Design and Diversity Analysis of Chemical Libraries in Drug Discovery


Cite item

Full Text

Abstract

Chemical libraries and compound data sets are among the main inputs to start the drug discovery process at universities, research institutes, and the pharmaceutical industry. The approach used in the design of compound libraries, the chemical information they possess, and the representation of structures, play a fundamental role in the development of studies: chemoinformatics, food informatics, in silico pharmacokinetics, computational toxicology, bioinformatics, and molecular modeling to generate computational hits that will continue the optimization process of drug candidates. The prospects for growth in drug discovery and development processes in chemical, biotechnological, and pharmaceutical companies began a few years ago by integrating computational tools with artificial intelligence methodologies. It is anticipated that it will increase the number of drugs approved by regulatory agencies shortly.

About the authors

Dionisio Olmedo

Centro de Investigaciones Farmacognósticas de la Flora Panameña (CIFLORPAN), Facultad de Farmacia,, Universidad de Panamá,

Author for correspondence.
Email: info@benthamscience.net

Armando Durant-Archibold

Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP

Email: info@benthamscience.net

José López-Pérez

CESIFAR, Departamento de Farmacología, Facultad de Medicina, Universidad de Panamá, Ciudad de Panamá

Email: info@benthamscience.net

José Medina-Franco

Departamento de Farmacia, Escuela de Química, Universidad Nacional Autónoma de México, Ciudad de México

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sarker, S.D.; Nahar, L. Application of computation in building dereplicated phytochemical libraries. In: Computational Phytochemistry; Elsevier, 2018.
  2. Walters, W.P. Virtual chemical libraries. J. Med. Chem., 2019, 62(3), 1116-1124. doi: 10.1021/acs.jmedchem.8b01048 PMID: 30148631
  3. Targetmol, New compounds. 2023. Available from: targetmol.com/all-compound-libraries.html
  4. Van Hilten, N.; Chevillard, F.; Kolb, P. Virtual compound libraries in computer-assisted drug discovery. J. Chem. Inf. Model., 2019, 59(2), 644-651. doi: 10.1021/acs.jcim.8b00737 PMID: 30624918
  5. Sauban Ghani, S. A comprehensive review of database resources in chemistry. Eclét. Quím., 2020, 45(3), 57-68. doi: 10.26850/1678-4618eqj.v45.3.2020.p57-68
  6. de la Vega de León, A.; Lounkine, E.; Vogt, M.; Bajorath, J. Design of diverse and focused compound libraries.Tutorials in Chemoinformatics, 1st ed; Varnek, A., Ed.; John Wiley and Sons Ltd: New Jersey, 2017, pp. 85-101. doi: 10.1002/9781119161110.ch5
  7. Koutsoukas, A.; Paricharak, S.; Galloway, W.R.; Spring, D.R.; Ijzerman, A.P.; Glen, R.C.; Marcus, D.; Bender, A.A. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. J. Chem. Inf. Model., 2014, 54(1), 230-242.
  8. Petrone, P.M.; Wassermann, A.M.; Lounkine, E.; Kutchukian, P.; Simms, B.; Jenkins, J.; Selzer, P.; Glick, M. Biodiversity of small molecules--a new perspective in screening set selection. Drug Discov. Today, 2013, 18(13-14), 674-680. doi: 10.1016/j.drudis.2013.02.005 PMID: 23454345
  9. Shelat, A.A.; Guy, R.K. Scaffold composition and biological relevance of screening libraries. Nat. Chem. Biol., 2007, 3(8), 442-446. doi: 10.1038/nchembio0807-442 PMID: 17637770
  10. Fitzgerald, S.H.; Sabat, M.; Geysen, H.M. Diversity space and its application to library selection and design. J. Chem. Inf. Model., 2006, 46(4), 1588-1597. doi: 10.1021/ci060066z PMID: 16859290
  11. Pascolutti, M.; Quinn, R.J. Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discov. Today, 2014, 19(3), 215-221. doi: 10.1016/j.drudis.2013.10.013 PMID: 24171951
  12. Camp, D.; Davis, R.A.; Campitelli, M.; Ebdon, J.; Quinn, R.J. Drug-like properties: guiding principles for the design of natural product libraries. J. Nat. Prod., 2012, 75(1), 72-81. doi: 10.1021/np200687v PMID: 22204643
  13. Butler, M.S.; Fontaine, F.; Cooper, M.A. Natural product libraries: assembly, maintenance, and screening. Planta Med., 2014, 80(14), 1161-1170. PMID: 24310213
  14. Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model., 2010, 50(5), 742-754. doi: 10.1021/ci100050t
  15. Díaz-Eufracio, B.I.; Palomino-Hernández, O.; Arredondo-Sánchez, A.; Medina-Franco, J.L. D-Peptide Builder: a web service to enumerate, analyze, and visualize the chemical space of combinatorial peptide libraries. Mol. Inform., 2020, 39, e202000035. doi: 10.1002/minf.202000035
  16. Saldívar-González, F.I.; Huerta-García, C.S.; Medina-Franco, J.L. Chemoinformatics-based enumeration of chemical libraries: a tutorial. J. Cheminform., 2020, 12(1), 64. doi: 10.1186/s13321-020-00466-z PMID: 33372622
  17. Medina-Franco, J.L.; Martinez-Mayorga, K.; Meurice, N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin. Drug Discov., 2014, 9(2), 151-165. doi: 10.1517/17460441.2014.872624 PMID: 24350718
  18. Skalic, M.; Jiménez, J.; Sabbadin, D.; De Fabritiis, G. Shape-Based Generative Modeling for de Novo Drug Design. J. Chem. Inf. Model., 2019, 59(3), 1205-1214. doi: 10.1021/acs.jcim.8b00706 PMID: 30762364
  19. Kumar, A.; Zhang, K.Y.J. Advances in the development of shape similarity methods and their application in drug discovery. Front Chem., 2018, 6, 315. doi: 10.3389/fchem.2018.00315 PMID: 30090808
  20. Kaserer, T.; Beck, K.R.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore models and pharmacophore-based virtual screening: concepts and applications exemplified on hydroxysteroid dehydrogenases. Molecules, 2015, 20(12), 22799-22832. doi: 10.3390/molecules201219880 PMID: 26703541
  21. Naderi, M.; Alvin, C.; Ding, Y.; Mukhopadhyay, S.; Brylinski, M. A graph-based approach to construct target-focused libraries for virtual screening. J. Cheminform., 2016, 8(1), 14. doi: 10.1186/s13321-016-0126-6 PMID: 26981157
  22. Holth, T.A.D.; Walters, M.A.; Hutt, O.E.; Georg, G.I. Diversity oriented library synthesis from steviol and isosteviol-derived scaffolds. ACS Comb. Sci., 2020, 22(3), 150-155. doi: 10.1021/acscombsci.9b00186 PMID: 32065745
  23. Arya, P.; Quevillon, S.; Joseph, R.; Wei, C.Q.; Gan, Z.; Parisien, M.; Sesmilo, E.; Reddy, P.T.; Chen, Z.X.; Durieux, P.; Laforce, D.; Campeau, L.C.; Khadem, S.; Couve-Bonnaire, S.; Kumar, R.; Sharma, U.; Leek, D.M.; Daroszewska, M.; Barnes, M.L. Toward the library generation of natural product-like polycyclic derivatives by stereocontrolled diversity-oriented synthesis. Pure Appl. Chem., 2005, 77(1), 163-178. doi: 10.1351/pac200577010163
  24. Bosc, N.; Muller, C.; Hoffer, L.; Lagorce, D.; Bourg, S.; Derviaux, C.; Gourdel, M.E.; Rain, J.C.; Miller, T.W.; Villoutreix, B.O.; Miteva, M.A.; Bonnet, P.; Morelli, X.; Sperandio, O.; Roche, P. Fr- PPIChem: an academic compound library dedicated to protein- protein interactions. ACS Chem. Biol., 2020, 15(6), 1566-1574. doi: 10.1021/acschembio.0c00179 PMID: 32320205
  25. Zhang, X.; Betzi, S.; Morelli, X.; Roche, P. Focused chemical libraries--design and enrichment: an example of protein-protein interaction chemical space. Future Med. Chem., 2014, 6(11), 1291-1307. doi: 10.4155/fmc.14.57 PMID: 24773599
  26. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform., 2017, 9(1), 48. doi: 10.1186/s13321-017-0235-x PMID: 29086083
  27. Putin, E.; Asadulaev, A.; Ivanenkov, Y.; Aladinskiy, V. Sanchez- Lengeling, B.; Aspuru-Guzik, A.; Zhavoronkov, A. Reinforced Adversarial Neural Computer for de Novo Molecular Design. J. Chem. Inf. Model., 2018, 58(6), 1194-1204. doi: 10.1021/acs.jcim.7b00690 PMID: 29762023
  28. Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D. Aguilera- Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci., 2018, 4(2), 268-276. doi: 10.1021/acscentsci.7b00572 PMID: 29532027
  29. Lusher, S.J.; McGuire, R.; van Schaik, R.C.; Nicholson, C.D.; de Vlieg, J. Data-driven medicinal chemistry in the era of big data. Drug Discov. Today, 2014, 19(7), 859-868. doi: 10.1016/j.drudis.2013.12.004 PMID: 24361338
  30. Paricharak, S.; Méndez-Lucio, O.; Chavan Ravindranath, A.; Bender, A.; IJzerman, A.P.; van Westen, G.J.P. Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Brief. Bioinform., 2018, 19(2), 277-285. PMID: 27789427
  31. Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci., 2018, 4(1), 120-131. doi: 10.1021/acscentsci.7b00512
  32. Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inform., 2018, 37(1-2), 1700153. doi: 10.1002/minf.201700153 PMID: 29319225
  33. Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; O’Meara, M.J.; Che, T.; Algaa, E.; Tolmachova, K.; Tolmachev, A.A.; Shoichet, B.K.; Roth, B.L.; Irwin, J.J. Ultra-large library docking for discovering new chemotypes. Nature, 2019, 566(7743), 224-229. doi: 10.1038/s41586-019-0917-9 PMID: 30728502
  34. Available from: nmrshiftdb.nmr.uni-koeln.de/html
  35. Interactive databases. Available from: sdbs.db.aist.go.jp/sdbs/cgibin/direct_frame_top.cgi.html
  36. Available from: np-mrd.org/html
  37. Available from: c13.materia-medica.net/html
  38. Perez-Riverol, Y.; Wang, R.; Hermjakob, H.; Müller, M.; Vesada, V.; Vizcaíno, J.A. Open source libraries and frameworks for mass spectrometry based proteomics: a developer’s perspective. Biochim. Biophys. Acta, 2014, 1844(1 Pt A), 63-76. doi: 10.1016/j.bbapap.2013.02.032 PMID: 23467006
  39. Gabriel, J.; Höfner, G.; Wanner, K.T. A library screening strategy combining the concepts of ms binding assays and affinity selection mass spectrometry. Front Chem., 2019, 7, 665. doi: 10.3389/fchem.2019.00665 PMID: 31637233
  40. McLaren, D.G.; Shah, V.; Wisniewski, T.; Ghislain, L.; Liu, C.; Zhang, H.; Saldanha, S.A. High-throughput mass spectrometry for hit identification: current landscape and future perspectives. SLAS Discov. Adv. Life Sci., 2021, 26(2), 168-191.
  41. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 1988, 28(1), 31-36. doi: 10.1021/ci00057a005
  42. Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comput. Sci., 1989, 29(2), 97-101. doi: 10.1021/ci00062a008
  43. Weininger, D. SMILES a language for molecules and reactions. Handbook of chemoinformatics; Gasteiger, J., Ed.; Wiley-VCH Verlag GmbH & Co. KgaA: Germany, 2003, pp. 80-102. doi: 10.1002/9783527618279.ch5
  44. Hanson, R.M. Jmol SMILES and Jmol SMARTS: specifications and applications. J. Cheminform., 2016, 8(1), 50. doi: 10.1186/s13321-016-0160-4 PMID: 28316648
  45. Winter, R.; Montanari, F.; Noé, F.; Clevert, D.A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem. Sci. (Camb.), 2018, 10(6), 1692-1701. doi: 10.1039/C8SC04175J PMID: 30842833
  46. Arús-Pous, J.; Patronov, A.; Bjerrum, E.J.; Tyrchan, C.; Reymond, J.L.; Chen, H.; Engkvist, O. SMILES-based deep generative Scaffold decorator for de-novo drug design. J. Cheminform., 2020, 12(1), 38. doi: 10.1186/s13321-020-00441-8 PMID: 33431013
  47. Weininger, D. SMILES. 3. DEPICT. Graphical depiction of chemical structures. J. Chem. Inf. Model., 1990, 30(3), 237-243.
  48. O’Boyle, N.M. Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI. J. Cheminform., 2012, 4, 22.
  49. Schmidt, R.; Ehmki, E.S.R.; Ohm, F.; Ehrlich, H.C.; Mashychev, A.; Rarey, M. Comparing molecular patterns using the example of SMARTS: theory and algorithms. J. Chem. Inf. Model., 2019, 59(6), 2560-2571. doi: 10.1021/acs.jcim.9b00250 PMID: 31120751
  50. McNaught, A. The IUPAC international chemical identifier. Chem. Int., 2006, 28(6), 12-15.
  51. Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC international chemical identifier. J. Cheminform., 2015, 7(1), 23. doi: 10.1186/s13321-015-0068-4 PMID: 26136848
  52. Inchi-trust.org/html Available from: https://www.inchi-trust.org/html
  53. Ullmann, J.R. An Algorithm for subgraph isomorphism. J. Assoc. Comput. Mach., 1976, 23(1), 31-42. doi: 10.1145/321921.321925
  54. Mahmood, O.; Mansimov, E.; Bonneau, R.; Cho, K. Masked graph modeling for molecule generation. Nat. Commun., 2021, 12(1), 3156. doi: 10.1038/s41467-021-23415-2 PMID: 34039973
  55. Yirik, M.A.; Steinbeck, C. Chemical graph generators. PLOS Comput. Biol., 2021, 17(1), e1008504. doi: 10.1371/journal.pcbi.1008504 PMID: 33400699
  56. Butina, D. Unsupervised data base clustering based on daylight’s fingerprint and tanimoto similarity: a fast and automated way to cluster small and large data sets. J. Chem. Inf. Comput. Sci., 1999, 39(4), 747-750. doi: 10.1021/ci9803381
  57. Lim, J.; Hwang, S.Y.; Moon, S.; Kim, S.; Kim, W.Y. Scaffold-based molecular design with a graph generative model. Chem. Sci. (Camb.), 2019, 11(4), 1153-1164. doi: 10.1039/C9SC04503A PMID: 34084372
  58. Shampa Raghunathan, S.; Priyakumar, U.D. Molecular representations for machine learning applications in chemistry. Int. J. Quantum Chem., 2021, 2021, e26870. doi: 10.1002/qua.26870
  59. Mercado, R.; Rastemo, T.; Lindelöf, E.; Klambauer, G.; Engkvist, O.; Chen, H.; Bjerrum, E.J. Graph networks for molecular design. Mach. Learn.: Sci. Technol., 2020, 2, 025023.
  60. David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: a review and practical guide. J. Cheminform., 2020, 12(1), 56. doi: 10.1186/s13321-020-00460-5 PMID: 33431035
  61. Warr, W.A.; Nicklaus, M.C.; Nicolaou, C.A.; Rarey, M. Exploration of ultralarge compound collections for drug discovery. J. Chem. Inf. Model., 2022, 62(9), 2021-2034. doi: 10.1021/acs.jcim.2c00224
  62. Kawabata, T. Build-up algorithm for atomic correspondence between chemical structures. J. Chem. Info. Model., 2011, 51, 1775-1787. doi: 10.1021/ci2001023 PMID: 21736325
  63. Schneider, P.; Schneider, G. De Novo design at the edge of chaos. J. Med. Chem., 2016, 59(9), 4077-4086. doi: 10.1021/acs.jmedchem.5b01849 PMID: 26881908
  64. Schneider, G.; Clark, D.E. automated de novo drug design: are we nearly there yet? Angew. Chem. Int. Ed. Engl., 2019, 58(32), 10792-10803. doi: 10.1002/anie.201814681 PMID: 30730601
  65. Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci., 2021, 22(4), 1676. doi: 10.3390/ijms22041676 PMID: 33562347
  66. Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv., 2018, 4(7), eaap7885. doi: 10.1126/sciadv.aap7885 PMID: 30050984
  67. Li, Y.; Pei, J.; Lai, L. Structure-based de novo drug design using 3D deep generative models. Chem. Sci. (Camb.), 2021, 12(41), 13664-13675. doi: 10.1039/D1SC04444C PMID: 34760151
  68. Spiegel, J.O.; Durrant, J.D. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. J. Cheminform., 2020, 12(1), 25. doi: 10.1186/s13321-020-00429-4 PMID: 33431021
  69. Domenico, A.; Nicola, G.; Daniela, T.; Fulvio, C.; Nicola, A.; Orazio, N. De novo drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J. Chem. Inf. Model., 2020, 60(10), 4582-4593. doi: 10.1021/acs.jcim.0c00517 PMID: 32845150
  70. Ghiandoni, G.M.; Bodkin, M.J.; Chen, B.; Hristozov, D.; Wallace, J.E.A.; Webster, J.; Gillet, V.J. Enhancing reaction-based de novo design using a multi-label reaction class recommender. J. Comput. Aided Mol. Des., 2020, 34(7), 783-803. doi: 10.1007/s10822-020-00300-6 PMID: 32112286
  71. Kidd, S.L.; Osberger, T.J.; Mateu, N.; Sore, H.F.; Spring, D.R. Recent applications of diversity-oriented synthesis toward novel, 3-dimensional fragment collections. Front Chem., 2018, 6, 460. doi: 10.3389/fchem.2018.00460 PMID: 30386766
  72. Janes, J.; Young, M.E.; Chen, E.; Rogers, N.H.; Burgstaller-Muehlbacher, S.; Hughes, L.D.; Love, M.S.; Hull, M.V.; Kuhen, K.L.; Woods, A.K.; Joseph, S.B.; Petrassi, H.M.; McNamara, C.W.; Tremblay, M.S.; Su, A.I.; Schultz, P.G.; Chatterjee, A.K. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc. Natl. Acad. Sci. USA, 2018, 115(42), 10750-10755. doi: 10.1073/pnas.1810137115 PMID: 30282735
  73. Meyers, J.; Fabian, B.; Brown, N. De novo molecular design and generative models. Drug Discov. Today, 2021, 26(11), 2707-2715. doi: 10.1016/j.drudis.2021.05.019 PMID: 34082136
  74. Dunn, T.B.; Seabra, G.M.; Kim, T.D.; Juárez-Mercado, K.E.; Li, C.; Medina-Franco, J.L.; Miranda-Quintana, R.A. Diversity and chemical library networks of large data sets. J. Chem. Inf. Model., 2022, 62(9), 2186-2201. doi: 10.1021/acs.jcim.1c01013 PMID: 34723537
  75. Medina-Franco, J.L.; Sánchez-Cruz, N.; López-López, E. Díaz- Eufracio, B.I. Progress on open chemoinformatic tools for expanding and exploring the chemical space. J. Comput. Aided Mol. Des., 2022, 36(5), 341-354. doi: 10.1007/s10822-021-00399-1 PMID: 34143323
  76. Quartararo, A.J.; Gates, Z.P.; Somsen, B.A.; Hartrampf, N.; Ye, X.; Shimada, A.; Kajihara, Y.; Ottmann, C.; Pentelute, B.L. Ultra-large chemical libraries for the discovery of high-affinity peptide binders. Nat. Commun., 2020, 11(1), 3183. doi: 10.1038/s41467-020-16920-3 PMID: 32576815
  77. Grygorenko, O.O.; Radchenko, D.S.; Dziuba, I.; Chuprina, A.; Gubina, K.E.; Moroz, Y.S. Generating multibillion chemical space of readily accessible screening compounds. iScience, 2020, 23(11), 101681. doi: 10.1016/j.isci.2020.101681 PMID: 33145486
  78. Varnek, A.; Baskin, I.I. Chemoinformatics as a theoretical chemistry Discipline. Mol. Inform., 2011, 30(1), 20-32. doi: 10.1002/minf.201000100 PMID: 27467875
  79. Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol., 2007, 11(3), 287-292. doi: 10.1016/j.cbpa.2007.05.013 PMID: 17548234
  80. Saldívar-González, F.I.; Medina-Franco, J.L. Chemoinformatics approaches to assess chemical diversity and complexity of small molecules; Small Mol. Drug Discov, 2020, pp. 83-102. doi: 10.1016/B978-0-12-818349-6.00003-0
  81. Medina-Franco, J.L. Grand challenges of computer-aided drug design: the road ahead. Front. Drug Discov., 2021, 17, 28551. doi: 10.3389/fddsv.2021.728551
  82. Núñez, M.J.; Díaz-Eufracio, B.I.; Medina-Franco, J.L.; Olmedo, D.A. Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2. RSC Advances, 2021, 11(26), 16051-16064. doi: 10.1039/D1RA01507A PMID: 35481202
  83. Ruddigkeit, L.; Blum, L.C.; Reymond, J.L. Visualization and virtual screening of the chemical universe database GDB-17. J. Chem. Inf. Model., 2013, 53(1), 56-65. doi: 10.1021/ci300535x PMID: 23259841
  84. Arús-Pous, J.; Blaschke, T.; Ulander, S.; Reymond, J.L.; Chen, H.; Engkvist, O. Exploring the GDB-13 chemical space using deep generative models. J. Cheminform., 2019, 11(1), 20. doi: 10.1186/s13321-019-0341-z PMID: 30868314
  85. Olmedo, D.A.; González-Medina, M.; Gupta, M.P.; Medina-Franco, J.L. Cheminformatic characterization of natural products from Panama. Mol. Divers., 2017, 21(4), 779-789. doi: 10.1007/s11030-017-9781-4 PMID: 28831697
  86. Saldívar-González, F.I.; Pilón-Jiménez, B.A.; Medina-Franco, J.L. Chemical space of naturally occurring compounds. Phys. Sci. Rev., 2018, 4, 20180103.
  87. Rodrígues, T. Harnessing the potential of natural products in drug discovery from a cheminformatics vantage point. Org. Biomol. Chem., 2017, 15(44), 9275-9282. doi: 10.1039/C7OB02193C PMID: 29085945
  88. Osolodkin, D.I.; Radchenko, E.V.; Orlov, A.A.; Voronkov, A.E.; Palyulin, V.A.; Zefirov, N.S. Progress in visual representations of chemical space. Expert Opin. Drug Discov., 2015, 10(9), 959-973. doi: 10.1517/17460441.2015.1060216 PMID: 26094796
  89. Capecchi, A.; Reymond, J.L. Peptides in chemical space. Med. Drug Discov., 2021, 9, 100081. doi: 10.1016/j.medidd.2021.100081
  90. Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a large food chemical database: chemical space, diversity, and complexity. F1000 Res., 2018, 2018, 7.
  91. Bayer, S.; Mayer, A.I.; Borgonovo, G.; Morini, G.; Di Pizio, A.; Bassoli, A. Chemoinformatics view on bitter taste receptor agonists in food. J. Agric. Food Chem., 2021, 69(46), 13916-13924. doi: 10.1021/acs.jafc.1c05057 PMID: 34762411
  92. Schuffenhauer, A.; Varin, T. Rule-based classification of chemical structures by scaffold. Mol. Inform., 2011, 30(8), 646-664. doi: 10.1002/minf.201100078 PMID: 27467257
  93. Medina-Franco, J.L.; Martínez-Mayorga, K.; Bender, A.; Scior, T. Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb. Sci., 2009, 28, 1551-1560. doi: 10.1002/qsar.200960069
  94. Bhurta, D.; Bharate, S.B. Analyzing the scaffold diversity of cyclin- dependent kinase inhibitors and revisiting the clinical and preclinical pipeline. Med. Res. Rev., 2022, 42(2), 654-709. doi: 10.1002/med.21856 PMID: 34605036
  95. Maldonado, A.G.; Doucet, J.P.; Petitjean, M.; Fan, B.T. Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol. Divers., 2006, 10(1), 39-79. doi: 10.1007/s11030-006-8697-1 PMID: 16404528
  96. Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20. doi: 10.1186/s13321-015-0069-3 PMID: 26052348
  97. Yongye, A.B.; Byler, K.; Santos, R.; Martínez-Mayorga, K.; Maggiora, G.M.; Medina-Franco, J.L. Consensus models of activity landscapes with multiple chemical, conformer, and property representations. J. Chem. Inf. Model., 2011, 51(6), 1259-1270. doi: 10.1021/ci200081k PMID: 21609014
  98. Medina-Franco, J.L.; Saldívar-González, F.I. Cheminformatics to characterize pharmacologically active natural products. Biomolecules, 2020, 10(11), 1566. doi: 10.3390/biom10111566 PMID: 33213003
  99. Zagidullin, B.; Wang, Z.; Guan, Y.; Pitkänen, E.; Tang, J. Comparative analysis of molecular fingerprints in prediction of drug combination effects. Brief. Bioinform., 2021, 22(6), bbab291. doi: 10.1093/bib/bbab291 PMID: 34401895
  100. Tran, T.D.; Ogbourne, S.M.; Brooks, P.R.; Sánchez-Cruz, N.; Medina-Franco, J.L.; Quinn, R.J. Lessons from exploring chemical space and chemical diversity of propolis components. Int. J. Mol. Sci., 2020, 21(14), 4988. doi: 10.3390/ijms21144988 PMID: 32679731
  101. Olmedo, D.A.; Medina-Franco, J.L. Chemoinformatic Approach: The Case of Natural Products of Panama. Cheminformatics and its Applications; Stefaniu, A.; Rasul, A; Hussain, G., Ed.; Intechopen Ltd.: The United Kingdom, 2020, pp. 83-106. doi: 10.5772/intechopen.87779
  102. Amberg, A.; Riefke, B.; Schlotterbeck, G.; Ross, A.; Senn, H.; Dieterle, F.; Keck, M. NMR and MS methods for metabolomics; Drug Saf. Eval, 2017, pp. 229-259. doi: 10.1007/978-1-4939-7172-5_13
  103. Schlotterbeck, G.; Ross, A.; Dieterle, F.; Senn, H. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics, 2006, 7(7), 1055-1075. doi: 10.2217/14622416.7.7.1055 PMID: 17054416
  104. Yang, X.; Parker, D.; Whitehead, L.; Ryder, N.S.; Weidmann, B.; Stabile-Harris, M.; Kizer, D.; McKinnon, M.; Smellie, A.; Powers, D. A collaborative hit-to-lead investigation leveraging medicinal chemistry expertise with high throughput library design, synthesis and purification capabilities. Comb. Chem. High Throughput Screen., 2006, 9(2), 123-130. doi: 10.2174/138620706775541891 PMID: 16475970
  105. Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672. doi: 10.1093/nar/gkj067 PMID: 16381955
  106. Xia, X. Bioinformatics and drug discovery. Curr. Top. Med. Chem., 2017, 17(15), 1709-1726. doi: 10.2174/1568026617666161116143440 PMID: 27848897
  107. Romano, J.D.; Tatonetti, N.P. Informatics and computational methods in natural product drug discovery: a review and perspectives. Front. Genet., 2019, 10, 368. doi: 10.3389/fgene.2019.00368 PMID: 31114606
  108. Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Bhatia, S.; Al-Harrasi, A.; Zengin, G.; Babes, E.E.; Brisc, C.; Stoicescu, M.; Toma, M.M.; Sava, C.; Bungau, S.G. Bioinformatics accelerates the major tetrad: a real boost for the pharmaceutical industry. Int. J. Mol. Sci., 2021, 22(12), 6184. doi: 10.3390/ijms22126184 PMID: 34201152
  109. Wooller, S.K.; Benstead-Hume, G.; Chen, X.; Ali, Y.; Pearl, F.M.G. Bioinformatics in translational drug discovery. Biosci. Rep., 2017, 37(4), BSR20160180. doi: 10.1042/BSR20160180 PMID: 28487472
  110. Yan, Q. Translational Bioinformatics and Systems Biology Methods for Personalized Medicine. Methods Mol. Biol., 2010, 662, 167-168.
  111. Wu, F.; Zhou, Y.; Li, L.; Shen, X.; Chen, G.; Wang, X.; Liang, X.; Tan, M.; Huang, Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem., 2020, 8, 726. doi: 10.3389/fchem.2020.00726 PMID: 33062633
  112. Pérez Santín, E.; Rodríguez Solana, R.; González García, M.; García Suárez, M.D.M.; Blanco Díaz, G.D.; Cima Cabal, M.D.; Moreno Rojas, J.M.; López Sánchez, J.I. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2021, 11(5) doi: 10.1002/wcms.1516
  113. Jia, L.; Gao, H. Machine Learning for in silico ADMET prediction. Methods Mol. Biol., 2022, 2390, 447-460. doi: 10.1007/978-1-0716-1787-8_20 PMID: 34731482
  114. de Souza Neto, L.R.; Moreira-Filho, J.T.; Neves, B.J., Jr; Maidana, R.L.B.R.; Guimarães, A.C.R.; Furnham, N.; Andrade, C.H.; Silva, F.P., Jr In silico strategies to support fragment-to-lead optimization in drug discovery. Front Chem., 2020, 8, 93. doi: 10.3389/fchem.2020.00093 PMID: 32133344
  115. Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: a focus on BIOFACQUIM. ACS Omega, 2020, 5(26), 16076-16084. doi: 10.1021/acsomega.0c01581 PMID: 32656429
  116. Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 2017, 33(22), 3658-3660. doi: 10.1093/bioinformatics/btx491 PMID: 28961788
  117. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072. doi: 10.1021/acs.jmedchem.5b00104 PMID: 25860834
  118. Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov., 2020, 15(12), 1473-1487. doi: 10.1080/17460441.2020.1798926 PMID: 32735147
  119. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. doi: 10.1093/nar/gkab255 PMID: 33893803
  120. Venkatraman, V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J. Cheminform., 2021, 13(1), 75. doi: 10.1186/s13321-021-00557-5 PMID: 34583740
  121. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263. doi: 10.1093/nar/gky318 PMID: 29718510
  122. Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740. doi: 10.1021/jm901137j PMID: 20131845
  123. Baell, J.; Walters, M.A. Chemistry: Chemical con artists foil drug discovery. Nature, 2014, 513(7519), 481-483. doi: 10.1038/513481a PMID: 25254460
  124. Gilberg, E.; Jasial, S.; Stumpfe, D.; Dimova, D.; Bajorath, J. Highly promiscuous small molecules from biological screening assays include many pan-assay interference compounds but also candidates for polypharmacology. J. Med. Chem., 2016, 59(22), 10285-10290. doi: 10.1021/acs.jmedchem.6b01314 PMID: 27809519
  125. Jasial, S.; Hu, Y.; Bajorath, J. Determining the degree of promiscuity of extensively assayed compounds. PLoS One, 2016, 11(4), e0153873. doi: 10.1371/journal.pone.0153873 PMID: 27082988
  126. Sun, J.; Zhong, H.; Wang, K.; Li, N.; Chen, L. Gains from no real PAINS: Where ‘Fair Trial Strategy’ stands in the development of multi-target ligands. Acta Pharm. Sin. B, 2021, 11(11), 3417-3432. doi: 10.1016/j.apsb.2021.02.023 PMID: 34900527
  127. Baell, J.B.; Ferrins, L.; Falk, H.; Nikolakopoulos, G. PAINS: Relevance to tool compound discovery and fragment-based screening. Aust. J. Chem., 2013, 66(12), 1483-1494. doi: 10.1071/CH13551
  128. dos Santos, J.L.; Chin, C.M. Pan-assay interference compounds (pa1ins): warning signs in biochemical-pharmacological evaluations. Biochem. Pharmacol., 2015, 4, e173.
  129. Baell, J.B. Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). J. Nat. Prod., 2016, 79(3), 616-628. doi: 10.1021/acs.jnatprod.5b00947 PMID: 26900761
  130. Lagorce, D.; Oliveira, N.; Miteva, M.A.; Villoutreix, B.O. Panassay interference compounds (PAINS) that may not be too painful for chemical biology projects. Drug Discov. Today, 2017, 22(8), 1131-1133. doi: 10.1016/j.drudis.2017.05.017 PMID: 28676405
  131. Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017-Utility and Limitations. ACS Chem. Biol., 2018, 13(1), 36-44. doi: 10.1021/acschembio.7b00903 PMID: 29202222
  132. Gilberg, E.; Stumpfe, D.; Bajorath, J. Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity. F1000 Res., 2017, 6, 1505.
  133. Vidler, L.R.; Watson, I.A.; Margolis, B.J.; Cummins, D.J.; Brunavs, M. Investigating the behavior of published PAINS alerts using a pharmaceutical company data set. ACS Med. Chem. Lett., 2018, 9(8), 792-796. doi: 10.1021/acsmedchemlett.8b00097 PMID: 30128069
  134. Gilberg, E.; Stumpfe, D.; Bajorath, J. Activity profiles of analog series containing pan assay interference compounds. RSC Advances, 2017, 7(57), 35638-35647. doi: 10.1039/C7RA06736D
  135. Jasial, S.; Hu, Y.; Bajorath, J. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds. J. Med. Chem., 2017, 60(9), 3879-3886. doi: 10.1021/acs.jmedchem.7b00154 PMID: 28421750
  136. Capuzzi, S.J.; Muratov, E.N.; Tropsha, A. Phantom PAINS: problems with the utility of alerts for pan-assay interference compounds. J. Chem. Inf. Model., 2017, 57(3), 417-427. doi: 10.1021/acs.jcim.6b00465 PMID: 28165734
  137. Chakravorty, S.J.; Chan, J.; Greenwood, M.N.; Popa-Burke, I.; Remlinger, K.S.; Pickett, S.D.; Green, D.; Fillmore, M.C.; Dean, T.W.; Luengo, J.I.; Macarrón, R. Nuisance compounds, PAINS filters, and dark chemical matter in the GSK HTS collection. SLAS Disc. Adv. Life Sci., 2018, 35(6), 532-545.
  138. Koptelov, M.; Zimmermann, A. PrePeP: A Tool for the Identification and Characterization of Pan Assay Interference Compounds. 24th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Londres, United Kingdom2018, pp. 462-471. doi: 10.1145/3219819.3219849
  139. Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. Data Analysis, Machine Learning and Applications. Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation, GermanyMarch 7-9, 2007
  140. OEChem TK. Programming library for chemistry and cheminformatics. 2012. Available from: https://www.eyesopen.com/oechemtk
  141. Studio Team, R. RStudio: Integrated Development for R. RStudio, Inc.: Boston, MA , 2016.
  142. Bajorath, J. Evolution of assay interference concepts in drug discovery. Expert Opin. Drug Discov., 2021, 16(7), 719-721. doi: 10.1080/17460441.2021.1902983 PMID: 33733961
  143. Magalhães, P.R.; Reis, P.B.P.S.; Vila-Viçosa, D.; Machuqueiro, M.; Victor, B.L. Identification of pan-assay interference compounds (PAINS) using an MD-based protocol. Methods Mol. Biol., 2021, 2315, 263-271. doi: 10.1007/978-1-0716-1468-6_15 PMID: 34302681
  144. Matlock, M.K.; Hughes, T.B.; Dahlin, J.L.; Swamidass, S.J. Modeling small-molecule reactivity identifies promiscuous bioactive compounds. J. Chem. Inf. Model., 2018, 58(8), 1483-1500. doi: 10.1021/acs.jcim.8b00104 PMID: 29990427

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers