Understanding the Artemia Salina (Brine Shrimp) Test: Pharmacological Significance and Global Impact


如何引用文章

全文:

详细

Background:The microplate benchtop brine shrimp test (BST) has been widely used for screening and bio-guided isolation of many active compounds, including natural products. Although the interpretation given to the results appears dissimilar, our findings suggest a correlation between positive results with a specific mechanism of action.

Objective:This study aimed to evaluate drugs belonging to fifteen pharmacological categories having diverse mechanisms of action and carry out a bibliometric analysis of over 700 citations related to microwell BST.

Methods:Test compounds were evaluated in a serial dilution on the microwell BST using healthy nauplii of Artemia salina and after 24 hrs of exposition, the number of alive and dead nauplii was determined, and the LC50 was estimated. A metric study regarding the citations of the BST miniaturized method, sorted by type of documents cited, contributing country, and interpretation of results was conducted on 706 selected citations found in Google Scholar.

Results:Out of 206 drugs tested belonging to fifteen pharmacological categories, twenty-six showed LC50 valuep <000 µM, most of them belonging to the category of antineoplastic drugs; compounds with different therapeutical uses were found to be cytotoxic as well. A bibliometric analysis showed 706 documents citing the miniaturized BST; 78% of them belonged to academic laboratories from developing countries located on all continents, 63% interpreted their results as cytotoxic activity and 35% indicated general toxicity assessment.

Conclusion:BST is a simple, affordable, benchtop assay, capable of detecting cytotoxic drugs with specific mechanisms of action, such as protein synthesis inhibition, antimitotic, DNA binding, topoisomerase I inhibitors, and caspases cascade interfering drugs. The microwell BST is a technique that is used worldwide for the bio-guided isolation of cytotoxic compounds from different sources.

作者简介

Dionisio Olmedo

Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá

Email: info@benthamscience.net

Yelkaira Vasquez

Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia, Universidad de Panamá

Email: info@benthamscience.net

Juan Morán

Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá

Email: info@benthamscience.net

Estela De León

Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá

Email: info@benthamscience.net

Catherina Caballero-George

Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP),

Email: info@benthamscience.net

Pablo Solís

Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia,, Universidad de Panamá

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med., 1982, 45(5), 31-34. doi: 10.1055/s-2007-971236
  2. Solís, P.; Wright, C.; Anderson, M.; Gupta, M.; Phillipson, J. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med., 1993, 59(3), 250-252. doi: 10.1055/s-2006-959661 PMID: 8316592
  3. Vanhaecke, P. The ARC-Test: a standardized short-term routine toxicity test with Artemia nauplii. Methodology and evaluation. Ecotoxicol. Test Marine. Environ., 1984, 1984, 143-157.
  4. McLaughlin, J.L. Bench-top bioassays for the discovery of bioactive compounds in higher plants. Brenesia, 1991, 34, 1-14.
  5. McLaughlin, J.L.; Rogers, L.L.; Anderson, J.E. The use of biological assays to evaluate botanicals. Drug Inf. J., 1998, 32(2), 513-524. doi: 10.1177/009286159803200223
  6. Anderson, J.E.; Goetz, C.M.; McLaughlin, J.L.; Suffness, M. A blind comparison of simple bench-top bioassays and human tumour cell cytotoxicities as antitumor prescreens. Phytochem. Anal., 1991, 2(3), 107-111. doi: 10.1002/pca.2800020303
  7. Carballo, J.; Hernández-Inda, Z.L.; Pérez, P.; García-Grávalos, M.D. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol., 2002, 2(1), 17. doi: 10.1186/1472-6750-2-17 PMID: 12270067
  8. Sarker, S.D.; Savchenko, T.; Whiting, P.; Šik, V.; Lafont, R.; Dinan, L. Occurrence of ecdysteroids in the genus Centaurea (Compositae): 20-hydroxyecdysone from Centaurea moschata. Biochem. Syst. Ecol., 1997, 25(4), 367-368. doi: 10.1016/S0305-1978(97)00018-5
  9. Sarker, S.D.; Dinan, L.; Šik, V.; Underwood, E.; Waterman, P.G. Moschamide: An unusual alkaloid from the seeds of Centaurea moschata. Tetrahedron Lett., 1998, 39(11), 1421-1424. a doi: 10.1016/S0040-4039(97)10818-8
  10. Sarker, S.D.; Dinan, L.; Šik, V.; Rees, H.H. Moschatine: an unusual steroidal glycoside from centaurea moschata. Phytochemistry, 1998, 48(6), 1039-1043. b doi: 10.1016/S0031-9422(97)01038-8
  11. Padmaja, R.; Arun, P.C.; Prashanth, D.; Deepak, M.; Amit, A.; Anjana, M. Brine shrimp lethality bioassay of selected Indian medicinal plants. Fitoterapia, 2002, 73(6), 508-510. doi: 10.1016/S0367-326X(02)00182-X PMID: 12385875
  12. Kumarasamy, Y.; Fergusson, M.E.; Nahar, L.; Sarker, S.D. Bioactivity of moschamindole from Centaurea moschata. Pharm. Biol., 2002, 40(4), 307-310. doi: 10.1076/phbi.40.4.307.8467
  13. Moshi, M.J.; Cosam, J.C.; Mbwambo, Z.H.; Kapingu, M.; Nkunya, M.H.H. Testing beyond ethnomedical claims: Brine shrimp lethality of some tanzanian plants. Pharm. Biol., 2004, 42(7), 547-551. doi: 10.3109/13880200490897920
  14. Sheikh, C.; Hossain, M.S.; Easmin, M.S.; Islam, M.S.; Rashid, M. Evaluation of in vitro antimicrobial and in vivo cytotoxic properties of some novel titanium-based coordination complexes. Biol. Pharm. Bull., 2004, 27(5), 710-713. doi: 10.1248/bpb.27.710 PMID: 15133251
  15. Wanyoike, G.N.; Chhabra, S.C.; Lang’at-Thoruwa, C.C.; Omar, S.A. Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. J. Ethnopharmacol., 2004, 90(1), 129-133. doi: 10.1016/j.jep.2003.09.047 PMID: 14698520
  16. Déciga-Campos, M.; Rivero-Cruz, I.; Arriaga-Alba, M.; Castañeda-Corral, G.; Angeles-López, G.E.; Navarrete, A.; Mata, R. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J. Ethnopharmacol., 2007, 110(2), 334-342. doi: 10.1016/j.jep.2006.10.001 PMID: 17101253
  17. McGaw, L.J.; Steenkamp, V.; Eloff, J.N. Evaluation of Athrixia bush tea for cytotoxicity, antioxidant activity, caffeine content and presence of pyrrolizidine alkaloids. J. Ethnopharmacol., 2007, 110(1), 16-22. doi: 10.1016/j.jep.2006.08.029 PMID: 17045437
  18. Ahmad, B.; Ali, N.; Shumaila, B.; Choudhary, M.I. Biological activities of aerial parts of Tylophorahirsuta Wall. Afr. J. Biotechnol., 2009, 8(18), 4627-4631.
  19. Apu, A.S.; Muhit, M.A.; Tareq, S.M.; Pathan, A.H.; Jamaluddin, A.T.M.; Ahmed, M. Pathan, A.H.: Jamaluddin, A.T.M.; Ahmed M. Antimicrobial activity and brine shrimp lethality bioassay of the leaves extract of Dillenia indica Linn. J. Young Pharm., 2010, 2(1), 50-53. doi: 10.4103/0975-1483.62213 PMID: 21331191
  20. Muhit, M.A.; Apu, A.S.; Islam, S.; Ahmed, M. Cytotoxic and antimicrobial activity of the crude extract of Abutilon indicum. Int. J. Pharmacogn. Phytochem. Res., 2010, 2(1), 1-4.
  21. Abu, H.; Zulfiker, M.S.; Laizuman, N.; Razibul, H.; Nizam, U.; Nahid, H.; Sohel, R. In vitro antibacterial, antifungal and cytotoxic activity of Scoparia dulcis L. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 198-203.
  22. Kabir, M.S.H.; Mahamoud, M.S.; Chakrabarty, N.; Ahmad, S.; Masum, M.A.A.; Hoque, M.A.; Hossain, M.M.; Rahman, M.M.; Uddin, M.M.N. Antithrombotic and cytotoxic activities of four Bangladeshi plants and PASS prediction of their isolated compounds. J. Basic Clin. Physiol. Pharmacol., 2016, 27(6), 659-666. doi: 10.1515/jbcpp-2015-0144 PMID: 27371821
  23. Tania Sultana, ; Priyanka, A.K.; Sultana, T.; Kawsar, H.; Sumon, H.U.; Sohel, D. In vitro antimicrobial, antioxidant and cytotoxic activities of Polygonum orientale (Bishkatali). J. Pharm. Nutr. Sci., 2016, 6(3), 112-119. doi: 10.6000/1927-5951.2016.06.03.5
  24. Kivçak, B.; Mert, T.; Öztürk, H.T. Antimicrobial and cytotoxic activities of Ceratonia siliqua L. extracts. Turk. J. Biol., 2016, 26, 197-200.
  25. Jamil, S.; Khan, R.A.; Afroz, S.; Ahmed, S. Phytochemistry, Brine shrimp lethality and mice acute oral toxicity studies on seed extracts of Vernonia anthelmintica. Pak. J. Pharm. Sci., 2016, 29(6), 2053-2057. PMID: 28375123
  26. Ogbole, O.O.; Aliu, L.O.; Abiodun, O.O.; Ajaiyeoba, E.O. Alphaamylase inhibition and brine shrimp lethality activities of nine medicinal plant extracts from South-West Nigerian ethnomedicine. J. Herbs Spices Med. Plants, 2016, 22(4), 319-326. doi: 10.1080/10496475.2016.1214941
  27. Wang, C.Y.; Wang, K.L.; Qian, P.Y.; Xu, Y.; Chen, M.; Zheng, J.J.; Liu, M.; Shao, C.L.; Wang, C.Y. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea. AMB Express, 2016, 6(1), 102. doi: 10.1186/s13568-016-0272-2 PMID: 27785778
  28. Wang, M.; Jin, J.; Li, L.; Cao, F.; Wang, C.; Wang, C.Y. Cembranoid diterpenes from the south China sea soft coral Sinularia compacta. Chem. Nat. Compd., 2017, 53(1), 181-184. doi: 10.1007/s10600-017-1944-0
  29. Morshed, M.H.; Das, P.K.; Roy, A.K.; Ibrahim, M. Cytotoxicity of four active dyes against Artemia salina Leach. J. Eng. Sci., 2018, 09(2), 55-59.
  30. Orumwensodia, K.O.; Uadia, P.O.; Choudhary, M.I. Phytotoxicity, cytotoxicity and chemical composition of Spondias mombin Linn. Stem bark. Clinical Phytoscience, 2021, 7(1), 59. doi: 10.1186/s40816-021-00297-x
  31. Addae-Kyereme, J.; Croft, S.L.; Kendrick, H.; Wright, C.W. Antiplasmodial activities of some Ghanaian plants traditionally used for fever/malaria treatment and of some alkaloids isolated from Pleiocarpa mutica; in vivo antimalarial activity of pleiocarpine. J. Ethnopharmacol., 2001, 76(1), 99-103. doi: 10.1016/S0378-8741(01)00212-4 PMID: 11378289
  32. Kirira, P.G.; Rukunga, G.M.; Wanyonyi, A.W.; Muregi, F.M.; Gathirwa, J.W.; Muthaura, C.N.; Omar, S.A.; Tolo, F.; Mungai, G.M.; Ndiege, I.O. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi Districts of Kenya. J. Ethnopharmacol., 2006, 106(3), 403-407. doi: 10.1016/j.jep.2006.01.017 PMID: 16530996
  33. Ajaiyeoba, E.O.; Abiodun, O.O.; Falade, M.O.; Ogbole, N.O.; Ashidi, J.S.; Happi, C.T.; Akinboye, D.O. In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine, 2006, 13(4), 295-298. doi: 10.1016/j.phymed.2005.01.015 PMID: 16492535
  34. del Rayo Camacho, M.; Mata, R.; Castañeda, P.; Kirby, G.C.; Warhurst, D.C.; Croft, S.L.; Phillipson, J.D. Bioactive compounds from Celaenodendron mexicanum. Planta Med., 2000, 66(5), 463-468. doi: 10.1055/s-2000-8598 PMID: 10909269
  35. https://scholar.google.com/https://scholar.google.com/citations? view_op=view_citation&hl=en&user=gZHXHS0AAAAJ&citation_for_view=gZHXHS0AAAAJ:j3f4tGmQtD8C 5th July, 2023.
  36. Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res., 2021, 133(2), 285-296. doi: 10.1016/j.jbusres.2021.04.070
  37. Ralhan, R.; Kaur, J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat., 2007, 17(9), 1061-1075. doi: 10.1517/13543776.17.9.1061
  38. Warwick, G.P. The mechanism of action of alkylating agents. Cancer Res., 1963, 23, 1315-1333. PMID: 14070386
  39. Fattahi, N.; Ramazani, A.; Hamidi, M.; Parsa, M.; Rostamizadeh, K.; Rashidzadeh, H. Enhancement of the brain delivery of methotrexate with administration of mid-chain ester prodrugs: in vitro and in vivo studies. Int. J. Pharm., 2021, 600, 120479. doi: 10.1016/j.ijpharm.2021.120479 PMID: 33722757
  40. Raka, S.C.; Rahman, A.; Hussain, F.; Rahman, S.M.A. Synthesis, characterization and in vitro, in vivo, in silico biological evaluations of substituted benzimidazole derivatives. Saudi J. Biol. Sci., 2022, 29(1), 239-250. doi: 10.1016/j.sjbs.2021.08.082 PMID: 35002414
  41. Al-Mahmoud, M.S.; Alali, F.Q.; Tawaha, K.; Qasaymeh, R.M. Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): A Jordanian meadow saffron. Nat. Prod. Res., 2006, 20(2), 153-160. doi: 10.1080/14786410500046224 PMID: 16319009
  42. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer, 2010, 10(3), 194-204. doi: 10.1038/nrc2803 PMID: 20147901
  43. Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martínez, R.A.; Cánovas-Díaz, M.; de Diego Puente, T. A compressive review about taxol: history and future challenges. Molecules, 2020, 25(24), 5986. doi: 10.3390/molecules25245986
  44. Yang, C.H.; Horwitz, S.B. Taxol: The first microtubule stabilizing agent. Int. J. Mol. Sci., 2017, 18(8), 173. doi: 10.3390/ijms18081733
  45. van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1101-1112. doi: 10.1007/s00280-015-2903-8 PMID: 26563258
  46. Cortese, F.; Bhattacharyya, B.; Wolff, J. Podophyllotoxin as a probe for the colchicine binding site of tubulin. J. Biol. Chem., 1977, 252(4), 1134-1140. doi: 10.1016/S0021-9258(17)40631-4 PMID: 14143
  47. Macias-Silva, M.; Vazquez-Victorio, G.; Hernandez-Damian, J. Anisomycinis a multifunctional drug: more than just a tool to inhibit protein synthesis. Curr. Chem. Biol., 2010, 4(2), 124-132. doi: 10.2174/187231310791170793
  48. Törocsik, B.; Szeberényi, J. Anisomycin uses multiple mechanisms to stimulate mitogen-activated protein kinases and gene expression and to inhibit neuronal differentiation in PC12 pheochromocytoma cells. Eur. J. Neurosci., 2000, 12(2), 527-532.
  49. Li, Y.; Hu, J.; Song, H.; Wu, T. Antibiotic anisomycin selectively targets leukemia cell lines and patient samples through suppressing Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun., 2018, 505(3), 858-864. doi: 10.1016/j.bbrc.2018.09.183 PMID: 30301525
  50. Gürel, G.; Blaha, G.; Moore, P.B.; Steitz, T.A. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. J. Mol. Biol., 2009, 389(1), 146-156. doi: 10.1016/j.jmb.2009.04.005 PMID: 19362093
  51. Yakhni, M.; Briat, A.; El Guerrab, A.; Furtado, L.; Kwiatkowski, F.; Miot-Noirault, E.; Cachin, F.; Penault-Llorca, F.; Radosevic-Robin, N. Homoharringtonine, an approved anti-leukemia drug, suppresses triple negative breast cancer growth through a rapid reduction of anti-apoptotic protein abundance. Am. J. Cancer Res., 2019, 9(5), 1043-1060. PMID: 31218111
  52. He, Y.; Yao, W.; Liu, P.; Li, J.; Wang, Q. Expression profiles of the p38 MAPK signaling pathway from Chinese shrimp Fenneropenaeus chinensis in response to viral and bacterial infections. Gene, 2018, 642, 381-388. doi: 10.1016/j.gene.2017.11.050 PMID: 29155327
  53. Anglin, I.E.; Glassman, D.T.; Kyprianou, N. Induction of prostate apoptosis by α1-adrenoceptor antagonists: mechanistic significance of the quinazoline component. Prostate Cancer Prostatic Dis., 2002, 5(2), 88-95. doi: 10.1038/sj.pcan.4500561 PMID: 12496995
  54. Kyprianou, N. Doxazosin and terazosin suppress prostate growth by inducing apoptosis: clinical significance. J. Urol., 2003, 169(4), 1520-1525. doi: 10.1097/01.ju.0000033280.29453.72 PMID: 12629407
  55. Yang, Y.F.; Wu, C.C.; Chen, W.P.; Chen, Y.L.; Su, M.J. Prazosin induces p53-mediated autophagic cell death in H9C2 cells. Naunyn Schmiedebergs Arch. Pharmacol., 2011, 384(2), 209-216. doi: 10.1007/s00210-011-0657-3 PMID: 21614555
  56. Tan, Z.; Dohi, S.; Chen, J.; Banno, Y.; Nozawa, Y. Involvement of the mitogen-activated protein kinase family in tetracaine-induced PC12 cell death. Anesthesiology, 2002, 96(5), 1191-1201. doi: 10.1097/00000542-200205000-00024 PMID: 11981161
  57. Fafalios, A.; Akhavan, A.; Parwani, A.V.; Bies, R.R.; McHugh, K.J.; Pflug, B.R. Translocator protein blockade reduces prostate tumor growth. Clin. Cancer Res., 2009, 15(19), 6177-6184. doi: 10.1158/1078-0432.CCR-09-0844 PMID: 19789311
  58. Lee, D.H.; Kang, S.K.; Lee, R.H.; Ryu, J.M.; Park, H.Y.; Choi, H.S.; Bae, Y.C.; Suh, K.T.; Kim, Y.K.; Jung, J.S. Effects of peripheral benzodiazepine receptor ligands on proliferation and differentiation of human mesenchymal stem cells. J. Cell. Physiol., 2004, 198(1), 91-99. doi: 10.1002/jcp.10391 PMID: 14584048
  59. Kugawa, F.; Ueno, A.; Aoki, M. Apoptosis of NG108-15 cells induced by buprenorphine hydrochloride occurs via the caspase-3 pathway. Biol. Pharm. Bull., 2000, 23(8), 930-935. doi: 10.1248/bpb.23.930 PMID: 10963298
  60. Kugawa, F.; Arae, K.; Ueno, A.; Aoki, M. Buprenorphine hydrochloride induces apoptosis in NG108-15 nerve cells. Eur. J. Pharmacol., 1998, 347(1), 105-112. doi: 10.1016/S0014-2999(98)00080-6 PMID: 9650855
  61. Kugawa, F.; Aoki, M. Expression of the polyubiquitin gene early in the buprenorphine hydrochloride-induced apoptosis of NG108-15 cells. DNA Seq., 2004, 15(4), 237-245. doi: 10.1080/10425170400006372 PMID: 15620210
  62. Jeong, H.S.; Choi, H.Y.; Lee, E.R.; Kim, J.H.; Jeon, K.; Lee, H.J.; Cho, S.G. Involvement of caspase-9 in autophagy-mediated cell survival pathway. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(1), 80-90. doi: 10.1016/j.bbamcr.2010.09.016 PMID: 20888374
  63. Noureini, S.; Wink, M. Antiproliferative effect of the isoquinoline alkaloid papaverine in hepatocarcinoma HepG-2 cells--inhibition of telomerase and induction of senescence. Molecules, 2014, 19(8), 11846-11859. doi: 10.3390/molecules190811846 PMID: 25111025
  64. Afzali, M.; Ghaeli, P.; Khanavi, M.; Parsa, M.; Montazeri, H.; Ghahremani, M.H.; Ostad, S.N. Non-addictive opium alkaloids selectively induce apoptosis in cancer cells compared to normal cells. Daru, 2015, 23(1), 16. doi: 10.1186/s40199-015-0101-1 PMID: 25890335
  65. Mao, X.; Hou, T.; Cao, B.; Wang, W.; Li, Z.; Chen, S.; Fei, M.; Hurren, R.; Gronda, M.; Wu, D.; Trudel, S.; Schimmer, A.D. The tricyclic antidepressant amitriptyline inhibits D-cyclin transactivation and induces myeloma cell apoptosis by inhibiting histone deacetylases: in vitro and in silico evidence. Mol. Pharmacol., 2011, 79(4), 672-680. doi: 10.1124/mol.110.068122 PMID: 21220410
  66. Pula, G.; Pistilli, A.; Montagnoli, C.; Stabile, A.M.; Rambotti, M.G.; Rende, M. The tricyclic antidepressant amitriptyline is cytotoxic to HTB114 human leiomyosarcoma and induces p75NTR-dependent apoptosis. Anticancer Drugs, 2013, 24(9), 899-910. doi: 10.1097/CAD.0b013e328364312f PMID: 23872911
  67. Xia, Z.; Bergstrand, A.; DePierre, J.W.; Nässberger, L. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J. Biochem. Mol. Toxicol., 1999, 13(6), 338-347. doi: 10.1002/(SICI)1099-0461(1999)13:63.0.CO;2-7 PMID: 10487422
  68. Hsu, S.; Huang, C.; Chen, J.; Cheng, H.; Chang, H.; Jiann, B.; Lin, K.; Wang, J.; Ho, C.; Jan, C. Effect of nortriptylineon intracellular Ca2+ handling and proliferation in human osteosarcoma. Basic Clin. Pharmacol. Toxicol., 2004, 95, 124-130.
  69. Yuan, S.Y.; Cheng, C.L.; Ho, H.C.; Wang, S.S.; Chiu, K.Y.; Su, C.K.; Ou, Y.C.; Lin, C.C. Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo. Eur. J. Pharmacol., 2015, 761, 309-320. doi: 10.1016/j.ejphar.2015.06.007 PMID: 26086857
  70. López-Lázaro, M. Digitoxin as an anticancer agent with selectivity for cancer cells: possible mechanisms involved. Expert Opin. Ther. Targets, 2007, 11(8), 1043-1053. doi: 10.1517/14728222.11.8.1043 PMID: 17665977
  71. Kometiani, P.; Liu, L.; Askari, A. Digitalis-induced signaling byNa+/K+-ATPasein human breast cancer cells. Mol. Pharmacol., 2005, 67(3), 929-936. doi: 10.1124/mol.104.007302
  72. Haux, J. Digitoxin is a potential anticancer agent for several types of cancer. Med. Hypotheses, 1999, 53(6), 543-548. doi: 10.1054/mehy.1999.0985 PMID: 10687899
  73. Elbaz, H.A.; Stueckle, T.A.; Tse, W.; Rojanasakul, Y.; Dinu, C.Z. Digitoxin and its analogs as novel cancer therapeutics. Exp. Hematol. Oncol., 2012, 1(1), 4. doi: 10.1186/2162-3619-1-4 PMID: 23210930
  74. Xie, Z.; Cai, T. Na+-K+--ATPase-mediated signal transduction: from protein interaction to cellular function. Mol. Interv., 2003, 3(3), 157-168. doi: 10.1124/mi.3.3.157 PMID: 14993422
  75. Mohammadi, K.; Kometiani, P.; Xie, Z.; Askari, A. Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J. Biol. Chem., 2001, 276(45), 42050-42056. doi: 10.1074/jbc.M107892200 PMID: 11562372
  76. Sun, C.; Zhao, W.; Wang, X.; Sun, Y.; Chen, X. A pharmacological review of dicoumarol: An old natural anticoagulant agent. Pharmacol. Res., 2020, 160, 105193. doi: 10.1016/j.phrs.2020.105193 PMID: 32911072
  77. Du, J.; Daniels, D.H.; Asbury, C.; Venkataraman, S.; Liu, J.; Spitz, D.R.; Oberley, L.W.; Cullen, J.J. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J. Biol. Chem., 2006, 281(49), 37416-37426. doi: 10.1074/jbc.M605063200 PMID: 17040906
  78. Sudhakaran, M.; Parra, M.R.; Stoub, H.; Gallo, K.A.; Doseff, A.I. Apigenin by targeting hnRNPA2 sensitizes triple-negative breast cancer spheroids to doxorubicin-induced apoptosis and regulates expression of ABCC4 and ABCG2 drug efflux transporters. Biochem. Pharmacol., 2020, 182, 114259. doi: 10.1016/j.bcp.2020.114259 PMID: 33011162
  79. Chiu, Y.H.; Hsu, S.H.; Hsu, H.W.; Huang, K.C.; Liu, W.; Wu, C.Y.; Huang, W.P.; Chen, J.; Chen, B.H.; Chiu, C.C. Human non small cell lung cancer cells can be sensitized to camptothecin by modulating autophagy. Int. J. Oncol., 2018, 53(5), 1967-1979. doi: 10.3892/ijo.2018.4523 PMID: 30106130
  80. de Souza, P.L.; Castillo, M.; Myers, C.E. Enhancement of paclitaxel activity against hormone-refractory prostate cancer cells in vitro and in vivo by quinacrine. Br. J. Cancer, 1997, 75(11), 1593-1600. doi: 10.1038/bjc.1997.272 PMID: 9184173
  81. Dermawan, J.K.T.; Gurova, K.; Pink, J.; Dowlati, A.; De, S.; Narla, G.; Sharma, N.; Stark, G.R. Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer. Mol. Cancer Ther., 2014, 13(9), 2203-2214. doi: 10.1158/1535-7163.MCT-14-0013 PMID: 25028470
  82. Samanta, A.; Ravindran, G.; Sarkar, A. Quinacrine causes apoptosis in human cancer cell lines through caspase-mediated pathway and regulation of small-GTPase. J. Biosci., 2020, 45(1), 43. doi: 10.1007/s12038-020-0011-3 PMID: 32098922
  83. Chen, R.; Huo, L.; Jaiswal, Y.; Huang, J.; Zhong, Z.; Zhong, J.; Williams, L.; Xia, X.; Liang, Y.; Yan, Z. Design, Synthesis, Antimicrobial, and Anticancer activities of acridine thiosemicarbazides derivatives. Molecules, 2019, 24(11), 2065. doi: 10.3390/molecules24112065 PMID: 31151235
  84. Komatsu, S.; Miyazawa, K.; Moriya, S.; Takase, A.; Naito, M.; Inazu, M.; Kohno, N.; Itoh, M.; Tomoda, A. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int. J. Oncol., 2012, 40(4), 1029-1039. doi: 10.3892/ijo.2011.1317 PMID: 22200786
  85. Zhou, B.; Xia, M.; Wang, B.; Thapa, N.; Gan, L.; Sun, C.; Guo, E.; Huang, J.; Lu, Y.; Cai, H. Clarithromycin synergizes with cisplatin to inhibit ovarian cancer growth in vitro and in vivo. J. Ovarian Res., 2019, 12(1), 107. doi: 10.1186/s13048-019-0570-9 PMID: 31703731
  86. Seo, E.J.; Sugimoto, Y.; Greten, H.J.; Efferth, T. Repurposing of Bromocriptine for Cancer Therapy. Front. Pharmacol., 2018, 9, 1030. doi: 10.3389/fphar.2018.01030 PMID: 30349477

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024