Transcriptomic Analysis of lncRNAs and their mRNA Networks in Cerebral Ischemia in Young and Aged Mice


Cite item

Full Text

Abstract

Background:Ischemic stroke comprises 75% of all strokes and it is associated with a great frailty and casualty rate. Certain data suggest multiple long non-coding Ribonucleic Acids (lncRNAs) assist the transcriptional, post-transcriptional, and epigenetic regulation of genes expressed in the CNS (Central Nervous System). However, these studies generally focus on differences in the expression patterns of lncRNAs and Messenger Ribonucleic Acids (mRNAs) in tissue samples before and after cerebral ischemic injury, ignoring the effects of age.

Methods:In this study, differentially expressed lncRNA analysis was performed based on RNAseq data from the transcriptomic analysis of murine brain microglia related to cerebral ischemia injury in mice at different ages (10 weeks and 18 months).

Results:The results showed that the number of downregulate differentially expressed genes (DEGs) in aged mice was 37 less than in young mice. Among them, lncRNA Gm-15987, RP24- 80F7.5, XLOC_379730, XLOC_379726 were significantly down-regulated. Then, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these specific lncRNAs were mainly related to inflammation. Based on the lncRNA/mRNA coexpression network, the mRNA co-expressed with lncRNA was mainly enriched in pathways, such as immune system progression, immune response, cell adhesion, B cell activation, and T cell differentiation. Our results indicate that the downregulation of lncRNA, such as Gm-15987, RP24- 80F7.5, XLOC_379730, and XLOC_379726 in aged mice may attenuate microglial-induced inflammation via the progress of immune system progression immune response, cell adhesion, B cell activation, and T cell differentiation.

Conclusion:The reported lncRNAs and their target mRNA during this pathology have potentially key regulatory functions in the cerebral ischemia in aged mice while being important for diagnosing and treating cerebral ischemia in the elderly.

About the authors

Yuanyuan Zeng

Department of Neurology, The First Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Tengteng Xue

Department of Neurology, The First Affiliated Hospital of Harbin Medical University

Email: info@benthamscience.net

Dayong Zhang

Department of New Media and Arts, Harbin Institute of Technology

Email: info@benthamscience.net

Manhua Lv

Department of Neurology, The First Affiliated Hospital of Harbin Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Zhong, S.; Sun, K.; Zuo, X.; Chen, A. Monitoring and prognostic analysis of severe cerebrovascular diseases based on multi-scale dynamic brain imaging. Front. Neurosci., 2021, 15, 684469. doi: 10.3389/fnins.2021.684469 PMID: 34276294
  2. Yoshimura, S.; Sakai, N.; Uchida, K.; Yamagami, H.; Ezura, M.; Okada, Y.; Kitagawa, K.; Kimura, K.; Sasaki, M.; Tanahashi, N.; Toyoda, K.; Furui, E.; Matsumaru, Y.; Minematsu, K.; Morimoto, T.; Kuwayama, N.; Ogasawara, K.; Iihara, K.; Takeuchi, M.; Morimoto, M.; Onda, T.; Shibata, M.; Ohta, T.; Imai, K.; Itabashi, R.; Yamashita, T.; Fukawa, N.; Kimura, N.; Doijiri, R.; Ohta, H.; Enomoto, Y.; Kanbayashi, C.; Yamaura, I.; Ishihara, H.; Kamiya, Y.; Hayase, M.; Nii, K.; Kobayashi, J.; Yasuda, H.; Kondo, R.; Yamamoto, D.; Sakaguchi, M.; Satomi, J.; Yagita, Y.; Handa, A.; Shindo, A.; Hiyama, N.; Toma, N.; Tsumoto, T.; Tsuruta, W.; Matsumoto, K.; Kiura, Y.; Yamazaki, T.; Hatano, T.; Matsumoto, Y.; Kojima, T.; Ikeda, N.; Sakamoto, S.; Ohnishi, H.; Haraguchi, K.; Uchiyama, N. Endovascular therapy in ischemic stroke with acute large‐vessel occlusion: recovery by endovascular salvage for cerebral ultra‐acute embolism japan registry 2. J. Am. Heart Assoc., 2018, 7(9), e008796. doi: 10.1161/JAHA.118.008796 PMID: 29695384
  3. Wang, Z.; Yang, T.; Fu, H. Prevalence of diabetes and hypertension and their interaction effects on cardio-cerebrovascular diseases: A cross-sectional study. BMC Public Health, 2021, 21(1), 1224. doi: 10.1186/s12889-021-11122-y PMID: 34172039
  4. Wani-Parekh, P.; Blanco-Garcia, C.; Mendez, M.; Mukherjee, D. Guide of hypertensive crisis pharmacotherapy. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(1), 52-57. PMID: 28000548
  5. Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; de Ferranti, S.D.; Ferguson, J.F.; Fornage, M.; Gillespie, C.; Isasi, C.R.; Jiménez, M.C.; Jordan, L.C.; Judd, S.E.; Lackland, D.; Lichtman, J.H.; Lisabeth, L.; Liu, S.; Longenecker, C.T.; Lutsey, P.L.; Mackey, J.S.; Matchar, D.B.; Matsushita, K.; Mussolino, M.E.; Nasir, K.; O’Flaherty, M.; Palaniappan, L.P.; Pandey, A.; Pandey, D.K.; Reeves, M.J.; Ritchey, M.D.; Rodriguez, C.J.; Roth, G.A.; Rosamond, W.D.; Sampson, U.K.A.; Satou, G.M.; Shah, S.H.; Spartano, N.L.; Tirschwell, D.L.; Tsao, C.W.; Voeks, J.H.; Willey, J.Z.; Wilkins, J.T.; Wu, J.H.Y.; Alger, H.M.; Wong, S.S.; Muntner, P. Heart disease and stroke statistics—2018 update: A report from the american heart association. Circulation, 2018, 137(12), e67-e492. doi: 10.1161/CIR.0000000000000558 PMID: 29386200
  6. Carandang, R.; Seshadri, S.; Beiser, A.; Kelly-Hayes, M.; Kase, C.S.; Kannel, W.B.; Wolf, P.A. Trends in incidence, lifetime risk, severity, and 30-day mortality of stroke over the past 50 years. JAMA, 2006, 296(24), 2939-2946. doi: 10.1001/jama.296.24.2939 PMID: 17190894
  7. Jiang, X.; Suenaga, J.; Pu, H.; Wei, Z.; Smith, A.D.; Hu, X.; Shi, Y.; Chen, J. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiol. Dis., 2019, 126, 62-75. doi: 10.1016/j.nbd.2018.09.012 PMID: 30218758
  8. Shi, L.; Rocha, M.; Leak, R.K.; Zhao, J.; Bhatia, T.N.; Mu, H.; Wei, Z.; Yu, F.; Weiner, S.L.; Ma, F.; Jovin, T.G.; Chen, J. A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. J. Cereb. Blood Flow Metab., 2018, 38(12), 2073-2091. doi: 10.1177/0271678X18798162 PMID: 30191760
  9. Suenaga, J.; Hu, X.; Pu, H.; Shi, Y.; Hassan, S.H.; Xu, M.; Leak, R.K.; Stetler, R.A.; Gao, Y.; Chen, J. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp. Neurol., 2015, 272, 109-119. doi: 10.1016/j.expneurol.2015.03.021 PMID: 25836044
  10. Evans, J.R.; Feng, F.Y.; Chinnaiyan, A.M. The bright side of dark matter: lncRNAs in cancer. J. Clin. Invest., 2016, 126(8), 2775-2782. doi: 10.1172/JCI84421 PMID: 27479746
  11. Wang, P.; Xue, Y.; Han, Y.; Lin, L.; Wu, C.; Xu, S.; Jiang, Z.; Xu, J.; Liu, Q.; Cao, X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science, 2014, 344(6181), 310-313. doi: 10.1126/science.1251456 PMID: 24744378
  12. Chang, C.P.; Han, P. Epigenetic and lncRNA regulation of cardiac pathophysiology. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(7)(7 Pt B), 1767-1771. doi: 10.1016/j.bbamcr.2016.03.005 PMID: 26969820
  13. Jin, F.; Wang, N.; Zhu, Y.; You, L.; Wang, L.; De, W.; Tang, W. Downregulation of long noncoding RNA Gas5 affects cell cycle and insulin secretion in mouse pancreatic β cells. Cell. Physiol. Biochem., 2017, 43(5), 2062-2073. doi: 10.1159/000484191 PMID: 29232661
  14. Jiang, C.Y.; Gao, Y.; Wang, X.J.; Ruan, Y.; Bei, X.Y.; Wang, X.H.; Jing, Y.F.; Zhao, W.; Jiang, Q.; Li, J.; Han, B.M.; Xia, S.J.; Zhao, F.J. Long non-coding RNA lnc-MX1-1 is associated with poor clinical features and promotes cellular proliferation and invasiveness in prostate cancer. Biochem. Biophys. Res. Commun., 2016, 470(3), 721-727. doi: 10.1016/j.bbrc.2016.01.056 PMID: 26797523
  15. Dempsey, J.L.; Cui, J.Y. Long Non-Coding RNAs: A novel paradigm for toxicology. Toxicol. Sci., 2017, 155(1), 3-21. doi: 10.1093/toxsci/kfw203 PMID: 27864543
  16. Ang, C.E.; Trevino, A.E.; Chang, H.Y. Diverse lncRNA mechanisms in brain development and disease. Curr. Opin. Genet. Dev., 2020, 65, 42-46. doi: 10.1016/j.gde.2020.05.006 PMID: 32554106
  17. Lou, M.M.; Tang, X.Q.; Wang, G.M.; He, J.; Luo, F.; Guan, M.F.; Wang, F.; Zou, H.; Wang, J.Y.; Zhang, Q.; Xu, M.J.; Shi, Q.L.; Shen, L.B.; Ma, G.M.; Wu, Y.; Zhang, Y.Y.; Liang, A.; Wang, T.H.; Xiong, L.L.; Wang, J.; Xu, J.; Wang, W.Y. Long noncoding RNA BS-DRL1 modulates the DNA damage response and genome stability by interacting with HMGB1 in neurons. Nat. Commun., 2021, 12(1), 4075. doi: 10.1038/s41467-021-24236-z PMID: 34210972
  18. Yan, H.; Yuan, J.; Gao, L.; Rao, J.; Hu, J. Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience, 2016, 337, 191-199. doi: 10.1016/j.neuroscience.2016.09.017 PMID: 27651151
  19. Xu, Q.; Deng, F.; Xing, Z.; Wu, Z.; Cen, B.; Xu, S.; Zhao, Z.; Nepomuceno, R.; Bhuiyan, M.I.H.; Sun, D.; Wang, Q.J.; Ji, A. Long non-coding RNA C2dat1 regulates CaMKIIδ expression to promote neuronal survival through the NF-κB signaling pathway following cerebral ischemia. Cell Death Dis., 2016, 7(3), e2173. doi: 10.1038/cddis.2016.57 PMID: 27031970
  20. Zhong, Y.; Yu, C.; Qin, W. LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p/ROCK1. Cancer Gene Ther., 2019, 26(7-8), 234-247. doi: 10.1038/s41417-018-0067-5 PMID: 30546117
  21. Vemuganti, R. All’s well that transcribes well: Non-coding RNAs and post-stroke brain damage. Neurochem. Int., 2013, 63(5), 438-449. doi: 10.1016/j.neuint.2013.07.014 PMID: 23954844
  22. Shi, L.; Rocha, M.; Zhang, W.; Jiang, M.; Li, S.; Ye, Q.; Hassan, S.H.; Liu, L.; Adair, M.N.; Xu, J.; Luo, J.; Hu, X.; Wechsler, L.R.; Chen, J.; Shi, Y. Genome-wide transcriptomic analysis of microglia reveals impaired responses in aged mice after cerebral ischemia. J. Cereb. Blood Flow Metab., 2020, 40(Suppl. 1), S49-S66. doi: 10.1177/0271678X20925655 PMID: 32438860
  23. Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol., 2010, 11(10), R106. doi: 10.1186/gb-2010-11-10-r106 PMID: 20979621
  24. Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26(1), 139-140. doi: 10.1093/bioinformatics/btp616 PMID: 19910308
  25. Liu, S.; Wang, Z.; Chen, D.; Zhang, B.; Tian, R.R.; Wu, J.; Zhang, Y.; Xu, K.; Yang, L.M.; Cheng, C.; Ma, J.; Lv, L.; Zheng, Y.T.; Hu, X.; Zhang, Y.; Wang, X.; Li, J. Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res., 2017, 27(9), 1608-1620. doi: 10.1101/gr.217463.116 PMID: 28687705
  26. Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 2012, 7(3), 562-578. doi: 10.1038/nprot.2012.016 PMID: 22383036
  27. Yavorska, O.O.; Burgess, S. Mendelian Randomization: An R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol., 2017, 46(6), 1734-1739. doi: 10.1093/ije/dyx034 PMID: 28398548
  28. Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 2016, 32(18), 2847-2849. doi: 10.1093/bioinformatics/btw313 PMID: 27207943
  29. Li, W. Volcano plots in analyzing differential expressions with mRNA microarrays. J. Bioinform. Comput. Biol., 2012, 10(6), 1231003. doi: 10.1142/S0219720012310038 PMID: 23075208
  30. Bentsen, L.; Christensen, L.; Christensen, A.; Christensen, H. Outcome and risk factors presented in old patients above 80 years of age versus younger patients after ischemic stroke. J. Stroke Cerebrovasc. Dis., 2014, 23(7), 1944-1948. doi: 10.1016/j.jstrokecerebrovasdis.2014.02.002 PMID: 24794945
  31. Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol., 2015, 11(1), 56-64. doi: 10.1038/nrneurol.2014.207 PMID: 25385337
  32. Cao, G.; Clark, R.S.B.; Pei, W.; Yin, W.; Zhang, F.; Sun, F.Y.; Graham, S.H.; Chen, J. Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J. Cereb. Blood Flow Metab., 2003, 23(10), 1137-1150. doi: 10.1097/01.WCB.0000087090.01171.E7 PMID: 14526224
  33. Wu, C.; Fujihara, H.; Yao, J.; Qi, S.; Li, H.; Shimoji, K.; Baba, H. Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57Black/Crj6 mouse striatum. Stroke, 2003, 34(7), 1803-1808. doi: 10.1161/01.STR.0000077255.15597.69 PMID: 12791942
  34. Li, X.; Li, Y.; Yu, X.; Jin, F. Identification and validation of stemness-related lncRNA prognostic signature for breast cancer. J. Transl. Med., 2020, 18(1), 331. doi: 10.1186/s12967-020-02497-4 PMID: 32867770
  35. Galatro, T.F.; Holtman, I.R.; Lerario, A.M.; Vainchtein, I.D.; Brouwer, N.; Sola, P.R.; Veras, M.M.; Pereira, T.F.; Leite, R.E.P.; Möller, T.; Wes, P.D.; Sogayar, M.C.; Laman, J.D.; den Dunnen, W.; Pasqualucci, C.A.; Oba-Shinjo, S.M.; Boddeke, E.W.G.M.; Marie, S.K.N.; Eggen, B.J.L. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci., 2017, 20(8), 1162-1171. doi: 10.1038/nn.4597 PMID: 28671693
  36. Schlomann, U.; Rathke-Hartlieb, S.; Yamamoto, S.; Jockusch, H.; Bartsch, J.W. Tumor necrosis factor alpha induces a metalloprotease-disintegrin, ADAM8 (CD 156): implications for neuron-glia interactions during neurodegeneration. J. Neurosci., 2000, 20(21), 7964-7971. doi: 10.1523/JNEUROSCI.20-21-07964.2000 PMID: 11050116
  37. Zeiner, P.S.; Preusse, C.; Blank, A.E.; Zachskorn, C.; Baumgarten, P.; Caspary, L.; Braczynski, A.K.; Weissenberger, J.; Bratzke, H.; Reiß, S.; Pennartz, S.; Winkelmann, R.; Senft, C.; Plate, K.H.; Wischhusen, J.; Stenzel, W.; Harter, P.N.; Mittelbronn, M. MIF receptor CD74 is restricted to microglia/macrophages, associated with a M1-polarized immune milieu and prolonged patient survival in gliomas. Brain Pathol., 2015, 25(4), 491-504. doi: 10.1111/bpa.12194 PMID: 25175718
  38. Chang, H.H.; Miaw, S.C.; Tseng, W.; Sun, Y.W.; Liu, C.C.; Tsao, H.W.; Ho, I.C. PTPN22 modulates macrophage polarization and susceptibility to dextran sulfate sodium-induced colitis. J. Immunol., 2013, 191(5), 2134-2143. doi: 10.4049/jimmunol.1203363 PMID: 23913970
  39. Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(1), 619-643. doi: 10.1146/annurev-physiol-022516-034406 PMID: 27959620
  40. Pérez, R.; López, M.; Barjadequiroga, G. Aging and lung antioxidant enzymes, glutathione, and the lipid peroxidation in the rat. Free Radic. Biol. Med., 1991, 10(1), 35-39. doi: 10.1016/0891-5849(91)90019-Y PMID: 1646750
  41. Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev., 2020, 57, 100982. doi: 10.1016/j.arr.2019.100982 PMID: 31733333
  42. Matthe, D.M.; Thoma, O.M.; Sperka, T.; Neurath, M.F.; Waldner, M.J. Telomerase deficiency reflects age-associated changes in CD4+ T cells. Immun. Ageing, 2022, 19(1), 16. doi: 10.1186/s12979-022-00273-0 PMID: 35321714
  43. Singh, V.; Sadler, R.; Heindl, S.; Llovera, G.; Roth, S.; Benakis, C.; Liesz, A. The gut microbiome primes a cerebroprotective immune response after stroke. J. Cereb. Blood Flow Metab., 2018, 38(8), 1293-1298. doi: 10.1177/0271678X18780130 PMID: 29846130
  44. Castle, S.C. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis., 2000, 31(2), 578-585. doi: 10.1086/313947 PMID: 10987724
  45. Butcher, S.K.; Chahal, H.; Nayak, L.; Sinclair, A.; Henriquez, N.V.; Sapey, E.; O’Mahony, D.; Lord, J.M. Senescence in innate immune responses: Reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J. Leukoc. Biol., 2001, 70(6), 881-886. doi: 10.1189/jlb.70.6.881 PMID: 11739550
  46. Fulop, T.; Le Page, A.; Fortin, C.; Witkowski, J.M.; Dupuis, G.; Larbi, A. Cellular signaling in the aging immune system. Curr. Opin. Immunol., 2014, 29, 105-111. doi: 10.1016/j.coi.2014.05.007 PMID: 24934647
  47. Tian, J.; Liu, Y.; Wang, Z.; Zhang, S.; Yang, Y.; Zhu, Y.; Yang, C. LncRNA Snhg8 attenuates microglial inflammation response and blood–brain barrier damage in ischemic stroke through regulating miR‐425‐5p mediated SIRT1/NF‐κB signaling. J. Biochem. Mol. Toxicol., 2021, 35(5), e22724. doi: 10.1002/jbt.22724 PMID: 33491845
  48. Chen, M.; Wang, F.; Wang, H. Silencing of lncRNA XLOC_035088 Protects Middle Cerebral Artery Occlusion-Induced Ischemic Stroke by Notch1 Signaling. J. Neuropathol. Exp. Neurol., 2021, 80(1), 60-70. doi: 10.1093/jnen/nlaa129 PMID: 33236068
  49. Wen, Y.; Yu, Y.; Fu, X. LncRNA Gm4419 contributes to OGD/R injury of cerebral microglial cells via IκB phosphorylation and NF-κB activation. Biochem. Biophys. Res. Commun., 2017, 487(4), 923-929. doi: 10.1016/j.bbrc.2017.05.005 PMID: 28476620
  50. Daulatzai, M.A. Role of stress, depression, and aging in cognitive decline and Alzheimer’s disease. Curr. Top. Behav. Neurosci., 2014, 18, 265-296. doi: 10.1007/7854_2014_350 PMID: 25167923

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers