Zhilong Huoxue Tongyu Capsule Ameliorates Platelet Aggregation and Thrombus Induced by Aspirin in Rats by Regulating Lipid Metabolism and MicroRNA Pathway
- Authors: Qiuyue L.1, Gulin D.1, Hong X.1, Jiazhen Y.1, Rukui Y.1, Xinwu H.2, Guochun L.1
-
Affiliations:
- , National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
- School of Pharmacy, Southwest Medical University
- Issue: Vol 27, No 6 (2024)
- Pages: 854-862
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/644872
- DOI: https://doi.org/10.2174/1386207326666230712110103
- ID: 644872
Cite item
Full Text
Abstract
Introduction:Zhilong Huoxue Tongyu capsule (ZLHX) is a traditional Chinese medicinal compound preparation, which exhibits obvious therapeutic effects on aspirin resistance (AR). However, the mechanism of ZLHX on AR is rarely reported.
Objectives:This study aimed to explore the therapeutic effects of AR and the underlying mechanisms of ZLHX on AR rats.
Methods:An AR model was established through treatment with a high-fat, high-sugar, and highsalt diet for 12 weeks and oral administration of aspirin (27 mg/kg/day) and ibuprofen (36 mg/kg/day) in weeks 9-12. The rats were administrated with ZLHX (225, 450, and 900 mg/kg) from week 12 to week 16. Blood samples were collected after the experiment. Thromboelastography analysis was performed, and the levels of triglyceride (TG), total cholesterol (TC), lowdensity lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined. Furthermore, the levels of thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6- keto-PGF1α) were determined with commercial ELISA kits. Finally, the gene expressions of microRNA- 126-3p (miRNA-126-3p) and miRNA-34b-3p were detected through a real-time quantitative polymerase chain reaction.
Results:Results demonstrated that ZLHX significantly inhibited platelet aggregation in the AR rats. Moreover, ZLHX markedly decreased the levels of TC, TG, and LDL-C and increased the level of HDL-C. Meanwhile, ELISA results confirmed that ZLHX can elevate the expression levels of TXB2 and 6-keto-PGF1α. Further studies suggested that ZLHX significantly downregulated the expression levels of miRNA-126-3p and miRNA-34b-3p.
Conclusion:This study revealed that the therapeutic effect of ZLHX might be related to the regulation of lipid metabolism and the miRNA pathway.
About the authors
Li Qiuyue
, National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
Email: info@benthamscience.net
Deng Gulin
, National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
Email: info@benthamscience.net
Xu Hong
, National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
Email: info@benthamscience.net
Yin Jiazhen
, National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
Email: info@benthamscience.net
Yuan Rukui
, National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
Email: info@benthamscience.net
Huang Xinwu
School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Li Guochun
, National Traditional Chinese Medicine Clinical Research Base and Pharmacy Intravenous Admixture Service of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Robert, M.; Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun. Rev., 2017, 16(9), 984-991. doi: 10.1016/j.autrev.2017.07.009 PMID: 28705781
- Chinese cardiovascular health and disease report 2019. JJ Cardiovasc. Dis. Res., 2020, 39, 1145-1156.
- Stark, K.; Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol., 2021, 18(9), 666-682. doi: 10.1038/s41569-021-00552-1 PMID: 33958774
- Sun, T.; Yu, J.S. Research progress of aspirin resistance. Medical Recapitulate., 2018, 24, 853-857.
- Ge, Y.R.; Huan, N.; Wang, C.L.; Wang, P.L. Application Progress and prospect of herbal and western medicine combined with antiplatelet therapy for cardiovascular events. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-7. doi: 10.1155/2021/5563987 PMID: 34367302
- Powers, W.J.; Rabinstein, A.A. Response by powers and rabinstein to letter regarding article, "2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association". Stroke, 2019, 50(9), e277-e278. doi: 10.1161/STROKEAHA.119.026917 PMID: 31390963
- McCullough, P.A.; Vasudevan, A.; Sathyamoorthy, M.; Schussler, J.M.; Velasco, C.E.; Lopez, L.R.; Swift, C.; Peterson, M.; Bennett-Firmin, J.; Schiffmann, R.; Bottiglieri, T. Urinary 11-Dehydro-Thromboxane B 2 and mortality in patients with stable coronary artery disease. Am. J. Cardiol., 2017, 119(7), 972-977. doi: 10.1016/j.amjcard.2016.12.004 PMID: 28139223
- Navaratnam, K.; Alfirevic, A.; Alfirevic, Z. Low dose aspirin and pregnancy: How important is aspirin resistance? BJOG, 2016, 123(9), 1481-1487. doi: 10.1111/1471-0528.13914 PMID: 26929162
- FitzGerald, R.; Pirmohamed, M. Aspirin resistance: Effect of clinical, biochemical and genetic factors. Pharmacol. Ther., 2011, 130(2), 213-225. doi: 10.1016/j.pharmthera.2011.01.011 PMID: 21295071
- Du, G.; Lin, Q.; Wang, J. A brief review on the mechanisms of aspirin resistance. Int. J. Cardiol., 2016, 220, 21-26. doi: 10.1016/j.ijcard.2016.06.104 PMID: 27372038
- Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional chinese medicine for cardiovascular disease. J. Am. Coll. Cardiol., 2017, 69(24), 2952-2966. doi: 10.1016/j.jacc.2017.04.041 PMID: 28619197
- Liang, B.; Gu, N. Traditional chinese medicine for coronary artery disease treatment: Clinical evidence from randomized controlled trials. Front. Cardiovasc. Med., 2021, 8, 702110. doi: 10.3389/fcvm.2021.702110 PMID: 34422929
- Chao, J.; Dai, Y.; Verpoorte, R.; Lam, W.; Cheng, Y.C.; Pao, L.H.; Zhang, W.; Chen, S. Major achievements of evidence-based traditional Chinese medicine in treating major diseases. Biochem. Pharmacol., 2017, 139, 94-104. doi: 10.1016/j.bcp.2017.06.123 PMID: 28636884
- Xiao, H.Q.; Bai, X.; Yang, S.J. Clinical application of Zhilong Huoxue Tongyu Capsule. World Latest Med. Inform., 2016, 16, 81-82.
- Lu, W.L. Clinical efficacy of Xue sai tong capsule combined with aspirin in the treatment of aspirin resistant coronary heart disease. Modern Med. J. China, 2017, 19, 50-52.
- Liu, T.T.; Yao, K.; Duan, J.L. Research progress on pharmacological mechanism of Xuefu Zhuyu Decoction in treating cardiovascular disease. Ji lin. J. Chin. Med., 2019, 39, 1397-1400.
- Xie, S.Q.; Tan, H.; Chen, C.X. Evalue of Tong xin luo Capsule on clopidogrel resistance in patients with acute coronary syndrome. Chinese J. Integr. Medic. Cardio. Cerebrovasc. Dis., 2015, 13, 1571-1573.
- Luo, G.; Chen, H.; Yang, S.J. Intervention of Zhilong Huoxue Tongyu Capsule on Senile dementia model rats with Qi deficiency and blood stasis. World Latest Med. Info., 2019, 19, 44-46.
- Wang, W.; Du, Y.; Bai, X. Analysis of research status of Zhilong Huoxue Tongyu Capsule in treating cerebrovascular diseases. J Lu zhou Med. Coll., 2016, 39, 91-93.
- Luo, G.; Chen, H.; Bai, X. Clinical trial and mechanism of Zhilong Huoxue Tongyu Capsule on aspirin resistance. J. Lu. Zhou Med. Coll., 2012, 35, 50-52.
- Chen, H.; Yang, S.J.; Luo, G. Preparation and evaluation of aspirin resistance animal models. J. Lu. Zhou. Med. Coll., 2012, 35, 35-37.
- Wang, G.G.; Li, Q.; Wang, S.; Ni, C.; Xu, J.M.; Zhang, L.H. Dynamic changes of thromboelastography and coagulation function parameters before and after liver transplantation and its significance for guidance of blood transfusion. Shiyong Ganzangbing Zazhi, 2020, 23, 901-904.
- Wang, J.; Liu, J.; Zhou, Y.; Wang, F.; Xu, K.; Kong, D.; Bai, J.; Chen, J.; Gong, X.; Meng, H.; Li, C. Association among PlA1/A2 gene polymorphism, laboratory aspirin resistance and clinical outcomes in patients with coronary artery disease: An updated meta-analysis. Sci. Rep., 2019, 9(1), 13177. doi: 10.1038/s41598-019-49123-y PMID: 31511539
- Floyd, C.N.; Ferro, A. Mechanisms of aspirin resistance. Pharmacol. Ther., 2014, 141(1), 69-78. doi: 10.1016/j.pharmthera.2013.08.005 PMID: 23993980
- Wu, W. The clinical factors of aspirin resistance and the association of the cyclooxygenase-2 gene polymorphism with aspirin resistance; Tianjin Medical University, 2006.
- Gao, H.; Long, Y.; Jiang, X.; Liu, Z.; Wang, D.; Zhao, Y.; Li, D.; Sun, B. Beneficial effects of Yerba Mate tea (Ilex paraguariensis) on hyperlipidemia in high-fat-fed hamsters. Exp. Gerontol., 2013, 48(6), 572-578. doi: 10.1016/j.exger.2013.03.008 PMID: 23562841
- Reimann, M.; Rüdiger, H.; Weiss, N.; Ziemssen, T. Acute hyperlipidemia but not hyperhomocysteinemia impairs reflex regulation of the cardiovascular system. Atheroscler. Suppl., 2015, 18, 8-15. doi: 10.1016/j.atherosclerosissup.2015.02.004 PMID: 25936298
- Yang, H.Y.; Zhang, X.D.; Liu, K.Y.; Du, Z.H.; Bai, X.J. Effect of Hirudo on blood metabolism and its related gene expression in blood stasis syndrome rabbits. Chin. J. Mod. Appl. Pharm., 2013, 30, 959.
- Cipollone, F.; Prontera, C.; Pini, B.; Marini, M.; Fazia, M.; De Cesare, D.; Iezzi, A.; Ucchino, S.; Boccoli, G.; Saba, V.; Chiarelli, F.; Cuccurullo, F.; Mezzetti, A. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation, 2001, 104(8), 921-927. doi: 10.1161/hc3401.093152 PMID: 11514380
- Li, J.; Liu, W.X. Status and prospect of aspirin resistance. J Cardiovasc. Pulmonary Dis., 2009, 28, 61-63.
- Müller, B. Pharmacology of thromboxane A2, prostacyclin and other eicosanoids in the cardiovascular system. Therapie, 1991, 46(3), 217-221. PMID: 1792655
- Woulfe, D.S. Platelet G protein-coupled receptors in hemostasis and thrombosis. J. Thromb. Haemost., 2005, 3(10), 2193-2200. doi: 10.1111/j.1538-7836.2005.01338.x PMID: 16194198
- Sakata, C.; Kawasaki, T.; Kato, Y.; Abe, M.; Suzuki, K.; Ohmiya, M.; Funatsu, T.; Morita, Y.; Okada, M. ASP6537, a novel highly selective cyclooxygenase-1 inhibitor, exerts potent antithrombotic effect without "aspirin dilemma". Thromb. Res., 2013, 132(1), 56-62. doi: 10.1016/j.thromres.2013.03.005 PMID: 23522855
- Fang, W.; Wei, J.; Han, D.; Chen, X.; He, G.; Wu, Q.; Chu, S.; Li, Y. MC-002 exhibits positive effects against platelets aggregation and endothelial dysfunction through thromboxane A 2 inhibition. Thromb. Res., 2014, 133(4), 610-615. doi: 10.1016/j.thromres.2014.01.029 PMID: 24525312
- Ai, J.; Zhang, R.; Li, Y.; Pu, J.; Lu, Y.; Jiao, J.; Li, K.; Yu, B.; Li, Z.; Wang, R.; Wang, L.; Li, Q.; Wang, N.; Shan, H.; Li, Z.; Yang, B. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem. Biophys. Res. Commun., 2010, 391(1), 73-77. doi: 10.1016/j.bbrc.2009.11.005 PMID: 19896465
- Luo, X.; Pan, Z.; Shan, H.; Xiao, J.; Sun, X.; Wang, N.; Lin, H.; Xiao, L.; Maguy, A.; Qi, X.Y.; Li, Y.; Gao, X.; Dong, D.; Zhang, Y.; Bai, Y.; Ai, J.; Sun, L.; Lu, H.; Luo, X.Y.; Wang, Z.; Lu, Y.; Yang, B.; Nattel, S. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest., 2013, 123(5), 1939-1951. doi: 10.1172/JCI62185 PMID: 23543060
- Seok, H.Y.; Chen, J.; Kataoka, M.; Huang, Z.P.; Ding, J.; Yan, J.; Hu, X.; Wang, D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res., 2014, 114(10), 1585-1595. doi: 10.1161/CIRCRESAHA.114.303784 PMID: 24657879
- Du, W.; Pan, Z.; Chen, X.; Wang, L.; Zhang, Y.; Li, S.; Liang, H.; Xu, C.; Zhang, Y.; Wu, Y.; Shan, H.; Lu, Y. By targeting Stat3 microRNA-17-5p promotes cardiomyocyte apoptosis in response to ischemia followed by reperfusion. Cell. Physiol. Biochem., 2014, 34(3), 955-965. doi: 10.1159/000366312 PMID: 25200830
- Pan, Z.; Sun, X.; Shan, H.; Wang, N.; Wang, J.; Ren, J.; Feng, S.; Xie, L.; Lu, C.; Yuan, Y.; Zhang, Y.; Wang, Y.; Lu, Y.; Yang, B. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation, 2012, 126(7), 840-850. doi: 10.1161/CIRCULATIONAHA.112.094524 PMID: 22811578
- Dangwal, S.; Thum, T. MicroRNAs in platelet biogenesis and function. Thromb. Haemost., 2012, 108(10), 599-604. doi: 10.1160/TH12-03-0211 PMID: 22782083
- Liu, W.W.; Wang, H.; Chen, X.H.; Fu, S.W.; Liu, M.L. miR-34b-3p may promote antiplatelet efficiency of aspirin by inhibiting thromboxane synthase expression. Thromb. Haemost., 2019, 119(9), 1451-1460. doi: 10.1055/s-0039-1692681 PMID: 31266078
- Czajka, P.; Fitas, A.; Jakubik, D.; Eyileten, C.; Gasecka, A.; Wicik, Z.; Siller-Matula, J.M.; Filipiak, K.J.; Postula, M. MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review. Front. Physiol., 2021, 12, 652579. doi: 10.3389/fphys.2021.652579 PMID: 33935804
- Hromadka, M.; Motovska, Z.; Hlinomaz, O.; Kala, P.; Tousek, F.; Jarkovsky, J.; Beranova, M.; Jansky, P.; Svoboda, M.; Krepelkova, I.; Rokyta, R.; Widimsky, P.; Karpisek, M. MiR-126-3p and MiR-223-3p as biomarkers for prediction of thrombotic risk in patients with acute myocardial infarction and primary angioplasty. J. Pers. Med., 2021, 11(6), 508. doi: 10.3390/jpm11060508 PMID: 34199723
- Cavarretta, E.; Chiariello, G.A.; Condorelli, G. Platelets, endothelium, and circulating microRNA-126 as a prognostic biomarker in cardiovascular diseases: Per aspirin ad astra. Eur. Heart J., 2013, 34(44), 3400-3402. doi: 10.1093/eurheartj/eht032 PMID: 23391580
- Akbar, N.; Digby, J.E.; Cahill, T.J.; Tavare, A.N.; Corbin, A.L.; Saluja, S.; Dawkins, S.; Edgar, L.; Rawlings, N.; Ziberna, K.; McNeill, E.; Johnson, E.; Aljabali, A.A.; Dragovic, R.A.; Rohling, M.; Belgard, T.G.; Udalova, I.A.; Greaves, D.R.; Channon, K.M.; Riley, P.R.; Anthony, D.C.; Choudhury, R.P. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight, 2017, 2(17), e93344. doi: 10.1172/jci.insight.93344
- Schober, A.; Nazari-Jahantigh, M.; Wei, Y.; Bidzhekov, K.; Gremse, F.; Grommes, J.; Megens, R.T.A.; Heyll, K.; Noels, H.; Hristov, M.; Wang, S.; Kiessling, F.; Olson, E.N.; Weber, C. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med., 2014, 20(4), 368-376. doi: 10.1038/nm.3487 PMID: 24584117
Supplementary files
