, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Email: info@benthamscience.net

Li Yahong

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Author for correspondence.
Email: info@benthamscience.net

Ye Mingwei

Department of Pediatrics, Sanmen People's Hospital, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Salluh, J.I.F.; Wang, H.; Schneider, E.B.; Nagaraja, N.; Yenokyan, G.; Damluji, A.; Serafim, R.B.; Stevens, R.D. Outcome of delirium in critically ill patients: Systematic review and meta-analysis. BMJ, 2015, 350, h2538. doi: 10.1136/bmj.h2538 PMID: 26041151
  2. Jones, S.F.; Pisani, M.A. ICU delirium. Curr. Opin. Crit. Care, 2012, 18(2), 146-151. doi: 10.1097/MCC.0b013e32835132b9 PMID: 22322260
  3. Sparrow, N.A.; Anwar, F.; Covarrubias, A.E.; Rajput, P.S.; Rashid, M.H.; Nisson, P.L.; Gezalian, M.M.; Toossi, S.; Ayodele, M.O.; Karumanchi, S.A.; Ely, E.W.; Lahiri, S. IL-6 inhibition reduces neuronal injury in a murine model of ventilator-induced lung injury. Am. J. Respir. Cell Mol. Biol., 2021, 65(4), 403-412. doi: 10.1165/rcmb.2021-0072OC PMID: 34014798
  4. Tremblay, L.; Valenza, F.; Ribeiro, S.P.; Li, J.; Slutsky, A.S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest., 1997, 99(5), 944-952. doi: 10.1172/JCI119259 PMID: 9062352
  5. Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1301-1308. doi: 10.1056/NEJM200005043421801 PMID: 10793162
  6. Capri, M.; Yani, S.L.; Chattat, R.; Fortuna, D.; Bucci, L.; Lanzarini, C.; Morsiani, C.; Catena, F.; Ansaloni, L.; Adversi, M.; Melotti, M.R.; Di Nino, G.; Franceschi, C. Pre- operative, high-IL-6 blood level is a risk factor of post-operative delirium onset in old patients. Front. Endocrinol. (Lausanne), 2014, 5, 173. doi: 10.3389/fendo.2014.00173 PMID: 25368603
  7. Beitler, J.R.; Majumdar, R.; Hubmayr, R.D.; Malhotra, A.; Thompson, B.T.; Owens, R.L.; Loring, S.H.; Talmor, D. Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit. Care Med., 2016, 44(1), 91-99. doi: 10.1097/CCM.0000000000001355 PMID: 26474111
  8. Wang, X.; Deng, R.; Dong, J.; Huang, L.; Li, J.; Zhang, B. Eriodictyol ameliorates lipopolysaccharide‐induced acute lung injury by suppressing the inflammatory COX‐2/NLRP3/NF‐κB pathway in mice. J. Biochem. Mol. Toxicol., 2020, 34(3), e22434. doi: 10.1002/jbt.22434 PMID: 31860763
  9. Ahmed, R.F.; Moussa, R.A.; Eldemerdash, R.S.; Zakaria, M.M.; Abdel-Gaber, S.A. Ameliorative effects of silymarin on HCl-induced acute lung injury in rats; role of the Nrf-2/HO-1 pathway. Iran. J. Basic Med. Sci., 2019, 22(12), 1483-1492. PMID: 32133068
  10. Ding, Z.; Zhong, R.; Xia, T.; Yang, Y.; Xing, N.; Wang, W.; Wang, Y.; Yang, B.; Sun, X.; Shu, Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed. Pharmacother., 2020, 122, 109706. doi: 10.1016/j.biopha.2019.109706 PMID: 31918277
  11. Zhuo, X.J.; Hao, Y.; Cao, F.; Yan, S.F.; Li, H.; Wang, Q.; Cheng, B.H.; Ying, B.Y.; Smith, F.G.; Jin, S.W. Protectin DX increases alveolar fluid clearance in rats with lipopolysaccharide-induced acute lung injury. Exp. Mol. Med., 2018, 50(4), 1-13. doi: 10.1038/s12276-018-0075-4 PMID: 29700291
  12. Deng, W.; He, J.; Tang, X.M.; Li, C.Y.; Tong, J.; Qi, D.; Wang, D.X. Alcohol inhibits alveolar fluid clearance through the epithelial sodium channel via the A2 adenosine receptor in acute lung injury. Mol. Med. Rep., 2021, 24(4), 725-737. doi: 10.3892/mmr.2021.12364 PMID: 34396442
  13. Helenius, I.T.; Dada, L.A.; Sznajder, J.I. Role of ubiquitination in Na,K-ATPase regulation during lung injury. Proc. Am. Thorac. Soc., 2010, 7(1), 65-70. doi: 10.1513/pats.200907-082JS PMID: 20160150
  14. Kent, L.W.; Rahemtulla, F.; Hockett, R.D., Jr; Gilleland, R.C.; Michalek, S.M. Effect of lipopolysaccharide and inflammatory cytokines on interleukin-6 production by healthy human gingival fibroblasts. Infect. Immun., 1998, 66(2), 608-614. doi: 10.1128/IAI.66.2.608-614.1998 PMID: 9453616
  15. Fukunaga, K.; Kohli, P.; Bonnans, C.; Fredenburgh, L.E.; Levy, B.D. Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J. Immunol., 2005, 174(8), 5033-5039. doi: 10.4049/jimmunol.174.8.5033 PMID: 15814734
  16. Chen, H.; Bai, C.; Wang, X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev. Respir. Med., 2010, 4(6), 773-783. doi: 10.1586/ers.10.71 PMID: 21128752
  17. Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995. doi: 10.2174/1389557521666210401090028 PMID: 33797375
  18. Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577. doi: 10.2174/1389557521666210315162354 PMID: 33719961
  19. Mehta, S.; Sharma, A.K.; Singh, R.K. Pharmacological activities and molecular mechanisms of pure and crude extract of andrographis paniculata: An update. Phytomedicine Plus, 2021, 1(4), 100085.
  20. Singh, R.K.; Mehta, S.; Sharma, A.K. Ethnobotany, Pharmacological Activities and Bioavailability Studies on "King of Bitters" (Kalmegh): A Review (2010-2020). Comb. Chem. High Throughput Screen., 2022, 25(5), 788-807. doi: 10.2174/1386207324666210310140611 PMID: 33745423
  21. Bhatia, M.; Moochhala, S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J. Pathol., 2004, 202(2), 145-156. doi: 10.1002/path.1491 PMID: 14743496
  22. Parsons, P.E.; Eisner, M.D.; Thompson, B.T.; Matthay, M.A.; Ancukiewicz, M.; Bernard, G.R.; Wheeler, A.P. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med., 2005, 33(1), 1-6. doi: 10.1097/01.CCM.0000149854.61192.DC PMID: 15644641
  23. Bi, M.H.; Wang, B.E.; Schafer, M.; Mayer, K.; Zhang, S.W.; Li, M.; Wang, H.J. Effect of different fat emulsions on acute lung injury induced by endotoxin. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2006, 18(12), 711-715.
  24. Peng, L.Y.; Yuan, M.; Shi, H.T.; Li, J.H.; Song, K.; Huang, J.N.; Yi, P.F.; Fu, B.D.; Shen, H.Q. Protective effect of piceatannol against acute lung injury through protecting the integrity of air-blood barrier and modulating the TLR4/NF-κB signaling pathway activation. Front. Pharmacol., 2020, 10, 1613-1622. doi: 10.3389/fphar.2019.01613 PMID: 32038265
  25. Chen, P.; Xiao, Z.; Wu, H.; Wang, Y.; Fan, W.; Su, W.; Li, P. Beneficial effects of naringenin in cigarette smoke-induced damage to the lung based on bioinformatic prediction and in vitro analysis. Molecules, 2020, 25(20), 4704-4718. doi: 10.3390/molecules25204704 PMID: 33066647
  26. Zhang, C.; Zeng, W.; Yao, Y.; Xu, B.; Wei, X.; Wang, L.; Yin, X.; Barman, A.K.; Zhang, F.; Zhang, C.; Song, Q.; Liang, W. Naringenin ameliorates radiation-induced lung injury by lowering IL-1 β Level. J. Pharmacol. Exp. Ther., 2018, 366(2), 341-348. doi: 10.1124/jpet.118.248807 PMID: 29866791
  27. Liang, Y.; Luo, J.; Yang, N.; Wang, S.; Ye, M.; Pan, G. Activation of the IL-1β/KLF2/HSPH1 pathway promotes STAT3 phosphorylation in alveolar macrophages during LPS-induced acute lung injury. Biosci. Rep., 2020, 40(3), BSR20193572. doi: 10.1042/BSR20193572
  28. Wang, Y.M.; Qi, X.; Gong, F.C.; Chen, Y.; Yang, Z.T.; Mao, E.Q.; Chen, E.Z. Protective and predictive role of Mucin1 in sepsis-induced ALI/ARDS. Int. Immunopharmacol., 2020, 83, 106438. doi: 10.1016/j.intimp.2020.106438 PMID: 32247267
  29. Garibaldi, B.T.; D’Alessio, F.R.; Mock, J.R.; Files, D.C.; Chau, E.; Eto, Y.; Drummond, M.B.; Aggarwal, N.R.; Sidhaye, V.; King, L.S. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment. Am. J. Respir. Cell Mol. Biol., 2013, 48(1), 35-43. doi: 10.1165/rcmb.2012-0198OC PMID: 23002097
  30. Singer, B.D.; Mock, J.R.; Aggarwal, N.R.; Garibaldi, B.T.; Sidhaye, V.K.; Florez, M.A.; Chau, E.; Gibbs, K.W.; Mandke, P.; Tripathi, A.; Yegnasubramanian, S.; King, L.S.; D’Alessio, F.R. Regulatory T cell DNA methyltransferase inhibition accelerates resolution of lung inflammation. Am. J. Respir. Cell Mol. Biol., 2015, 52(5), 641-652. doi: 10.1165/rcmb.2014-0327OC PMID: 25295995
  31. O’Malley, K.; Moldawer, L.L. Interleukin-6: Still crazy after all these years. Crit. Care Med., 2006, 34(10), 2690-2691. doi: 10.1097/01.CCM.0000239424.59338.2F PMID: 16983274
  32. Ward, N.S.; Waxman, A.B.; Homer, R.J.; Mantell, L.L.; Einarsson, O.; Du, Y.; Elias, J.A. Interleukin-6-induced protection in hyperoxic acute lung injury. Am. J. Respir. Cell Mol. Biol., 2000, 22(5), 535-542. doi: 10.1165/ajrcmb.22.5.3808 PMID: 10783124
  33. Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J. Clin. Invest., 1998, 101(2), 311-320. doi: 10.1172/JCI1368 PMID: 9435302
  34. Jones, M.R.; Quinton, L.J.; Simms, B.T.; Lupa, M.M.; Kogan, M.S.; Mizgerd, J.P. Roles of interleukin-6 in activation of STAT proteins and recruitment of neutrophils during Escherichia coli pneumonia. J. Infect. Dis., 2006, 193(3), 360-369. doi: 10.1086/499312 PMID: 16388483
  35. Starcher, B.; Williams, I. A method for intratracheal instillation of endotoxin into the lungs of mice. Lab. Anim., 1989, 23(3), 234-240. doi: 10.1258/002367789780810536 PMID: 2527323
  36. Kawalkowska, J.Z.; Hemmerle, T.; Pretto, F.; Matasci, M.; Neri, D.; Williams, R.O. Targeted IL-4 therapy synergizes with dexamethasone to induce a state of tolerance by promoting Treg cells and macrophages in mice with arthritis. Eur. J. Immunol., 2016, 46(5), 1246-1257. doi: 10.1002/eji.201546221 PMID: 26919786
  37. Witzenrath, M.; Kuebler, W.M. The lung-brain axis in ventilator- induced brain injury: Enter IL-6. Am. J. Respir. Cell Mol. Biol., 2021, 65(4), 339-340. doi: 10.1165/rcmb.2021-0233ED PMID: 34153209
  38. Rubenfeld, G.D.; Caldwell, E.; Peabody, E.; Weaver, J.; Martin, D.P.; Neff, M.; Stern, E.J.; Hudson, L.D. Incidence and outcomes of acute lung injury. N. Engl. J. Med., 2005, 353(16), 1685-1693. doi: 10.1056/NEJMoa050333 PMID: 16236739
  39. Guérin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; Clavel, M.; Chatellier, D.; Jaber, S.; Rosselli, S.; Mancebo, J.; Sirodot, M.; Hilbert, G.; Bengler, C.; Richecoeur, J.; Gainnier, M.; Bayle, F.; Bourdin, G.; Leray, V.; Girard, R.; Baboi, L.; Ayzac, L. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med., 2013, 368(23), 2159-2168. doi: 10.1056/NEJMoa1214103 PMID: 23688302
  40. Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Invest., 2012, 122(8), 2731-2740. doi: 10.1172/JCI60331 PMID: 22850883
  41. Zambon, M.; Vincent, J.L. Mortality rates for patients with acute lung injury/ARDS have decreased over time. Chest, 2008, 133(5), 1120-1127. doi: 10.1378/chest.07-2134 PMID: 18263687
  42. Messika, J.; Ben Ahmed, K.; Gaudry, S.; Miguel-Montanes, R.; Rafat, C.; Sztrymf, B.; Dreyfuss, D.; Ricard, J.D. Use of high-flow nasal cannula oxygen therapy in subjects with ARDS: A 1-year observational study. Respir. Care, 2015, 60(2), 162-169. doi: 10.4187/respcare.03423 PMID: 25371400
  43. Muñoz, J.; Santa-Teresa, P.; Tomey, M.J.; Visedo, L.C.; Keough, E.; Barrios, J.C.; Sabell, S.; Morales, A. Extracorporeal membrane oxygenation (ECMO) in adults with acute respiratory distress syndrome (ARDS). Heart Lung, 2017, 46(2), 100-105. doi: 10.1016/j.hrtlng.2017.01.003 PMID: 28215409
  44. Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol., 2011, 44(5), 725-738. doi: 10.1165/rcmb.2009-0210ST PMID: 21531958
  45. Yang, J.; Sundrud, M.S.; Skepner, J.; Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol. Sci., 2014, 35(10), 493-500. doi: 10.1016/j.tips.2014.07.006 PMID: 25131183
  46. Li, J.T.; Melton, A.C.; Su, G.; Hamm, D.E.; LaFemina, M.; Howard, J.; Fang, X.; Bhat, S.; Huynh, K.M.; O’Kane, C.M.; Ingram, R.J.; Muir, R.R.; McAuley, D.F.; Matthay, M.A.; Sheppard, D. Unexpected role for adaptive αβTh17 cells in acute respiratory distress syndrome. J. Immunol., 2015, 195(1), 87-95. doi: 10.4049/jimmunol.1500054 PMID: 26002979
  47. Matute-Bello, G.; Frevert, C.W.; Martin, T.R. Animal models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2008, 295(3), L379-L399. doi: 10.1152/ajplung.00010.2008 PMID: 18621912
  48. Kim, M.R.; Hong, S.W.; Choi, E.B.; Lee, W.H.; Kim, Y.S.; Jeon, S.G.; Jang, M.H.; Gho, Y.S.; Kim, Y.K. Staphylococcus aureus -derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses. Allergy, 2012, 67(10), 1271-1281. doi: 10.1111/all.12001 PMID: 22913540
  49. Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity, 2011, 34(2), 149-162. doi: 10.1016/j.immuni.2011.02.012 PMID: 21349428
  50. Halwani, R.; Al-Muhsen, S.; Hamid, Q. T helper 17 cells in airway diseases: From laboratory bench to bedside. Chest, 2013, 143(2), 494-501. doi: 10.1378/chest.12-0598 PMID: 23381314
  51. Li, Q.; Gu, Y.; Tu, Q.; Wang, K.; Gu, X.; Ren, T. Blockade of Interlukin-17 restrains the development of acute lung injury. Scand. J. Immunol., 2016, 83(3), 203-211. doi: 10.1111/sji.12408 PMID: 26709006
  52. Sakaguchi, S.; Sakaguchi, N.; Asano, M.; Itoh, M.; Toda, M. Pillars article: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. J. Immunol., 2011, 186(7), 3808-3821. PMID: 21422251
  53. Yu, Z.; Ji, M.; Yan, J.; Cai, Y.; Liu, J.; Yang, H.; Li, Y.; Jin, Z.; Zheng, J. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome. Crit. Care, 2015, 19(1), 82. doi: 10.1186/s13054-015-0811-2 PMID: 25887535
  54. Risso, K.; Kumar, G.; Ticchioni, M. Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur. J. Clin. Microbiol., 2015, 34, 1111-1118.
  55. Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev., 2014, 13(6), 668-677. doi: 10.1016/j.autrev.2013.12.004 PMID: 24418308

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers