FOXD3 Suppresses the Proliferation of CRC Bone Metastatic Cells via the Ras/Raf/MEK/ERK Signaling Pathway


Cite item

Full Text

Abstract

Background:The improvements in the treatment of colorectal cancer (CRC) and prolongation of survival time have improved the incidence of bone metastasis. Forkhead box D3 (FOXD3) is involved in the development of CRC. However, the role and mechanism of FOXD3 in CRC bone metastases development are unknown.

Objective:Using the combined bioinformatics and cytology experimental analyses, this study aimed to explore the mechanistic role of FOXD3 in the bone metastasis of colon cancer, thereby aiding in the treatment of colon cancer bone metastasis and identification of drug-targeting markers.

Methods:First, the changes in the expression levels of the FOXD3 gene and differentially expressed genes (DEGs) between the colon cancer samples and colon cancer metastases were obtained from The Cancer Genome Atlas (TCGA) database. Then, the correlations of the FOXD3 gene with the DEGs were identified. Next, the effects of the FOXD3 on the proliferation and invasion abilities of colon cancer bone metastatic cells were identified using Cell Counting Kit-8 (CCK8) and Transwell cell migration assays, respectively. In addition, Western blot analysis was used to identify the expression levels of the proteins related to the EGFR/Ras/Raf/MEK/ERK (EGFR/ERK) signaling pathway and epithelial-to-mesenchymal transition (EMT).

Results:FOXD3 was downregulated in colon cancer and could interact with multiple DEGs in colon cancer bone metastases. FOXD3 gene knockdown could increase the proliferation of human colon cancer bone metastatic cells and their invasive ability. FOXD3 gene knockdown could activate the expression of EGFR/ERK signaling pathway-related proteins and inhibit/promote the expression of EMT-related proteins, which in turn promoted the proliferation and metastasis of LoVo cells from colon cancer bone metastases.

Conclusion:Overall, this study demonstrated that the downregulation of the FOXD3 gene might promote the proliferation of colon cancer bone metastatic cell lines through the EGFR/ERK pathway and promote their migration through EMT, thereby serving as a promising therapeutic target.

About the authors

Kangwei Wang

Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University

Author for correspondence.
Email: info@benthamscience.net

Yan Chu

Shanghai Fifth Hospital, Fudan University

Author for correspondence.
Email: info@benthamscience.net

Hongqiang Zhang

Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University

Email: info@benthamscience.net

Xinglong Qu

Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University

Email: info@benthamscience.net

Bing Wang

Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University

Email: info@benthamscience.net

Yu Han

Department of Oncological Surgery, Minhang Branch, Cancer Hospital, Fudan University

Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30. doi: 10.3322/caac.21590 PMID: 31912902
  2. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  3. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J., 2022, 135(5), 584-590. doi: 10.1097/CM9.0000000000002108 PMID: 35143424
  4. Jimi, S.; Yasui, T.; Hotokezaka, M.; Shimada, K.; Shinagawa, Y.; Shiozaki, H.; Tsutsumi, N.; Takeda, S. Clinical features and prognostic factors of bone metastases from colorectal cancer. Surg. Today, 2013, 43(7), 751-756. doi: 10.1007/s00595-012-0450-z PMID: 23224335
  5. Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population‐based analysis. Cancer Med., 2020, 9(1), 361-373. doi: 10.1002/cam4.2673 PMID: 31693304
  6. Kawamura, H.; Yamaguchi, T.; Yano, Y.; Hozumi, T.; Takaki, Y.; Matsumoto, H.; Nakano, D.; Takahashi, K. Characteristics and prognostic factors of bone metastasis in patients with colorectal cancer. Dis. Colon Rectum, 2018, 61(6), 673-678. doi: 10.1097/DCR.0000000000001071 PMID: 29722726
  7. Salim, H.; Akbar, N.S.; Zong, D.; Vaculova, A.H.; Lewensohn, R.; Moshfegh, A.; Viktorsson, K.; Zhivotovsky, B. miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br. J. Cancer, 2012, 107(8), 1361-1373. doi: 10.1038/bjc.2012.382 PMID: 22929890
  8. Herman, L.; Todeschini, A.L.; Veitia, R.A. Forkhead transcription factors in health and disease. Trends Genet., 2021, 37(5), 460-475. doi: 10.1016/j.tig.2020.11.003 PMID: 33303287
  9. Jin, Y.; Liang, Z.; Lou, H. The emerging roles of fox family transcription factors in chromosome replication, organization, and genome stability. Cells, 2020, 9(1), 258. doi: 10.3390/cells9010258 PMID: 31968679
  10. Costa, R.; Muccioli, S.; Brillo, V.; Bachmann, M.; Szabò, I.; Leanza, L. Mitochondrial dysfunction interferes with neural crest specification through the FoxD3 transcription factor. Pharmacol. Res., 2021, 164, 105385. doi: 10.1016/j.phrs.2020.105385 PMID: 33348025
  11. Zeng, Z.L.; Zhu, H.K.; He, L.F.; Xu, X.; Xie, A.; Zheng, E.K.; Ni, J.J.; Liu, J.T.; Zhao, G.F. Highly expressed lncRNA FOXD3-AS1 promotes non-small cell lung cancer progression via regulating miR-127-3p/mediator complex subunit 28 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2525-2538. doi: 10.26355/eurrev_202003_20520 PMID: 32196603
  12. Rosenbaum, S.R.; Knecht, M.; Mollaee, M.; Zhong, Z.; Erkes, D.A.; McCue, P.A.; Chervoneva, I.; Berger, A.C.; Lo, J.A.; Fisher, D.E.; Gershenwald, J.E.; Davies, M.A.; Purwin, T.J.; Aplin, A.E. FOXD3 regulates VISTA expression in melanoma. Cell Rep., 2020, 30(2), 510-524.e6. doi: 10.1016/j.celrep.2019.12.036 PMID: 31940493
  13. Zhao, H.; Chen, D.; Wang, J.; Yin, Y.; Gao, Q.; Zhang, Y. Downregulation of the transcription factor, FoxD3, is associated with lymph node metastases in invasive ductal carcinomas of the breast. Int. J. Clin. Exp. Pathol., 2014, 7(2), 670-676. PMID: 24551288
  14. Wu, H.; Shang, J.; Zhan, W.; Liu, J.; Ning, H.; Chen, N. miR-425-5p promotes cell proliferation, migration and invasion by directly targeting FOXD3 in hepatocellular carcinoma cells. Mol. Med. Rep., 2019, 20(2), 1883-1892. doi: 10.3892/mmr.2019.10427 PMID: 31257522
  15. Wu, Q.; Shi, M.; Meng, W.; Wang, Y.; Hui, P.; Ma, J. Long noncoding RNA FOXD3‐AS1 promotes colon adenocarcinoma progression and functions as a competing endogenous RNA to regulate SIRT1 by sponging miR‐135a‐5p. J. Cell. Physiol., 2019, 234(12), 21889-21902. doi: 10.1002/jcp.28752 PMID: 31058315
  16. Chen, Y.; Gao, H.; Li, Y. Inhibition of LncRNA FOXD3-AS1 suppresses the aggressive biological behaviors of thyroid cancer via elevating miR-296-5p and inactivating TGF-β1/Smads signaling pathway. Mol. Cell. Endocrinol., 2020, 500, 110634. doi: 10.1016/j.mce.2019.110634 PMID: 31678422
  17. Tompers, D.M.; Foreman, R.K.; Wang, Q.; Kumanova, M.; Labosky, P.A. Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo. Dev. Biol., 2005, 285(1), 126-137. doi: 10.1016/j.ydbio.2005.06.008 PMID: 16039639
  18. Xiao, L.; Shan, Y.; Ma, L.; Dunk, C.; Yu, Y.; Wei, Y. Tuning FOXD3 expression dose-dependently balances human embryonic stem cells between pluripotency and meso-endoderm fates. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(12), 118531. doi: 10.1016/j.bbamcr.2019.118531 PMID: 31415841
  19. Xie, X.; Xiong, G.; Chen, W.; Fu, H.; Li, M.; Cui, X. FOXD3 inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma through regulation of the PI3K–Akt pathway. Biochem. Cell Biol., 2020, 98(6), 653-660. doi: 10.1139/bcb-2020-0011 PMID: 32459973
  20. Xu, W.; Li, J.; Li, L.; Hou, T.; Cai, X.; Liu, T.; Yang, X.; Wei, H.; Jiang, C.; Xiao, J. FOXD3 suppresses tumor-initiating features in lung cancer via transcriptional repression of WDR5. Stem Cells, 2019, 37(5), 582-592. doi: 10.1002/stem.2984 PMID: 30703266
  21. He, G.; Hu, S.; Zhang, D.; Wu, P.; Zhu, X.; Xin, S.; Lu, G.; Ding, Y.; Liang, L. Hypermethylation of FOXD3 suppresses cell proliferation, invasion and metastasis in hepatocellular carcinoma. Exp. Mol. Pathol., 2015, 99(2), 374-382. doi: 10.1016/j.yexmp.2015.06.017 PMID: 26112097
  22. Chu, T.L.; Zhao, H.M.; Li, Y.; Chen, A.X.; Sun, X.; Ge, J. FoxD3 deficiency promotes breast cancer progression by induction of epithelial–mesenchymal transition. Biochem. Biophys. Res. Commun., 2014, 446(2), 580-584. doi: 10.1016/j.bbrc.2014.03.019 PMID: 24632201
  23. Xu, M.; Zhu, J.; Liu, S.; Wang, C.; Shi, Q.; Kuang, Y.; Fang, X.; Hu, X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis, 2020, 41(9), 1253-1262. doi: 10.1093/carcin/bgz198 PMID: 31784734
  24. Yan, J.H.; Zhao, C.L.; Ding, L.B.; Zhou, X. FOXD3 suppresses tumor growth and angiogenesis in non-small cell lung cancer. Biochem. Biophys. Res. Commun., 2015, 466(1), 111-116. doi: 10.1016/j.bbrc.2015.08.116 PMID: 26341266
  25. Liu, L.L.; Lu, S.X.; Li, M.; Li, L.Z.; Fu, J.; Hu, W.; Yang, Y.Z.; Luo, R.Z.; Zhang, C.Z.; Yun, J.P. FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget, 2014, 5(13), 5113-5124. doi: 10.18632/oncotarget.2089 PMID: 24970808
  26. Chen, X.; Gao, J.; Yu, Y.; Zhao, Z.; Pan, Y. LncRNA FOXD3-AS1 promotes proliferation, invasion and migration of cutaneous malignant melanoma via regulating miR-325/MAP3K2. Biomed. Pharmacother., 2019, 120, 109438. doi: 10.1016/j.biopha.2019.109438 PMID: 31541886
  27. Degirmenci, U.; Wang, M.; Hu, J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells, 2020, 9(1), 198. doi: 10.3390/cells9010198 PMID: 31941155
  28. Li, K.; Guo, Q.; Yang, J.; Chen, H.; Hu, K.; Zhao, J.; Zheng, S.; Pang, X.; Zhou, S.; Dang, Y.; Li, L. FOXD3 is a tumor suppressor of colon cancer by inhibiting EGFR-Ras-Raf-MEK-ERK signal pathway. Oncotarget, 2017, 8(3), 5048-5056. doi: 10.18632/oncotarget.13790 PMID: 27926503
  29. Prahallad, A.; Sun, C.; Huang, S.; Di Nicolantonio, F.; Salazar, R.; Zecchin, D.; Beijersbergen, R.L.; Bardelli, A.; Bernards, R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 2012, 483(7387), 100-103. doi: 10.1038/nature10868 PMID: 22281684
  30. Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007, 26(22), 3291-3310. doi: 10.1038/sj.onc.1210422 PMID: 17496923
  31. Yin, H.; Meng, T.; Zhou, L.; Zhao, F.; Li, X.; Li, Y.; Hu, M.; Chen, H.; Song, D. FOXD3 regulates anaplastic thyroid cancer progression. Oncotarget, 2017, 8(20), 33644-33651. doi: 10.18632/oncotarget.16853 PMID: 28430585

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers