Quercetin Prevents Hypertension in Dahl Salt-sensitive Rats F ed a High-salt Diet Through Balancing Endothelial Nitric Oxide Synthase and Sirtuin 1
- 作者: Wu G.1, Liu F.2, Cui Q.3, Zhang T.3, Bao J.3, Hao J.4
-
隶属关系:
- Department of Cardiology, First Affiliated Hospital, Medical College, Xian Jiaotong University
- Department of Cardiology, Shaanxi Provincial Peoples Hospital
- Department of Cardiology, Xian Central Hospital, Medical College, Xian Jiaotong University
- Department of Cardiovascular Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University
- 期: 卷 27, 编号 16 (2024)
- 页面: 2446-2453
- 栏目: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/644331
- DOI: https://doi.org/10.2174/0113862073284196240214082904
- ID: 644331
如何引用文章
全文:
详细
Background:A high-salt diet is a leading dietary risk factor for elevated blood pressure and cardiovascular disease. Quercetin reportedly exhibits cardioprotective and antihypertensive therapeutic effects.
Objectives:The objective of this study is to examine the effect of quercetin on high-salt dietinduced elevated blood pressure in Dahl salt-sensitive (SS) rats and determine the underlying molecular mechanism.
Materials and Methods:Rats of the Dahl SS and control SS-13 BN strains were separated into five groups, SS-13 BN rats fed a low-salt diet (BL group), SS-13 BN rats fed a high-salt diet (BH group), Dahl SS rats fed a low-salt diet (SL group), Dahl SS rats fed a high-salt diet (SH group), and SH rats treated with quercetin (SHQ group). Blood pressure was checked three weeks into the course of treatment, and biochemical markers in the urine and serum were examined. Additionally, western blot was done to evaluate the sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) expression levels. Immunohistochemical analysis was performed to verify SIRT1 levels.
Results:We demonstrated that a high-salt diet elevated blood pressure in both SS-13 BN and Dahl SS rats, and quercetin supplementation alleviated the altered blood pressure. Compared with the SH group, quercetin significantly elevated the protein expression of SIRT1 and eNOS. Immunohistochemistry results further confirmed that quercetin could improve the protein expression of SIRT1.
Conclusion:Quercetin reduced blood pressure by enhancing the expression of SIRT1 and eNOS in Dahl SS rats fed a high-salt diet.
作者简介
Guanji Wu
Department of Cardiology, First Affiliated Hospital, Medical College, Xian Jiaotong University
Email: info@benthamscience.net
Fuqiang Liu
Department of Cardiology, Shaanxi Provincial Peoples Hospital
Email: info@benthamscience.net
Qing Cui
Department of Cardiology, Xian Central Hospital, Medical College, Xian Jiaotong University
Email: info@benthamscience.net
Tao Zhang
Department of Cardiology, Xian Central Hospital, Medical College, Xian Jiaotong University
Email: info@benthamscience.net
Jianjun Bao
Department of Cardiology, Xian Central Hospital, Medical College, Xian Jiaotong University
Email: info@benthamscience.net
Junjun Hao
Department of Cardiovascular Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- Ma, Z.; Hummel, S.L.; Sun, N.; Chen, Y. From salt to hypertension, what is missed? J. Clin. Hypertens., 2021, 23(12), 2033-2041. doi: 10.1111/jch.14402 PMID: 34846798
- Balafa, O.; Kalaitzidis, R.G. Salt sensitivity and hypertension. J. Hum. Hypertens., 2021, 35(3), 184-192. doi: 10.1038/s41371-020-00407-1 PMID: 32862203
- Rodríguez-Iturbe, B.; Franco, M.; Tapia, E.; Quiroz, Y.; Johnson, R.J. Renal inflammation, autoimmunity and salt‐sensitive hypertension. Clin. Exp. Pharmacol. Physiol., 2012, 39(1), 96-103. doi: 10.1111/j.1440-1681.2011.05482.x PMID: 21251049
- Franco, V.; Oparil, S. Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J. Am. Coll. Nutr., 2006, 25(sup3)(Suppl.), 247S-255S. doi: 10.1080/07315724.2006.10719574 PMID: 16772636
- Iatrino, R.; Manunta, P.; Zagato, L. Salt sensitivity: Challenging and controversial phenotype of primary hypertension. Curr. Hypertens. Rep., 2016, 18(9), 70. doi: 10.1007/s11906-016-0677-y PMID: 27614755
- Luzardo, L.; Noboa, O.; Boggia, J. Mechanisms of salt-sensitive hypertension. Curr. Hypertens. Rev., 2015, 11(1), 14-21. doi: 10.2174/1573402111666150530204136 PMID: 26028243
- Afolayan, A.J.; Wintola, O.A. Dietary supplements in the management of hypertension and diabetes - A review. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(3), 248-258. doi: 10.4314/ajtcam.v11i3.35 PMID: 25371590
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167. doi: 10.3390/nu8030167 PMID: 26999194
- Tsai, C.F.; Chen, G.W.; Chen, Y.C.; Shen, C.K.; Lu, D.Y.; Yang, L.Y.; Chen, J.H.; Yeh, W.L. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients, 2021, 14(1), 67. doi: 10.3390/nu14010067 PMID: 35010945
- Costa, A.C.F.; de Sousa, L.M.; dos Santos Alves, J.M.; Goes, P.; Pereira, K.M.A.; Alves, A.P.N.N.; Vale, M.L.; Gondim, D.V. Anti-inflammatory and hepatoprotective effects of quercetin in an experimental model of rheumatoid arthritis. Inflammation, 2021, 44(5), 2033-2043. doi: 10.1007/s10753-021-01479-y PMID: 34080090
- da Silva, S.V.S.; Barboza, O.M.; Souza, J.T.; Soares, É.N.; dos Santos, C.C.; Pacheco, L.V.; Santos, I.P.; Magalhães, T.B.S.; Soares, M.B.P.; Guimarães, E.T.; Meira, C.S.; Costa, S.L.; da Silva, V.D.A.; de Santana, L.L.B.; de Freitas Santos Júnior, A. Structural design, synthesis and antioxidant, antileishmania, anti-inflammatory and anticancer activities of a novel quercetin acetylated derivative. Molecules, 2021, 26(22), 6923. doi: 10.3390/molecules26226923 PMID: 34834016
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull., 2022, 1-22.
- Al Attar, A.A.; Fahed, G.I.; Hoballah, M.M.; Pedersen, S.; El-Yazbi, A.F.; Nasser, S.A.; Bitto, A.; Orekhov, A.N.; Eid, A.H. Mechanisms underlying the effects of caloric restriction on hypertension. Biochem. Pharmacol., 2022, 200, 115035. doi: 10.1016/j.bcp.2022.115035 PMID: 35427570
- Galleano, M.; Pechanova, O.; Fraga, C.G. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol., 2010, 11(8), 837-848. doi: 10.2174/138920110793262114 PMID: 20874688
- Chen, S.; Wang, J.; Jia, F.; Shen, Z.; Zhang, W.; Wang, Y.; Ren, K.; Fu, G.; Ji, J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(14), 2454-2462. doi: 10.1039/D1TB01828K PMID: 34698745
- Mount, P.F.; Kemp, B.E.; Power, D.A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J. Mol. Cell. Cardiol., 2007, 42(2), 271-279. doi: 10.1016/j.yjmcc.2006.05.023 PMID: 16839566
- Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; Sun, J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem., 2019, 294(51), 19565-19576. doi: 10.1074/jbc.RA119.011317 PMID: 31719145
- Mattagajasingh, I.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14855-14860. doi: 10.1073/pnas.0704329104 PMID: 17785417
- López-Fernández-Sobrino, R.; Soliz-Rueda, J.R.; Ávila-Román, J.; Arola-Arnal, A.; Suárez, M.; Muguerza, B.; Bravo, F.I. Blood pressure-lowering effect of wine lees phenolic compounds is mediated by endothelial-derived factors: Role of sirtuin 1. Antioxidants, 2021, 10(7), 1073. doi: 10.3390/antiox10071073 PMID: 34356306
- Man, A.W.C.; Li, H.; Xia, N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front. Physiol., 2019, 10, 1173. doi: 10.3389/fphys.2019.01173 PMID: 31572218
- Endres, B.T.; Sandoval, R.M.; Rhodes, G.J.; Campos-Bilderback, S.B.; Kamocka, M.M.; McDermott-Roe, C.; Staruschenko, A.; Molitoris, B.A.; Geurts, A.M.; Palygin, O. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol., 2017, 313(2), F163-F173. doi: 10.1152/ajprenal.00466.2016 PMID: 28404591
- Peng, J.; Li, Q.; Li, K.; Zhu, L.; Lin, X.; Lin, X.; Shen, Q.; Li, G.; Xie, X. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of akt signaling and SIRT1. J. Diabetes Res., 2017, 2017, 1-10. doi: 10.1155/2017/3417306 PMID: 29379801
- Pereira, S.C.; Parente, J.M.; Belo, V.A.; Mendes, A.S.; Gonzaga, N.A.; do Vale, G.T.; Ceron, C.S.; Tanus-Santos, J.E.; Tirapelli, C.R.; Castro, M.M. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis, 2018, 270, 146-153. doi: 10.1016/j.atherosclerosis.2018.01.031 PMID: 29425960
- Machha, A.; Mustafa, M.R. Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J. Cardiovasc. Pharmacol., 2005, 46(1), 36-40. doi: 10.1097/01.fjc.0000162769.83324.c1 PMID: 15965352
- Li, Y.; Wang, W.; Chao, Y.; Zhang, F.; Wang, C. CTRP13 attenuates vascular calcification by regulating Runx2. FASEB J., 2019, 33(8), 9627-9637. doi: 10.1096/fj.201900293RRR PMID: 31145871
- Zhang, X.F.; Zhang, W.J.; Dong, C.; Hu, W.L.; Sun, Y.Y.; Bao, Y.; Zhang, C.F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Analgesia effect of baicalein against NTG-induced migraine in rats. Biomed. Pharmacother., 2017, 90, 116-121. doi: 10.1016/j.biopha.2017.03.052 PMID: 28343071
- Perry, C.A.; Gadde, K.M. The role of calorie restriction in the prevention of cardiovascular disease. Curr. Atheroscler. Rep., 2022, 24(4), 235-242. doi: 10.1007/s11883-022-00999-8 PMID: 35107761
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol., 2021, 18(11), 785-802. doi: 10.1038/s41569-021-00559-8 PMID: 34050340
- Kurtz, T.W.; Pravenec, M.; DiCarlo, S.E. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin. Sci., 2022, 136(8), 599-620. doi: 10.1042/CS20210566 PMID: 35452099
- Popiolek-Kalisz, J.; Fornal, E. The effects of quercetin supplementation on blood pressure - meta-analysis. Curr. Probl. Cardiol., 2022, 47(11), 101350. doi: 10.1016/j.cpcardiol.2022.101350 PMID: 35948195
- Wang, Y.; Liu, X.; Zhang, C.; Wang, Z. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J. Nutr. Biochem., 2018, 56, 133-141. doi: 10.1016/j.jnutbio.2018.01.007 PMID: 29567533
- Feng, X.; Bu, F.; Huang, L.; Xu, W.; Wang, W.; Wu, Q. Preclinical evidence of the effect of quercetin on diabetic nephropathy: A meta-analysis of animal studies. Eur. J. Pharmacol., 2022, 921, 174868. doi: 10.1016/j.ejphar.2022.174868 PMID: 35248552
- Oyagbemi, A.A.; Omobowale, T.O.; Ola-Davies, O.E.; Asenuga, E.R.; Ajibade, T.O.; Adejumobi, O.A.; Arojojoye, O.A.; Afolabi, J.M.; Ogunpolu, B.S.; Falayi, O.O.; Hassan, F.O.; Ochigbo, G.O.; Saba, A.B.; Adedapo, A.A.; Yakubu, M.A. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. Biofactors, 2018, 44(5), 465-479. doi: 10.1002/biof.1445 PMID: 30171731
- Tomeleri, C.M.; Marcori, A.J.; Ribeiro, A.S.; Gerage, A.M.; Padilha, C.; Schiavoni, D.; Souza, M.F.; Mayhew, J.L.; do Nascimento, M.A.; Venturini, D.; Barbosa, D.S.; Cyrino, E.S. Chronic blood pressure reductions and increments in plasma nitric oxide bioavailability. Int. J. Sports Med., 2017, 38(4), 290-299. doi: 10.1055/s-0042-121896 PMID: 28219107
- Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201. doi: 10.1016/j.biopha.2016.11.125 PMID: 27940398
- Tajbakhsh, S.; Aliakbari, K.; Hussey, D.J.; Lower, K.M.; Donato, A.J.; Sokoya, E.M. Differential telomere shortening in blood versus arteries in an animal model of type 2 diabetes. J. Diabetes Res., 2015, 2015, 1-9. doi: 10.1155/2015/153829 PMID: 26346823
- Gadkari, T.V.; Cortes, N.; Madrasi, K.; Tsoukias, N.M.; Joshi, M.S. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide, 2013, 35, 65-71. doi: 10.1016/j.niox.2013.08.005 PMID: 23994446
- Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I.C.; Zarzuelo, A.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens., 2006, 24(1), 75-84. doi: 10.1097/01.hjh.0000198029.22472.d9 PMID: 16331104
- Yeganeh-Hajahmadi, M.; Najafipour, H.; Rostamzadeh, F.; Masoumi-Ardakani, Y. SIRT1 and Klotho expression in the heart and kidneys of rats with acute and chronic renovascular hypertension. Croat. Med. J., 2021, 62(5), 504-512. doi: 10.3325/cmj.2021.62.504 PMID: 34730891
- Liu, Z.; Wang, C.; Pei, J.; Li, M.; Gu, W. SIRT1: A novel protective molecule in pre-eclampsia. Int. J. Med. Sci., 2022, 19(6), 993-1002. doi: 10.7150/ijms.73012 PMID: 35813294
补充文件
