Based on mRNA Sequencing Techniques to Explore the Molecular Mechanism of Buzhong Yiqi Decoction for Autoimmune Thyroiditis


Cite item

Full Text

Abstract

Objective:Autoimmune diseases (AD) account for a high percentage of the population. One of the most prevalent is autoimmune thyroiditis (AIT). However, the therapeutic effects of Buzhong Yiqi (BZYQ) decoction on AIT have not been studied yet. The majority of the present study was conducted on NOD.H-2h4 mice in an attempt to ascertain the therapeutic effects of BZYQ decoction on AIT.

Methods:The 0.05% sodium iodide water (NaI)-induced AIT mice model was established. A total of nine NOD.H-2h4 mice were randomly divided into three groups: the normal group provided with regular water, the model group drinking freely 0.05% NaI, and the treatment group treated with BZYQ decoction (9.56 g/kg) after NaI supplementation (NaI + BZYQ). BZYQ decoction was administered orally once daily for eight weeks. The thyroid histopathology test was used to measure the severity of lymphocytic infiltration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of anti-thyroglobulin antibody (TgAb), interleukin (IL)-1β, IL-6, and IL-17. The Illumina HiSeq X sequencing platform was utilized to analyze the thyroid tissue by mRNA expression profiles. Bioinformatics analysis was used to investigate the biological function of the differentially expressed mRNAs. In addition, the expression of Carbonyl Reductase 1 (CBR1), 6-Pyruvoyltetrahydropterin Synthase (PTS), Major Histocompatibility Complex, Class II (H2-EB1), Interleukin 23 Subunit Alpha (IL-23A), Interleukin 6 Receptor (IL-6RA), and Janus Kinase 1 (JAK1) was measured by quantitative real-time PCR (qRT-PCR).

Results:The treatment group exhibited significantly lower rates of thyroiditis and lymphocyte infiltration compared to the model group. Serum levels of TgAb, IL-1β, IL-6, and IL-17 were significantly higher in the model group, but they fell dramatically after BZYQ decoction administration. According to our results, 495 genes showed differential expression in the model group compared to the control group. Six hundred twenty-five genes were significantly deregulated in the treatment group compared to the model group. Bioinformatic analysis showed that most mRNAs were associated with immune-inflammatory responses and were involved in multiple signaling pathways, including folate biosynthesis and the Th17 cell differentiation pathway. CBR1, PTS, H2-EB1, IL- 23A, IL-6RA and JAK1 mRNA participated in folate biosynthesis and the Th17 cell differentiation pathway. The qRT-PCR analysis confirmed that the above mRNAs were regulated in the model group compared to the treatment group

Conclusion:The results of this investigation have revealed novel insights into the molecular mechanism of action of BZYQ decoction against AIT. The mechanism may be partially attributed to the regulation of mRNA expression and pathways.

About the authors

Ziyu Liu

Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications,, Liaoning University of Traditional Chinese Medicine

Email: info@benthamscience.net

Nan Song

Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine

Email: info@benthamscience.net

Mingshan Li

Department of Urology, Fourth Affiliated Hospital of China Medical University,

Email: info@benthamscience.net

Zhimin Wang

Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine

Email: info@benthamscience.net

Huimin Cao

Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine

Email: info@benthamscience.net

Tianshu Gao

Department of Endocrinology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine

Email: info@benthamscience.net

Xiao Yang

Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bakalov, V.K.; Gutin, L.; Cheng, C.M.; Zhou, J.; Sheth, P.; Shah, K.; Arepalli, S.; Vanderhoof, V.; Nelson, L.M.; Bondy, C.A. Autoimmune disorders in women with turner syndrome and women with karyotypically normal primary ovarian insufficiency. J. Autoimmun., 2012, 38(4), 315-321. doi: 10.1016/j.jaut.2012.01.015 PMID: 22342295
  2. Wu, Y.; Shi, X.; Tang, X.; Li, Y.; Tong, N.; Wang, G.; Zhang, J.; Wang, Y.; Ba, J.; Chen, B.; Du, J.; He, L.; Lai, X.; Li, Y.; Chi, H.; Liao, E.; Liu, C.; Liu, L.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Xue, Y.; Yan, L.; Yang, J.; Yang, L.; Yao, Y.; Ye, Z.; Zhang, Q.; Zhang, L.; Zhu, J.; Zhu, M.; Teng, W.; Shan, Z. The correlation between metabolic disorders and tpoab/tgab: A cross-sectional population-based study. Endocr. Pract., 2020, 26(8), 869-882. doi: 10.4158/EP-2020-0008 PMID: 33471678
  3. Ehlers, M.; Jordan, A-L.; Feldkamp, J.; Fritzen, R.; Quadbeck, B.; Haase, M.; Allelein, S.; Schmid, C.; Schott, M. Anti-thyroperoxidase antibody levels >500 iu/ml indicate a moderately increased risk for developing hypothyroidism in autoimmune thyroiditis. Horm. Metab. Res., 2016, 48(10), 623-629. doi: 10.1055/s-0042-112815 PMID: 27607246
  4. Lin, J.D.; Fang, W.F.; Tang, K.T.; Cheng, C.W. Effects of exogenous melatonin on clinical and pathological features of a human thyroglobulin-induced experimental autoimmune thyroiditis mouse model. Sci. Rep., 2019, 9(1), 5886-5898. doi: 10.1038/s41598-019-42442-0 PMID: 30971749
  5. Lu, D.; Yao, J.; Yuan, G.; Gao, Y.; Zhang, J.; Guo, X. Immune checkpoint inhibitor-related new-onset thyroid dysfunction: A retrospective analysis using the US FDA adverse event reporting system. Oncologist, 2022, 27(2), e126-e132. doi: 10.1093/oncolo/oyab043 PMID: 35641200
  6. Kwon, H.; Kim, W.G.; Jeon, M.J.; Han, M.; Kim, M.; Park, S.; Kim, T.Y.; Shong, Y.K.; Kim, W.B. Age-specific reference interval of serum TSH levels is high in adolescence in an iodine excess area: Korea national health and nutrition examination survey data. Endocrine, 2017, 57(3), 445-454. doi: 10.1007/s12020-017-1375-5 PMID: 28762216
  7. Hu, S.; Rayman, M.P. Multiple nutritional factors and the risk of hashimoto’s thyroiditis. Thyroid, 2017, 27(5), 597-610. doi: 10.1089/thy.2016.0635 PMID: 28290237
  8. Luo, Y.; Kawashima, A.; Ishido, Y.; Yoshihara, A.; Oda, K.; Hiroi, N.; Ito, T.; Ishii, N.; Suzuki, K. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int. J. Mol. Sci., 2014, 15(7), 12895-12912. doi: 10.3390/ijms150712895 PMID: 25050783
  9. Liu, X.; Mao, J.; Han, C.; Peng, S.; Li, C.; Jin, T.; Fan, C.; Shan, Z.; Teng, W. CXCR4 antagonist AMD3100 ameliorates thyroid damage in autoimmune thyroiditis in NOD.H-2h4 mice. Mol. Med. Rep., 2016, 13(4), 3604-3612. doi: 10.3892/mmr.2016.4965 PMID: 26935473
  10. Rasooly, L.; Burek, C.L.; Rose, N.R. Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin. Immunol. Immunopathol., 1996, 81(3), 287-292. doi: 10.1006/clin.1996.0191 PMID: 8938107
  11. Braley-Mullen, H.; Yu, S. Early requirement for B cells for development of spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Immunol., 2000, 165(12), 7262-7269. doi: 10.4049/jimmunol.165.12.7262 PMID: 11120860
  12. Rose, N.R.; Bonita, R.; Burek, C.L. Iodine: An environmental trigger of thyroiditis. Autoimmun. Rev., 2002, 1(1-2), 97-103. doi: 10.1016/S1568-9972(01)00016-7 PMID: 12849065
  13. Yanyun, M.A.; Tang, H. Meta analysis of treatment of hashimoto thyroiditis from spleen. Acta Chin. Med., 2019, 34, 123-134.
  14. Xiao, Y.; Nan, S.; Zhimin, W. BuzhongYiqi decoction ameliorate immune injury of autoimmune thyroiditis mice by regulating miR-155 on the Th17 cells. Zhonghua Zhongyiyao Xuekan, 2019, 5, 36-39.
  15. Li, J.; Qi, G.; Liu, Y. Effect of Buzhong Yiqi decoction on anti-acetylcholine receptor antibody and clinical status in juvenile ocular myasthenia gravis. Medicine, 2021, 100(44), e27688. doi: 10.1097/MD.0000000000027688 PMID: 34871253
  16. Mursyidah, A.K.; Hafizzudin-Fedeli, M.; Nor Muhammad, N.A.; Latiff, A.; Firdaus-Raih, M.; Wan, K.L. Dissecting the biology of rafflesia species: Current progress and future directions made possible with high-throughput sequencing data. Plant Cell Physiol., 2023, 64(4), 368-377. doi: 10.1093/pcp/pcad004 PMID: 36611267
  17. Saben, J.; Kang, P.; Zhong, Y.; Thakali, K.M.; Gomez-Acevedo, H.; Borengasser, S.J.; Andres, A.; Badger, T.M.; Shankar, K. RNA-seq analysis of the rat placentation site reveals maternal obesity-associated changes in placental and offspring thyroid hormone signaling. Placenta, 2014, 35(12), 1013-1020. doi: 10.1016/j.placenta.2014.09.015 PMID: 25449029
  18. Song, F.; Liu, J.; Zhao, W.; Huang, H.; Hu, D.; Chen, H.; Zhang, H.; Chen, W.; Gu, Z. Synergistic effect of eugenol and probiotic Lactobacillus plantarum zs2058 against salmonella infection in c57bl/6 mice. Nutrients, 2020, 12(6), 1611-1627. doi: 10.3390/nu12061611 PMID: 32486242
  19. Xiao, Y.; Nan, S.; Ning, C. Effect of Buzhong Yiqi decoction on the expression of miR-125a-3p and IL-23R in thyroid tissue of AIT mice. Lishizhen Med. Materia. Med. Res., 2021, 32, 2865-2868.
  20. Bagchi, N.; Brown, T.R.; Sundick, R.S. Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology, 1995, 136(11), 5054-5060. doi: 10.1210/endo.136.11.7588241 PMID: 7588241
  21. Jayasena, U.L.H.R.; Gribble, S.K.; Mckenzie, A.; Beyreuther, K.; Masters, C.L.; Underwood, J.R. Identification of structural variations in the carboxyl terminus of Alzheimer’s disease-associated β A41–42 amyloid using a monoclonal antibody. Clin. Exp. Immunol., 2002, 124(2), 297-305. doi: 10.1046/j.1365-2249.2001.01209.x PMID: 11422208
  22. Kowalski, E.N.; Qian, G.; Vanni, K.M.M.; Sparks, J.A. A roadmap for investigating preclinical autoimmunity using patient-oriented and epidemiologic study designs: Example of rheumatoid arthritis. Front. Immunol., 2022, 13, 890996-891016. doi: 10.3389/fimmu.2022.890996 PMID: 35693829
  23. Liu, D.; Ruan, M.; Tong, C.; Huang, R. Effect of Shugan Jianpi recipe combined with cross moxibustion on biochemical examination indexes and total score of TCM symptoms in patients with spleen-stomach damp-heat diarrhea irritable bowel syndrome. Comput. Math. Methods Med., 2022, 2022, 1-9. doi: 10.1155/2022/8286146 PMID: 35502412
  24. Ma, P.; Peng, Y.; Zhao, L.; Liu, F.; Li, X. Differential effect of polysaccharide and nonpolysaccharide components in Sijunzi decoction on spleen deficiency syndrome and their mechanisms. Phytomedicine, 2021, 93, 153790-153801. doi: 10.1016/j.phymed.2021.153790 PMID: 34710756
  25. Sun, L.; Mao, J.J.; Yan, Y.; Xu, Y.; Yang, Y. Patient reported Traditional Chinese Medicine Spleen Deficiency Syndrome (TCMSDS) Scale for colorectal cancer: Development and validation in China. Integr. Cancer Ther., 2021, 20, 15347354211020105. doi: 10.1177/15347354211020105 PMID: 34116615
  26. Gao, C.; Qu, J.; Zhou, X.; Gao, T. Iodine-rich herbs and potassium iodate have different effects on the oxidative stress and differentiation of th17 cells in iodine-deficient NOD.H-2h4 Mice. Biol. Trace Elem. Res., 2018, 183(1), 114-122. doi: 10.1007/s12011-017-1115-y PMID: 28803408
  27. Gao, T.; Shi, R.; Qi, T.; Yin, H.; Mei, L.; Han, X.; Cui, P. A comparative study on the effects of excess iodine and herbs with excess iodine on thyroid oxidative stress in iodine-deficient rats. Biol. Trace Elem. Res., 2014, 157(2), 130-137. doi: 10.1007/s12011-013-9873-7 PMID: 24338445
  28. He, Q.; Dong, H.; Gong, M.; Guo, Y.; Xia, Q.; Gong, J.; Lu, F. New therapeutic horizon of Graves’ hyperthyroidism: Treatment regimens based on immunology and ingredients from traditional Chinese medicine. Front. Pharmacol., 2022, 13, 862831-862844. doi: 10.3389/fphar.2022.862831 PMID: 35462920
  29. Weng, S.; Li, J.; Chen, B.; He, L.; Zhong, Z.; Huang, L.; Zhang, S.; Liu, F.; Jiang, Q. Effectiveness of modified Buzhong Yiqi decoction in treating myasthenia gravis: Study protocol for a series of N of-1 trials. Trials, 2022, 23(1), 365-374. doi: 10.1186/s13063-022-06287-9 PMID: 35477531
  30. Kang, X.; Jia, M.; Zhao, L.; Zhang, S. Bu-Zhong-Yi-Qi granule enhances colonic tight junction integrity via TLR4/NF-κB/MLCK signaling pathway in ulcerative colitis rats. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12. doi: 10.1155/2021/6657141 PMID: 33763148
  31. Kaushik, S.; Cuervo, A.M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol., 2018, 19(6), 365-381. doi: 10.1038/s41580-018-0001-6 PMID: 29626215
  32. Spencer, B.; Potkar, R.; Trejo, M.; Rockenstein, E.; Patrick, C.; Gindi, R.; Adame, A.; Wyss-Coray, T.; Masliah, E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci., 2009, 29(43), 13578-13588. doi: 10.1523/JNEUROSCI.4390-09.2009 PMID: 19864570
  33. Li, P.; Ji, M.; Park, J.; Bunting, K.D.; Ji, C.; Tse, W. Th17 related cytokines in acute myeloid leukemia. Front. Biosci., 2012, 17(7), 2284-2294. doi: 10.2741/4052 PMID: 22652779
  34. Heidari, Z.; Salimi, S.; Rokni, M.; Rezaei, M.; Khalafi, N.; Shahroudi, M.J.; Dehghan, A.; Saravani, M. Association of IL-1β NLRP3, and COX-2 gene polymorphisms with autoimmune thyroid disease risk and clinical features in the iranian population. BioMed Res. Int., 2021, 2021, 1-10. doi: 10.1155/2021/7729238 PMID: 34790822
  35. Chen, R.H.; Chen, W.C.; Wang, T.Y.; Tsai, C.H.; Tsai, F.J. Lack of association between pro-inflammatory cytokine (IL-6, IL-8 and TNF-alpha) gene polymorphisms and Graves’ disease. Int. J. Immunogenet., 2005, 32(6), 343-347. doi: 10.1111/j.1744-313X.2005.00536.x PMID: 16313297
  36. Zake, T.; Skuja, S.; Kalere, I.; Konrade, I.; Groma, V. Heterogeneity of tissue IL-17 and tight junction proteins expression demonstrated in patients with autoimmune thyroid diseases. Medicine (Baltimore), 2018, 97(25), e11211-e11217. doi: 10.1097/MD.0000000000011211 PMID: 29924048
  37. Sun, X.; Guan, H.; Peng, S.; Zhao, Y.; Zhang, L.; Wang, X.; Li, C.; Shan, Z.; Teng, W. Growth arrest-specific protein 6 (Gas6) attenuates inflammatory injury and apoptosis in iodine-induced NOD.H-2h4 mice. Int. Immunopharmacol., 2019, 73, 333-342. doi: 10.1016/j.intimp.2019.04.038 PMID: 31129420
  38. Ruggeri, R.M.; Cristani, M.T.; Crupi, F. Evaluation of paraoxonase activity and association with serum advanced glycation end products as reliable markers of oxidative stress in Hashimoto’s thyroiditis. Minerva Endocrinol., 2022, 184-195.
  39. Bianchini Höfling, D.; Marui, S.; Buchpiguel, C.A.; Cerri, G.G.; Chammas, M.C. The end-diastolic velocity of thyroid arteries is strongly correlated with the peak systolic velocity and gland volume in patients with autoimmune thyroiditis. J. Thyroid Res., 2017, 2017, 1-9. doi: 10.1155/2017/1924974 PMID: 29062583
  40. Duntas, L.H.; Alexandraki, K.I. On the centennial of Vitamin D Vitamin D, inflammation, and autoimmune thyroiditis: A web of links and implications. Nutrients, 2022, 14(23), 5032. doi: 10.3390/nu14235032 PMID: 36501065
  41. Liu, H.; Li, Y.; Zhu, Y.; Ma, L.; Xue, H. Notch Signaling Pathway Promotes Th17 cell differentiation and participates in thyroid autoimmune injury in experimental autoimmune thyroiditis mice. Mediators Inflamm., 2023, 2023, 1-10. doi: 10.1155/2023/1195149 PMID: 36643586
  42. Yang, X.; Gao, T.; Shi, R.; Zhou, X.; Qu, J.; Xu, J.; Shan, Z.; Teng, W. Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the thyroid of NOD.H-2h4 mice. Biol. Trace Elem. Res., 2014, 159(1-3), 288-296. doi: 10.1007/s12011-014-9958-y PMID: 24740393
  43. Szeliga, A.; Calik-Ksepka, A.; Maciejewska-Jeske, M.; Grymowicz, M.; Smolarczyk, K.; Kostrzak, A.; Smolarczyk, R.; Rudnicka, E.; Meczekalski, B. Autoimmune diseases in patients with premature ovarian insufficiency-our current state of knowledge. Int. J. Mol. Sci., 2021, 22(5), 2594. doi: 10.3390/ijms22052594 PMID: 33807517
  44. Wang, W.; Teng, W.; Shan, Z.; Wang, S.; Li, J.; Zhu, L.; Zhou, J.; Mao, J.; Yu, X.; Li, J.; Chen, Y.; Xue, H.; Fan, C.; Wang, H.; Zhang, H.; Li, C.; Zhou, W.; Gao, B.; Shang, T.; Zhou, J.; Ding, B.; Ma, Y.; Wu, Y.; Xu, H.; Liu, W. The prevalence of thyroid disorders during early pregnancy in China: The benefits of universal screening in the first trimester of pregnancy. Eur. J. Endocrinol., 2011, 164(2), 263-268. doi: 10.1530/EJE-10-0660 PMID: 21059864
  45. Luo, J.; Wang, X.; Yuan, L.; Guo, L. Association of thyroid disorders with gestational diabetes mellitus: A meta-analysis. Endocrine, 2021, 73(3), 550-560. doi: 10.1007/s12020-021-02712-2 PMID: 33983493
  46. Malhotra, H.; Garg, V.; Singh, G. Biomarker approach towards rheumatoid arthritis treatment. Curr. Rheumatol. Rev., 2021, 17(2), 162-175. doi: 10.2174/1573397116666201216164013 PMID: 33327920
  47. Sandal, I.; Karydis, A.; Luo, J.; Prislovsky, A.; Whittington, K.B.; Rosloniec, E.F.; Dong, C.; Novack, D.V.; Mydel, P.; Zheng, S.G.; Radic, M.Z.; Brand, D.D. Bone loss and aggravated autoimmune arthritis in HLA-DRβ1-bearing humanized mice following oral challenge with Porphyromonas gingivalis. Arthritis Res. Ther., 2016, 18(1), 249-253. doi: 10.1186/s13075-016-1143-6 PMID: 27784339
  48. Zheng, L.; Ye, P.; Liu, C. The role of the IL-23/IL-17 axis in the pathogenesis of Graves’ disease. Endocr. J., 2013, 60(5), 591-597. doi: 10.1507/endocrj.EJ12-0264 PMID: 23327801
  49. Kościuszko, M.; Popławska-Kita, A.; Pawłowski, P.; Lipińska, D.; Hryniewicka, J.; Jankowska, D.; Górska, M.; Krętowski, A.; Myśliwiec, J. Clinical relevance of estimating circulating interleukin-17 and interleukin-23 during methylprednisolone therapy in Graves’ orbitopathy: A preliminary study. Adv. Med. Sci., 2021, 66(2), 315-320. doi: 10.1016/j.advms.2021.07.002 PMID: 34256242
  50. Lee, J.Y.; Hall, J.A.; Kroehling, L.; Wu, L.; Najar, T.; Nguyen, H.H.; Lin, W.Y.; Yeung, S.T.; Silva, H.M.; Li, D.; Hine, A.; Loke, P.; Hudesman, D.; Martin, J.C.; Kenigsberg, E.; Merad, M.; Khanna, K.M.; Littman, D.R. Serum amyloid a protein induce pathogenic Th17 cells and promote inflammatory disease. Cell, 2020, 183(7), 2036-2039. doi: 10.1016/j.cell.2020.12.008 PMID: 33357400
  51. Voo, K.S.; Wang, Y.H.; Santori, F.R.; Boggiano, C.; Wang, Y.H.; Arima, K.; Bover, L.; Hanabuchi, S.; Khalili, J.; Marinova, E.; Zheng, B.; Littman, D.R.; Liu, Y.J. Identification of IL-17-producing FOXP3 + regulatory T cells in humans. Proc. Natl. Acad. Sci. USA, 2009, 106(12), 4793-4798. doi: 10.1073/pnas.0900408106 PMID: 19273860
  52. Igarashi, K.; Garotta, G.; Ozmen, L.; Ziemiecki, A.; Wilks, A.F.; Harpur, A.G.; Larner, A.C.; Finbloom, D.S. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J. Biol. Chem., 1994, 269(20), 14333-14336. doi: 10.1016/S0021-9258(17)36621-8 PMID: 7514165
  53. El-Hawari, Y.; Favia, A.D.; Pilka, E.S.; Kisiela, M.; Oppermann, U.; Martin, H.J.; Maser, E. Analysis of the substrate-binding site of human carbonyl reductases CBR1 and CBR3 by site-directed mutagenesis. Chem. Biol. Interact., 2009, 178(1-3), 234-241. doi: 10.1016/j.cbi.2008.11.004 PMID: 19061875
  54. Hara, S.; Fukumura, S.; Ichinose, H. Reversible S-glutathionylation of human 6-pyruvoyl tetrahydropterin synthase protects its enzymatic activity. J. Biol. Chem., 2019, 294(4), 1420-1427. doi: 10.1074/jbc.RA118.005280 PMID: 30514762

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers