Identification and Validation of Synapse-related Hub Genes after Spinal Cord Injury by Bioinformatics Analysis


Cite item

Full Text

Abstract

Background:Spinal cord injury (SCI) is a neurological disease with high morbidity and mortality. Previous studies have shown that abnormally expressed synapse-related genes are closely related to the occurrence and development of SCI. However, little is known about the interaction of these aberrantly expressed genes and the molecular mechanisms that play a role in the injury response. Therefore, deeply exploring the correlation between synapse-related genes and functional recovery after spinal cord injury and the molecular regulation mechanism is of great significance.

Methods:First, we selected the function GSE45006 dataset to construct three clinically meaningful gene modules by hierarchical clustering analysis in 4 normal samples and 20 SCI samples. Subsequently, we performed functional and pathway enrichment analyses of key modules.

Results:The results showed that related module genes were significantly enriched in synaptic structures and functions, such as the regulation of synaptic membranes and membrane potential. A protein-protein interaction network (PPI) was constructed to identify 10 hub genes of SCI, and the results showed that Snap25, Cplx1, Stxbp1, Syt1, Rims1, Rab3a, Syn2, Syn1, Cask, Lin7b were most associated with SCI. Finally, these hub genes were further verified by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR) in the spinal cord tissues of the blank group and SCI rats, and it was found that the expression of these hub genes was significantly decreased in the spinal cord injury compared with the blank group (P ≤ 0.05).

Conclusion:These results suggest that the structure and function of synapses play an important role after spinal cord injury. Our study helps to understand the underlying pathogenesis of SCI patients further and identify new targets for SCI treatment.

About the authors

Mengting Shi

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University

Email: info@benthamscience.net

Haipeng Xu

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine),, Zhejiang Chinese Medical University

Email: info@benthamscience.net

Rong Hu

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University

Email: info@benthamscience.net

Yi Chen

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University

Email: info@benthamscience.net

Xingying Wu

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University

Email: info@benthamscience.net

Bowen Chen

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University

Email: info@benthamscience.net

Ruijie Ma

Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Li, Y.; Ritzel, R.M.; Khan, N.; Cao, T.; He, J.; Lei, Z.; Matyas, J.J.; Sabirzhanov, B.; Liu, S.; Li, H.; Stoica, B.A.; Loane, D.J.; Faden, A.I.; Wu, J. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics, 2020, 10(25), 11376-11403. doi: 10.7150/thno.49199 PMID: 33052221
  2. Rubiano, A.M.; Carney, N.; Chesnut, R.; Puyana, J.C. Global neurotrauma research challenges and opportunities. Nature, 2015, 527(7578), S193-S197. doi: 10.1038/nature16035 PMID: 26580327
  3. Huber, E.; David, G.; Thompson, A.J.; Weiskopf, N.; Mohammadi, S.; Freund, P. Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology, 2018, 90(17), e1510-e1522. doi: 10.1212/WNL.0000000000005361 PMID: 29592888
  4. Gwak, Y.S.; Hulsebosch, C.E. GABA and central neuropathic pain following spinal cord injury. Neuropharmacology, 2011, 60(5), 799-808. doi: 10.1016/j.neuropharm.2010.12.030 PMID: 21216257
  5. Chen, J.; Cui, Z.; Yang, S.; Wu, C.; Li, W.; Bao, G.; Xu, G.; Sun, Y.; Wang, L.; Zhang, J. The upregulation of annexin A2 after spinal cord injury in rats may have implication for astrocyte proliferation. Neuropeptides, 2017, 61, 67-76. doi: 10.1016/j.npep.2016.10.007 PMID: 27836325
  6. Figueroa, J.D.; Serrano-Illan, M.; Licero, J.; Cordero, K.; Miranda, J.D.; De Leon, M. Fatty acid binding protein 5 modulates docosahexaenoic acid-induced recovery in rats undergoing spinal cord injury. J. Neurotrauma, 2016, 33(15), 1436-1449. doi: 10.1089/neu.2015.4186 PMID: 26715431
  7. Berglund, A.; Putney, R.M.; Hamaidi, I.; Kim, S. Epigenetic dysregulation of immune-related pathways in cancer: Bioinformatics tools and visualization. Exp. Mol. Med., 2021, 53(5), 761-771. doi: 10.1038/s12276-021-00612-z PMID: 33963293
  8. Zhou, Q.; Feng, X.; Ye, F.; Lei, F.; Jia, X.; Feng, D. miR-27a promotion resulting from silencing of HDAC3 facilitates the recovery of spinal cord injury by inhibiting PAK6 expression in rats. Life Sci., 2020, 260, 118098. doi: 10.1016/j.lfs.2020.118098 PMID: 32679145
  9. Hilton, B.J.; Husch, A.; Schaffran, B.; Lin, T.; Burnside, E.R.; Dupraz, S.; Schelski, M.; Kim, J.; Müller, J.A.; Schoch, S.; Imig, C.; Brose, N.; Bradke, F. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron, 2022, 110(1), 51-69. doi: 10.1016/j.neuron.2021.10.007 PMID: 34706221
  10. Chen, B.; Li, Y.; Yu, B.; Zhang, Z.; Brommer, B.; Williams, P.R.; Liu, Y.; Hegarty, S.V.; Zhou, S.; Zhu, J.; Guo, H.; Lu, Y.; Zhang, Y.; Gu, X.; He, Z. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell, 2018, 174(6), 1599. doi: 10.1016/j.cell.2018.08.050 PMID: 30193115
  11. Suzuki, K.; Elegheert, J.; Song, I.; Sasakura, H.; Senkov, O.; Matsuda, K.; Kakegawa, W.; Clayton, A.J.; Chang, V.T.; Ferrer-Ferrer, M.; Miura, E.; Kaushik, R.; Ikeno, M.; Morioka, Y.; Takeuchi, Y.; Shimada, T.; Otsuka, S.; Stoyanov, S.; Watanabe, M.; Takeuchi, K.; Dityatev, A.; Aricescu, A.R.; Yuzaki, M. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science, 2020, 369(6507), eabb4853. doi: 10.1126/science.abb4853 PMID: 32855309
  12. Goldshmit, Y.; Banyas, E.; Bens, N.; Yakovchuk, A.; Ruban, A. Blood glutamate scavengers and exercises as an effective neuroprotective treatment in mice with spinal cord injury. J. Neurosurg. Spine, 2020, 33(5), 692-704. doi: 10.3171/2020.4.SPINE20302 PMID: 32619986
  13. Zhang, X.; Zhong, Z.; Xiang, Y.; Hu, X.; Wang, Y.; Zeng, X.; Wang, X.; Xia, Q.; Wang, T. Synaptosomal-associated protein 25 may be an intervention target for improving sensory and locomotor functions after spinal cord contusion. Neural Regen. Res., 2017, 12(6), 969-976. doi: 10.4103/1673-5374.208592 PMID: 28761431
  14. Liu, P.; Song, C.; Wang, C.; Li, Y.; Su, L.; Li, J.; Zhao, Q.; Wang, Z.; Shen, M.; Wang, G.; Yu, Y.; Zhang, L. Spinal SNAP-25 regulates membrane trafficking of GluA1-containing AMPA receptors in spinal injury–induced neuropathic pain in rats. Neurosci. Lett., 2020, 715, 134616. doi: 10.1016/j.neulet.2019.134616 PMID: 31705923
  15. Rizo, J. Mechanism of neurotransmitter release coming into focus. Protein Sci., 2018, 27(8), 1364-1391. doi: 10.1002/pro.3445 PMID: 29893445
  16. Coppola, T.; Magnin-Lüthi, S.; Perret-Menoud, V.; Gattesco, S.; Schiavo, G.; Regazzi, R. Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J. Biol. Chem., 2001, 276(35), 32756-32762. doi: 10.1074/jbc.M100929200 PMID: 11438518
  17. Park, C.; Chen, X.; Tian, C.L.; Park, G.N.; Chenouard, N.; Lee, H.; Yeo, X.Y.; Jung, S.; Tsien, R.W.; Bi, G.Q.; Park, H. Unique dynamics and exocytosis properties of GABAergic synaptic vesicles revealed by three-dimensional single vesicle tracking. Proc. Natl. Acad. Sci., 2021, 118(9), e2022133118. doi: 10.1073/pnas.2022133118 PMID: 33622785
  18. Chang, S.; Reim, K.; Pedersen, M.; Neher, E.; Brose, N.; Taschenberger, H. Complexin stabilizes newly primed synaptic vesicles and prevents their premature fusion at the mouse calyx of held synapse. J. Neurosci., 2015, 35(21), 8272-8290. doi: 10.1523/JNEUROSCI.4841-14.2015 PMID: 26019341
  19. Wang, X.; Gong, J.; Zhu, L.; Wang, S.; Yang, X.; Xu, Y.; Yang, X.; Ma, C. Munc13 activates the Munc18‐1/syntaxin‐1 complex and enables Munc18‐1 to prime SNARE assembly. EMBO J., 2020, 39(16), e103631. doi: 10.15252/embj.2019103631 PMID: 32643828
  20. Stepien, K.P.; Rizo, J. Synaptotagmin-1–, Munc18-1–, and Munc13-1–dependent liposome fusion with a few neuronal SNAREs. Proc. Natl. Acad. Sci. USA, 2021, 118(4), e2019314118. doi: 10.1073/pnas.2019314118 PMID: 33468652
  21. Russ, N.; Schröder, M.; Berger, B.T.; Mandel, S.; Aydogan, Y.; Mauer, S.; Pohl, C.; Drewry, D.H.; Chaikuad, A.; Müller, S.; Knapp, S. Design and development of a chemical probe for pseudokinase Ca2+/calmodulin-dependent Ser/Thr kinase. J. Med. Chem., 2021, 64(19), 14358-14376. doi: 10.1021/acs.jmedchem.1c00845 PMID: 34543009
  22. Schmerl, B.; Gimber, N.; Kuropka, B.; Stumpf, A.; Rentsch, J.; Kunde, S.A.; von Sivers, J.; Ewers, H.; Schmitz, D.; Freund, C.; Schmoranzer, J.; Rademacher, N.; Shoichet, S.A. The synaptic scaffold protein MPP2 interacts with GABAA receptors at the periphery of the postsynaptic density of glutamatergic synapses. PLoS Biol., 2022, 20(3), e3001503. doi: 10.1371/journal.pbio.3001503 PMID: 35312684
  23. Brouwer, M.; Farzana, F.; Koopmans, F.; Chen, N.; Brunner, J.W.; Oldani, S.; Li, K.W.; van Weering, J.R.T.; Smit, A.B.; Toonen, R.F.; Verhage, M. SALM 1 controls synapse development by promoting F‐actin/PIP2‐dependent Neurexin clustering. EMBO J., 2019, 38(17), e101289. doi: 10.15252/embj.2018101289 PMID: 31368584
  24. Anitei, M.; Cowan, A.E.; Pfeiffer, S.E.; Bansal, R. Role for Rab3a in oligodendrocyte morphological differentiation. J. Neurosci. Res., 2009, 87(2), 342-352. doi: 10.1002/jnr.21870 PMID: 18798275
  25. Zhou, H.; Kang, Y.; Shi, Z.; Lu, L.; Li, X.; Chu, T.; Liu, J.; Liu, L.; Lou, Y.; Zhang, C.; Ning, G.; Feng, S.; Kong, X. Identification of differentially expressed proteins in rats with spinal cord injury during the transitional phase using an iTRAQ-based quantitative analysis. Gene, 2018, 677, 66-76. doi: 10.1016/j.gene.2018.07.050 PMID: 30036659
  26. Lau, B.Y.B.; Foldes, A.E.; Alieva, N.O.; Oliphint, P.A.; Busch, D.J.; Morgan, J.R. Increased synapsin expression and neurite sprouting in lamprey brain after spinal cord injury. Exp. Neurol., 2011, 228(2), 283-293. doi: 10.1016/j.expneurol.2011.02.003 PMID: 21316361
  27. Yin, Y.; Huang, P.; Han, Z.; Wei, G.; Zhou, C.; Wen, J.; Su, B.; Wang, X.; Wang, Y. Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway. Biomacromolecules, 2014, 15(7), 2449-2460. doi: 10.1021/bm500321h PMID: 24955924
  28. Schmidtko, A.; Luo, C.; Gao, W.; Geisslinger, G.; Kuner, R.; Tegeder, I. Genetic deletion of synapsin II reduces neuropathic pain due to reduced glutamate but increased GABA in the spinal cord dorsal horn. Pain, 2008, 139(3), 632-643. doi: 10.1016/j.pain.2008.06.018 PMID: 18701217

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers