HILIC UPLC/ QTof MS Method Development for the Quantification of AGEs Inhibitors - Trouble Shooting Protocol

  • Authors: Velichkova S.1, Foubert K.2, Theunis M.3, Pieters L.4
  • Affiliations:
    1. Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwer
    2. Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences,, Natural Products & Food Research and Analysis (NatuRA)
    3. Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences,, University of Antwerp
    4. Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp
  • Issue: Vol 27, No 4 (2024)
  • Pages: 584-598
  • Section: Chemistry
  • URL: https://rjeid.com/1386-2073/article/view/644751
  • DOI: https://doi.org/10.2174/1386207326666230706120451
  • ID: 644751

Cite item

Full Text

Abstract

Objective:The paper reports an attempt to develop and validate a HILIC UPLC/ QTof MS method for quantifying N-ε-carboxymethyl-L-lysine (CML) in vitro, testing N-ε- carboxy[D2]methyl-L-lysine (d2-CML), and N-ε-carboxy[4,4,5,5-D4]methyl-L-lysine (d4-CML) as internal standards.

Method:During the method development, several challenging questions occurred that hindered the successful completion of the method. The study emphasizes the impact of issues, generally overlooked in the development of similar analytical protocols. For instance, the use of glassware and plasticware was critical for the accurate quantification of CML. Moreover, the origin of atypical variation in the response of the deuterated internal standards, though widely used in other experimental procedures, was investigated.

Result:A narrative description of the systematic approach used to address the various drawbacks during the analytical method development and validation is presented.

Conclusion:Reporting those findings can be considered beneficial while bringing an insightful notion about critical factors and potential interferences. Therefore, some conclusion and ideas can be drawn from these trouble-shooting questions, which might help other researchers to develop more reliable bioanalytical methods, or to raise their awareness of stumbling blocks along the way.

About the authors

Stefaniya Velichkova

Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwer

Email: info@benthamscience.net

Kenn Foubert

Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences,, Natural Products & Food Research and Analysis (NatuRA)

Author for correspondence.
Email: info@benthamscience.net

Mart Theunis

Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences,, University of Antwerp

Email: info@benthamscience.net

Luc Pieters

Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp

Email: info@benthamscience.net

References

  1. Stitt, A.W. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br. J. Ophthalmol., 2001, 85(6), 746-753. doi: 10.1136/bjo.85.6.746 PMID: 11371498
  2. Nedić, O.; Rattan, S.I.S.; Grune, T.; Trougakos, I.P. Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radic. Res., 2013, 47(sup1)(Suppl. 1), 28-38. doi: 10.3109/10715762.2013.806798 PMID: 23692178
  3. Iannuzzi, C.; Irace, G.; Sirangelo, I.; Williams, T. Differential effects of glycation on protein aggregation and amyloid formation. Front. Mol. Biosci., 2014, 1, 9. doi: 10.3389/fmolb.2014.00009 PMID: 25988150
  4. Rabbani, N.; Thornalley, P.J. Glycation research in amino acids: a place to call home. Amino Acids, 2012, 42(4), 1087-1096. doi: 10.1007/s00726-010-0782-1 PMID: 20981459
  5. Yoshihara, K.; Nakamura, K.; Kanai, M.; Nagayama, Y.; Takahashi, S.; Saito, N.; Nagata, M. Determination of urinary and serum pentosidine and its application to elder patients. Biol. Pharm. Bull., 1998, 21(10), 1005-1008. doi: 10.1248/bpb.21.1005 PMID: 9821800
  6. Wilker, S.C.; Chellan, P.; Arnold, B.M.; Nagaraj, R.H. Chromatographic quantification of argpyrimidine, a methylglyoxal-derived product in tissue proteins: comparison with pentosidine. Anal. Biochem., 2001, 290(2), 353-358. doi: 10.1006/abio.2001.4992 PMID: 11237339
  7. Soboleva, A.; Vikhnina, M.; Grishina, T.; Frolov, A. Probing protein glycation by chromatography and mass spectrometry: analysis of glycation adducts. Int. J. Mol. Sci., 2017, 18(12), 2557-2589. doi: 10.3390/ijms18122557 PMID: 29182540
  8. Ames, J.M. Determination of N ε-(carboxymethyl)lysine in foods and related systems. Ann. N. Y. Acad. Sci., 2008, 1126(1), 20-24. doi: 10.1196/annals.1433.030 PMID: 18448791
  9. Assar, S.H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J.M. Determination of N ɛ-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids, 2009, 36(2), 317-326. doi: 10.1007/s00726-008-0071-4 PMID: 18389168
  10. Ahmed, N.; Argirov, O.K.; Minhas, H.S.; Cordeiro, C.A.A.; Thornalley, P.J. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nϵ-carboxymethyl-lysine- and Nϵ-(1-carboxyethyl)lysinemodified albumin. Biochem. J., 2002, 364(1), 1-14. doi: 10.1042/bj3640001 PMID: 11988070
  11. Hanssen, N.M.J.; Engelen, L.; Ferreira, I.; Scheijen, J.L.J.M.; Huijberts, M.S.; van Greevenbroek, M.M.J.; van der Kallen, C.J.H.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.A.; Schalkwijk, C.G. Plasma levels of advanced glycation endproducts Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine are not independently associated with cardiovascular disease in individuals with or without type 2 diabetes: the Hoorn and CODAM studies. J. Clin. Endocrinol. Metab., 2013, 98(8), E1369-E1373. doi: 10.1210/jc.2013-1068 PMID: 23780372
  12. Nguyen, H.T. van der Fels-Klerx, H.J.; van Boekel, M.A.J.S. Nϵ -(carboxymethyl)lysine: A Review on Analytical Methods, Formation, and Occurrence in Processed Food, and Health Impact. Food Rev. Int., 2014, 30(1), 36-52. doi: 10.1080/87559129.2013.853774
  13. Nomi, Y.; Annaka, H.; Sato, S.; Ueta, E.; Ohkura, T.; Yamamoto, K.; Homma, S.; Suzuki, E.; Otsuka, Y. Simultaneous Quantitation of Advanced Glycation End Products in Soy Sauce and Beer by Liquid Chromatography-Tandem Mass Spectrometry without Ion-Pair Reagents and Derivatization. J. Agric. Food Chem., 2016, 64(44), 8397-8405. doi: 10.1021/acs.jafc.6b02500 PMID: 27771957
  14. Thornalley, P.J.; Battah, S.; Ahmed, N.; Karachalias, N.; Agalou, S.; Babaei-Jadidi, R.; Dawnay, A. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem. J., 2003, 375(3), 581-592. doi: 10.1042/bj20030763 PMID: 12885296
  15. Delgado-Andrade, C.; Seiquer, I.; Navarro, M.P.; Morales, F.J. Maillard reaction indicators in diets usually consumed by adolescent population. Mol. Nutr. Food Res., 2007, 51(3), 341-351. doi: 10.1002/mnfr.200600070 PMID: 17309116
  16. Ahmed, N.; Thornalley, P.J. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem. J., 2002, 364(1), 15-24. doi: 10.1042/bj3640015 PMID: 11988071
  17. Koito, W.; Araki, T.; Horiuchi, S.; Nagai, R. Conventional antibody against Nepsilon-(carboxymethyl)lysine (CML) shows cross-reaction to Nepsilon-(carboxyethyl)lysine (CEL): immunochemical quantification of CML with a specific antibody. J. Biochem., 2004, 136(6), 831-837. doi: 10.1093/jb/mvh193 PMID: 15671494
  18. Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol., 2014, 18(1), 1-14. doi: 10.4196/kjpp.2014.18.1.1 PMID: 24634591
  19. Hwang, J.S.; Shin, C.H.; Yang, S.W. Clinical implications of Nepsilon-(carboxymethyl)lysine, advanced glycation end product, in children and adolescents with type 1 diabetes. Diabetes Obes. Metab., 2005, 7(3), 263-267. doi: 10.1111/j.1463-1326.2004.00398.x PMID: 15811143
  20. Kaufmann, E.; Boehm, B.O.; Süssmuth, S.D.; Kientsch-Engel, R.; Sperfeld, A.; Ludolph, A.C.; Tumani, H. The advanced glycation end-product Nɛ-(carboxymethyl)lysine level is elevated in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Neurosci. Lett., 2004, 371(2-3), 226-229. doi: 10.1016/j.neulet.2004.08.071 PMID: 15519762
  21. Nerlich, A. Schleicher, E.D. Nɛ-(carboxymethyl)lysine in atherosclerotic vascular lesions as a marker for local oxidative stress. Atherosclerosis, 1999, 144(1), 41-47. doi: 10.1016/S0021-9150(99)00038-6 PMID: 10381276
  22. Li, H.; Nakamura, S.; Miyazaki, S.; Morita, T.; Suzuki, M.; Pischetsrieder, M.; Niwa, T. N2-carboxyethyl-2′-deoxyguanosine, a DNA glycation marker, in kidneys and aortas of diabetic and uremic patients. Kidney Int., 2006, 69(2), 388-392. doi: 10.1038/sj.ki.5000064 PMID: 16408131
  23. Rabbani, N.; Thornalley, P.J. Hidden complexities in the measurement of fructosyl-lysine and advanced glycation end products for risk prediction of vascular complications of diabetes. Diabetes, 2015, 64(1), 9-11. doi: 10.2337/db14-1516 PMID: 25538281
  24. Ahmed, N.; Thornalley, P.J. Assay of early and advanced glycation adducts by enzymatic hydrolysis of proteins and HPLC of 6-aminoquinolylcarbonyl adducts. Int. Congr. Ser., 2002, 1245, 279-283. doi: 10.1016/S0531-5131(02)00895-6
  25. Delatour, T.; Hegele, J.; Parisod, V.; Richoz, J.; Maurer, S.; Steven, M.; Buetler, T. Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography–electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. J. Chromatogr. A, 2009, 1216(12), 2371-2381. doi: 10.1016/j.chroma.2009.01.011 PMID: 19181321
  26. Chang, J.C.; Ulrich, P.C.; Bucala, R.; Cerami, A. Detection of an advanced glycosylation product bound to protein in situ. J. Biol. Chem., 1985, 260(13), 7970-7974. doi: 10.1016/S0021-9258(17)39548-0 PMID: 4008486
  27. Ouyang, Z.; Furlong, M.T.; Wu, S.; Sleczka, B.; Tamura, J.; Wang, H.; Suchard, S.; Suri, A.; Olah, T.; Tymiak, A.; Jemal, M. Pellet digestion: a simple and efficient sample preparation technique for LC–MS/MS quantification of large therapeutic proteins in plasma. Bioanalysis, 2012, 4(1), 17-28. doi: 10.4155/bio.11.286 PMID: 22191591
  28. Niquet-Léridon, C.; Tessier, F.J. Quantification of Nε-carboxymethyl-lysine in selected chocolate-flavoured drink mixes using high-performance liquid chromatography–linear ion trap tandem mass spectrometry. Food Chem., 2011, 126(2), 655-663. doi: 10.1016/j.foodchem.2010.10.111
  29. Motomura, K.; Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Takeya, M.; Nohara, T.; Nagai, R.; Ikeda, T. Astragalosides isolated from the root of astragalus radix inhibit the formation of advanced glycation end products. J. Agric. Food Chem., 2009, 57(17), 7666-7672. doi: 10.1021/jf9007168 PMID: 19681610
  30. Troise, A.D.; Fiore, A.; Wiltafsky, M.; Fogliano, V. Quantification of Nε-(2-Furoylmethyl)-l-lysine (furosine), Nε-(Carboxymethyl)-l-lysine (CML), Nε-(Carboxyethyl)-l-lysine (CEL) and total lysine through stable isotope dilution assay and tandem mass spectrometry. Food Chem., 2015, 188, 357-364. doi: 10.1016/j.foodchem.2015.04.137 PMID: 26041204
  31. Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K.; Huang, Y. Formation of free and protein-bound carboxymethyllysine and carboxyethyllysine in meats during commercial sterilization. Meat Sci., 2016, 116, 1-7. doi: 10.1016/j.meatsci.2016.01.009 PMID: 26829237
  32. Sun, X.; Tang, J.; Wang, J.; Rasco, B.A.; Lai, K.; Huang, Y. Formation of advanced glycation endproducts in ground beef under pasteurisation conditions. Food Chem., 2015, 172, 802-807. doi: 10.1016/j.foodchem.2014.09.129 PMID: 25442623
  33. Bayliss, M.A.J.; Venn, R.F.; Edgington, A.M.; Webster, R.; Walker, D.K. Determination of a potent urokinase-type plasminogen activator, UK-356,202, in plasma at pg/mL levels using column-switching HPLC and fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(3), 121-126. doi: 10.1016/j.jchromb.2008.11.038 PMID: 19119083
  34. Ahmed, N.; Mirshekar-Syahkal, B.; Kennish, L.; Karachalias, N.; Babaei-Jadidi, R.; Thornalley, P.J. Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol. Nutr. Food Res., 2005, 49(7), 691-699. doi: 10.1002/mnfr.200500008 PMID: 15945118
  35. Schettgen, T.; Tings, A.; Brodowsky, C.; Müller-Lux, A.; Musiol, A.; Kraus, T. Simultaneous determination of the advanced glycation end product N ɛ-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution–hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem., 2007, 387(8), 2783-2791. doi: 10.1007/s00216-007-1163-9 PMID: 17318517
  36. Xie, X.; Kozak, M. Comparison of non-derivatization and derivatization tandem mass spectrometry methods for analysis of amino acids, acylcarnitines, and succinylacetone in dried blood spots. Thermo Fisher Sci, 2016, 2016, 1-8.
  37. Salazar, C.; Armenta, J.M.; Shulaev, V. An UPLC-ESI-MS/MS assay using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for targeted amino acid analysis: Application to screening of arabidopsis thaliana mutants. Metabolites, 2012, 2(3), 398-428. doi: 10.3390/metabo2030398 PMID: 24957640
  38. Bronsema, K.J.; Bischoff, R.; van de Merbel, N.C. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 1-14. doi: 10.1016/j.jchromb.2012.02.021 PMID: 22426285
  39. Ni, J.; Yuan, X.; Gu, J.; Yue, X.; Gu, X.; Nagaraj, R.; Crabb, J. Plasma Protein Pentosidine and Carboxymethyllysine; Biomarkers for Age-related Macular Degeneration, 2009, pp. 1921-1933.
  40. Ahmed, M.U.; Thorpe, S.R.; Baynes, J.W. Identification of N ε-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem., 1986, 261(11), 4889-4894. doi: 10.1016/S0021-9258(19)89188-3 PMID: 3082871
  41. Séro, L.; Sanguinet, L.; Blanchard, P.; Dang, B.; Morel, S.; Richomme, P.; Séraphin, D.; Derbré, S. Tuning a 96-well microtiter plate fluorescence-based assay to identify AGE inhibitors in crude plant extracts. Molecules, 2013, 18(11), 14320-14339. doi: 10.3390/molecules181114320 PMID: 24256925
  42. He, J.; Zeng, M.; Zheng, Z.; He, Z.; Chen, J. Simultaneous determination of N ε-(carboxymethyl) lysine and N ε-(carboxyethyl) lysine in cereal foods by LC–MS/MS. Eur. Food Res. Technol., 2014, 238(3), 367-374. doi: 10.1007/s00217-013-2085-8
  43. Dell’mour, M.; Jaitz, L.; Oburger, E.; Puschenreiter, M.; Koellensperger, G.; Hann, S. Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research. J. Sep. Sci., 2010, 33(6-7), 911-922. doi: 10.1002/jssc.200900743 PMID: 20229572
  44. Scheijen, J.L.J.M.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem., 2016, 190, 1145-1150. doi: 10.1016/j.foodchem.2015.06.049 PMID: 26213088
  45. Danaceau, J.P.; Chambers, E.E.; Fountain, K.J. Hydrophilic interaction chromatography (HILIC) for LC–MS/MS analysis of monoamine neurotransmitters. Bioanalysis, 2012, 4(7), 783-794. doi: 10.4155/bio.12.46 PMID: 22512797
  46. Ruta, J.; Rudaz, S.; McCalley, D.V.; Veuthey, J.L.; Guillarme, D. A systematic investigation of the effect of sample diluent on peak shape in hydrophilic interaction liquid chromatography. J. Chromatogr. A, 2010, 1217(52), 8230-8240. doi: 10.1016/j.chroma.2010.10.106 PMID: 21106201
  47. Grumbach, E.; Fountain, K. Comprehensive Guide to HILIC: Hydrophilic Interaction Chromatography; Waters Corporation, 2010.
  48. Kalasin, S.; Santore, M.M. Non-specific adhesion on biomaterial surfaces driven by small amounts of protein adsorption. Colloids Surf. B Biointerfaces, 2009, 73(2), 229-236. doi: 10.1016/j.colsurfb.2009.05.028 PMID: 19556113
  49. Goebel-Stengel, M.; Stengel, A.; Taché, Y.; Reeve, J.R., Jr The importance of using the optimal plasticware and glassware in studies involving peptides. Anal. Biochem., 2011, 414(1), 38-46. doi: 10.1016/j.ab.2011.02.009 PMID: 21315060
  50. Smith, J.A.; Hurrell, J.G.R.; Leach, S.J. Elimination of nonspecific adsorption of serum proteins by Sepharose-bound antigens. Anal. Biochem., 1978, 87(2), 299-305. doi: 10.1016/0003-2697(78)90679-6 PMID: 356668
  51. Felgner, P.L.; Wilson, J.E. Hexokinase binding to polypropylene test tubes. Anal. Biochem., 1976, 74(2), 631-635. doi: 10.1016/0003-2697(76)90251-7 PMID: 962118
  52. Kramer, K.J.; Dunn, P.E.; Peterson, R.C.; Seballos, H.L.; Sanburg, L.L.; Law, J.H. Purification and characterization of the carrier protein for juvenile hormone from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae). J. Biol. Chem., 1976, 251(16), 4979-4985. doi: 10.1016/S0021-9258(17)33210-6 PMID: 182689
  53. Suelter, C.H.; DeLuca, M. How to prevent losses of protein by adsorption to glass and plastic. Anal. Biochem., 1983, 135(1), 112-119. doi: 10.1016/0003-2697(83)90738-8 PMID: 6670734
  54. Science, Porvair Protein Crash Plates. Available from: https://www.microplates.com/product/microlute-ppp-protein-precipitation-plate/=
  55. Stokvis, E.; Rosing, H.; Beijnen, J.H. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun. Mass Spectrom., 2005, 19(3), 401-407. doi: 10.1002/rcm.1790 PMID: 15645520
  56. Bioanalytical Method Validation,Guidance for Industry. 2018. Available from: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf=
  57. Tan, A.; Hussain, S.; Musuku, A.; Massé, R. Internal standard response variations during incurred sample analysis by LC–MS/MS: Case by case trouble-shooting. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(27), 3201-3209. doi: 10.1016/j.jchromb.2009.08.019 PMID: 19733134
  58. Rabbani, N.; Shaheen, F.; Anwar, A.; Masania, J.; Thornalley, P.J. Assay of methylglyoxal-derived protein and nucleotide AGEs. Biochem. Soc. Trans., 2014, 42(2), 511-517. doi: 10.1042/BST20140019 PMID: 24646270
  59. Lipecka, J.; Chhuon, C.; Bourderioux, M.; Bessard, M.A.; van Endert, P.; Edelman, A.; Guerrera, I.C. Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP). Proteomics, 2016, 16(13), 1852-1857. doi: 10.1002/pmic.201600103 PMID: 27219663

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers