In silico Molecular Docking Analysis of Three Molecules Isolated from Litsea guatemalensis Mez on Anti-inflammatory Receptors


Cite item

Full Text

Abstract

Background:The Litsea genus has four native species from Mesoamerica. Litsea guatemalensis Mez. is a native tree, traditionally used as a condiment and herbal medicine in the region. It has demonstrated antimicrobial, aromatic, anti-inflammatory and antioxidant activity. Bioactive fractionation attributed the anti-inflammatory and anti-hyperalgesic activities to pinocembrin, scopoletin, and 5,7,3´4´-tetrahydroxy-isoflavone. In silico analysis, these molecules were analyzed on receptors involved in the anti-inflammatory process to determine which pathways they interact.

Objective:To analyze and evaluate 5,7,3',4'-tetrahydroxyisoflavone, pinocembrin, and scopoletin using the in silico analysis against selected receptors involved in the inflammatory pathway.

Method:Known receptors involved in the anti-inflammatory process found as protein-ligand complex in the Protein Data Bank (PDB) were used as references for each receptor and compared with the molecules of interest. The GOLD-ChemScore function, provided by the software, was used to rank the complexes and visually inspect the overlap between the reference ligand and the poses of the studied metabolites.

Results:53 proteins were evaluated, each one in five conformations minimized by molecular dynamics. The scores obtained for dihydroorotate dehydrogenase were greater than 80 for the three molecules of interest, scores for cyclooxygenase 1 and glucocorticoid receptor were greater than 50, and identified residues with interaction in binding sites overlap with the reference ligands in these receptors.

Conclusion:The three molecules involved in the anti-inflammatory process of L. guatemalensis show in silico high affinity to the enzyme dihydroorotate dehydrogenase, glucocorticoid receptors and cyclooxygenase-1.

About the authors

Lucrecia Peralta

Facultad de Ciencias Químicas y Farmacia,, University of San Carlos of Guatemala

Author for correspondence.
Email: info@benthamscience.net

Allan Vásquez

Facultad de Ciencias Químicas y Farmacia,, University of San Carlos of Guatemala

Email: info@benthamscience.net

Nereida Marroquín

Facultad de Ciencias Químicas y Farmacia,, University of San Carlos of Guatemala

Email: info@benthamscience.net

Lesbia Guerra

Facultad de Ciencias Químicas y Farmacia,, University of San Carlos of Guatemala

Email: info@benthamscience.net

Sully Cruz

Facultad de Ciencias Químicas y Farmacia,, University of San Carlos of Guatemala

Email: info@benthamscience.net

Armando Cáceres

Facultad de Ciencias Químicas y Farmacia, University of San Carlos of Guatemala

Email: info@benthamscience.net

References

  1. Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int. J. Mol. Sci., 2019, 20(18), 4367. doi: 10.3390/ijms20184367 PMID: 31491986
  2. Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435. doi: 10.1038/nature07201 PMID: 18650913
  3. Moumbock, A.F.A.; Li, J.; Mishra, P.; Gao, M.; Günther, S. Current computational methods for predicting protein interactions of natural products. Comput. Struct. Biotechnol. J., 2019, 17, 1367-1376. doi: 10.1016/j.csbj.2019.08.008 PMID: 31762960
  4. Saldívar-González, F.; Prieto-Martínez, F.D.; Medina-Franco, J.L. Drug discovery and development: A computational approach. Educ. Quím., 2017, 28, 51-58.
  5. Medina-Franco, J.L. Advances in computation approaches for drug discovery based on natural products. Rev. Lat.-Amer. Quím., 2013, 41, 95-110.
  6. Wang, H.; Liu, Y. Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chem. Biodivers., 2010, 7(1), 229-235. doi: 10.1002/cbdv.200800349 PMID: 20087994
  7. Hwang, J.K.; Choi, E.M.; Lee, J.H. Antioxidant activity of Litsea cubeba. Fitoterapia, 2005, 76(7-8), 684-686. doi: 10.1016/j.fitote.2005.05.007 PMID: 16239077
  8. Ho, C.L.; Wang, E.I.C.; Tseng, Y.H.; Liao, P.C.; Lin, C.N.; Chou, J.C.; Su, Y.C. Composition and antimicrobial activity of the leaf and twig oils of Litsea mushaensis and L. linii from Taiwan. Nat. Prod. Commun., 2010, 5(11), 1934578X1000501. doi: 10.1177/1934578X1000501127 PMID: 21213991
  9. López-Caamal, A.; Reyes-Chilpa, R. The New World bays (Litsea, Lauraceae). A botanical, chemical, pharmacological and ecological review in relation to their traditional and potential applications as phytomedicines. Bot. Rev., 2021, 87(3), 392-420. doi: 10.1007/s12229-021-09265-z
  10. Agrawal, N.; Choudhary, A.S.; Sharma, M.C.; Dobhal, M.P. Chemical constituents of plants from the genus Litsea. Chem. Biodivers., 2011, 8(2), 223-243. doi: 10.1002/cbdv.200900408 PMID: 21337497
  11. Jiménez-Pérez, N.C.; Lorea-Hernández, F.G. Identity and delimitation of the American species of Litsea Lam. (Lauraceae): A morphological approach. Plant Syst. Evol., 2009, 283(1-2), 19-32. doi: 10.1007/s00606-009-0218-0
  12. Vallverdú, C.; Vila, R.; Cruz, S.M.; Cáceres, A.; Cañigueral, S. Composition of the essential oil from leaves of Litsea guatemalensis. Flavour Fragrance J., 2005, 20(4), 415-418. doi: 10.1002/ffj.1446
  13. Cruz, S.M.; Mérida, M.; Pérez, F.; Santizo, A.; Cáceres, A.; Apel, M.; Henriquez, A. Chemical composition of essential oil of Litsea guatemalensis (Mexican bay) from different provenances of Guatemala. Acta Hortic., 2012, (964), 47-57. doi: 10.17660/ActaHortic.2012.964.5
  14. Azhar, M.A.M.; Salleh, W.M.N.W. Chemical composition and biological activities of essential oils of the genus Litsea (Lauraceae)-a review. ACS Agric. Conspec. Sci., 2020, 85, 97-103.
  15. Simão da Silva, K.A.B.; Klein-Junior, L.C.; Cruz, S.M.; Cáceres, A.; Quintão, N.L.M.; Monache, F.D.; Cechinel-Filho, V. Anti-inflammatory and anti-hyperalgesic evaluation of the condiment laurel (Litsea guatemalensis Mez.) and its chemical composition. Food Chem., 2012, 132(4), 1980-1986. doi: 10.1016/j.foodchem.2011.12.036
  16. Nathan, C.F. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest., 1987, 80(6), 1550-1560. doi: 10.1172/JCI113241 PMID: 2445780
  17. Marvin (version 19.17.0), developed by ChemAxon. 2019. Available from: http://www.chemaxon.com/products/marvin/
  18. RDKit: Open-source cheminformatics developed by Greg Landrum. 2018. Available from: http://www.rdkit.org
  19. Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. Available from: http://avogadro.cc/
  20. Research Collaboratory for Structural Bioinformatics. (5 de julio de 2018). The Protein Data Bank. Available from: https://www.rcsb.org
  21. Release, S. 2020-2: Maestro; Schrödinger, LLC: New York, NY, 2020.
  22. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25, 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
  23. Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M.C.R.; Radak, B.K.; Skeel, R.D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L.V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 2020, 153(4), 044130. doi: 10.1063/5.0014475 PMID: 32752662
  24. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol., 1997, 267(3), 727-748. doi: 10.1006/jmbi.1996.0897 PMID: 9126849
  25. Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expand-ing the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534. doi: 10.1093/nar/gkab294 PMID: 33950214
  26. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. Available from: http://www.R-project.org/
  27. Ursu, O.; Rayan, A.; Goldblum, A.; Oprea, T.I. Understanding drug‐likeness. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(5), 760-781. doi: 10.1002/wcms.52
  28. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
  29. Estrada, H.; Ruiz, K.N.G.; Medina, J.D. Anti-inflammatory activity of natural products. Bol. Lat. Amer. Caribe Plant. Med. Arom., 2011, 10, 182-217.
  30. Muller, P.; Lena, G.; Boilard, E.; Bezzine, S.; Lambeau, G.; Guichard, G.; Rognan, D. In silico-guided target identifi-cation of a scaffold-focused library: 1,3,5-triazepan-2,6-diones as novel phospholipase A2 inhibitors. J. Med. Chem., 2006, 49(23), 6768-6778. doi: 10.1021/jm0606589 PMID: 17154507
  31. Leban, J.; Vitt, D. Human dihydroorotate dehydrogenase inhibitors, a novel approach for the treatment of autoimmune and inflammatory diseases. Arzneimittelforschung, 2011, 61(1), 66-72. doi: 10.1055/s-0031-1296169 PMID: 21355448
  32. Munier-Lehmann, H.; Vidalain, P.O.; Tangy, F.; Janin, Y.L. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem., 2013, 56(8), 3148-3167. doi: 10.1021/jm301848w PMID: 23452331
  33. Xu, D.; Meroueh, S.O. Effect of binding pose and modeled structures on SVMGen and glidescore enrichment of chemical libraries. J. Chem. Inf. Model., 2016, 56(6), 1139-1151. doi: 10.1021/acs.jcim.5b00709 PMID: 27154487
  34. Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: Cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079. doi: 10.1021/bi1003298 PMID: 20669977
  35. Gogoi, D.; Bezbaruah, R.L.; Bordoloi, M.; Sarmah, R.; Bora, T.C. Insights from the docking analysis of biologically active compounds from plant Litsea Genus as potential COX-2 inhibitors. Bioinformation, 2012, 8(17), 812-815. doi: 10.6026/97320630008812 PMID: 23139590
  36. Kulagowski, J.J.; Blair, W.; Bull, R.J.; Chang, C.; Deshmukh, G.; Dyke, H.J.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Harrison, T.K.; Hewitt, P.R.; Liimatta, M.; Hurley, C.A.; Johnson, A.; Johnson, T.; Kenny, J.R.; Bir Kohli, P.; Maxey, R.J.; Mendonca, R.; Mortara, K.; Murray, J.; Narukulla, R.; Shia, S.; Steffek, M.; Ubhayakar, S.; Ultsch, M.; van Abbema, A.; Ward, S.I.; Waszkowycz, B.; Zak, M. Identification of imidazo-pyrrolopyridines as novel and potent JAK1 inhibitors. J. Med. Chem., 2012, 55(12), 5901-5921. doi: 10.1021/jm300438j PMID: 22591402
  37. Brzozowski, A.M.; Pike, A.C.W.; Dauter, Z.; Hubbard, R.E.; Bonn, T.; Engström, O.; Öhman, L.; Greene, G.L.; Gustafsson, J.Å.; Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 1997, 389(6652), 753-758. doi: 10.1038/39645 PMID: 9338790
  38. Carson, M.W.; Luz, J.G.; Suen, C.; Montrose, C.; Zink, R.; Ruan, X.; Cheng, C.; Cole, H.; Adrian, M.D.; Kohlman, D.T.; Mabry, T.; Snyder, N.; Condon, B.; Maletic, M.; Clawson, D.; Pustilnik, A.; Coghlan, M.J. Glucocorticoid receptor modulators informed by crystallography lead to a new rationale for receptor selectivity, function, and implications for structure-based design. J. Med. Chem., 2014, 57(3), 849-860. doi: 10.1021/jm401616g PMID: 24446728

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers