Quercetin Prevents Hypertension in Dahl Salt-sensitive Rats F ed a High-salt Diet Through Balancing Endothelial Nitric Oxide Synthase and Sirtuin 1


如何引用文章

全文:

详细

Background:A high-salt diet is a leading dietary risk factor for elevated blood pressure and cardiovascular disease. Quercetin reportedly exhibits cardioprotective and antihypertensive therapeutic effects.

Objectives:The objective of this study is to examine the effect of quercetin on high-salt dietinduced elevated blood pressure in Dahl salt-sensitive (SS) rats and determine the underlying molecular mechanism.

Materials and Methods:Rats of the Dahl SS and control SS-13 BN strains were separated into five groups, SS-13 BN rats fed a low-salt diet (BL group), SS-13 BN rats fed a high-salt diet (BH group), Dahl SS rats fed a low-salt diet (SL group), Dahl SS rats fed a high-salt diet (SH group), and SH rats treated with quercetin (SHQ group). Blood pressure was checked three weeks into the course of treatment, and biochemical markers in the urine and serum were examined. Additionally, western blot was done to evaluate the sirtuin 1 (SIRT1) and endothelial nitric oxide synthase (eNOS) expression levels. Immunohistochemical analysis was performed to verify SIRT1 levels.

Results:We demonstrated that a high-salt diet elevated blood pressure in both SS-13 BN and Dahl SS rats, and quercetin supplementation alleviated the altered blood pressure. Compared with the SH group, quercetin significantly elevated the protein expression of SIRT1 and eNOS. Immunohistochemistry results further confirmed that quercetin could improve the protein expression of SIRT1.

Conclusion:Quercetin reduced blood pressure by enhancing the expression of SIRT1 and eNOS in Dahl SS rats fed a high-salt diet.

作者简介

Guanji Wu

Department of Cardiology, First Affiliated Hospital, Medical College, Xi’an Jiaotong University

Email: info@benthamscience.net

Fuqiang Liu

Department of Cardiology, Shaanxi Provincial People’s Hospital

Email: info@benthamscience.net

Qing Cui

Department of Cardiology, Xi’an Central Hospital, Medical College, Xi’an Jiaotong University

Email: info@benthamscience.net

Tao Zhang

Department of Cardiology, Xi’an Central Hospital, Medical College, Xi’an Jiaotong University

Email: info@benthamscience.net

Jianjun Bao

Department of Cardiology, Xi’an Central Hospital, Medical College, Xi’an Jiaotong University

Email: info@benthamscience.net

Junjun Hao

Department of Cardiovascular Surgery, First Affiliated Hospital, Medical College, Xi'an Jiaotong University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Ma, Z.; Hummel, S.L.; Sun, N.; Chen, Y. From salt to hypertension, what is missed? J. Clin. Hypertens., 2021, 23(12), 2033-2041. doi: 10.1111/jch.14402 PMID: 34846798
  2. Balafa, O.; Kalaitzidis, R.G. Salt sensitivity and hypertension. J. Hum. Hypertens., 2021, 35(3), 184-192. doi: 10.1038/s41371-020-00407-1 PMID: 32862203
  3. Rodríguez-Iturbe, B.; Franco, M.; Tapia, E.; Quiroz, Y.; Johnson, R.J. Renal inflammation, autoimmunity and salt‐sensitive hypertension. Clin. Exp. Pharmacol. Physiol., 2012, 39(1), 96-103. doi: 10.1111/j.1440-1681.2011.05482.x PMID: 21251049
  4. Franco, V.; Oparil, S. Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J. Am. Coll. Nutr., 2006, 25(sup3)(Suppl.), 247S-255S. doi: 10.1080/07315724.2006.10719574 PMID: 16772636
  5. Iatrino, R.; Manunta, P.; Zagato, L. Salt sensitivity: Challenging and controversial phenotype of primary hypertension. Curr. Hypertens. Rep., 2016, 18(9), 70. doi: 10.1007/s11906-016-0677-y PMID: 27614755
  6. Luzardo, L.; Noboa, O.; Boggia, J. Mechanisms of salt-sensitive hypertension. Curr. Hypertens. Rev., 2015, 11(1), 14-21. doi: 10.2174/1573402111666150530204136 PMID: 26028243
  7. Afolayan, A.J.; Wintola, O.A. Dietary supplements in the management of hypertension and diabetes - A review. Afr. J. Tradit. Complement. Altern. Med., 2014, 11(3), 248-258. doi: 10.4314/ajtcam.v11i3.35 PMID: 25371590
  8. Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167. doi: 10.3390/nu8030167 PMID: 26999194
  9. Tsai, C.F.; Chen, G.W.; Chen, Y.C.; Shen, C.K.; Lu, D.Y.; Yang, L.Y.; Chen, J.H.; Yeh, W.L. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients, 2021, 14(1), 67. doi: 10.3390/nu14010067 PMID: 35010945
  10. Costa, A.C.F.; de Sousa, L.M.; dos Santos Alves, J.M.; Goes, P.; Pereira, K.M.A.; Alves, A.P.N.N.; Vale, M.L.; Gondim, D.V. Anti-inflammatory and hepatoprotective effects of quercetin in an experimental model of rheumatoid arthritis. Inflammation, 2021, 44(5), 2033-2043. doi: 10.1007/s10753-021-01479-y PMID: 34080090
  11. da Silva, S.V.S.; Barboza, O.M.; Souza, J.T.; Soares, É.N.; dos Santos, C.C.; Pacheco, L.V.; Santos, I.P.; Magalhães, T.B.S.; Soares, M.B.P.; Guimarães, E.T.; Meira, C.S.; Costa, S.L.; da Silva, V.D.A.; de Santana, L.L.B.; de Freitas Santos Júnior, A. Structural design, synthesis and antioxidant, antileishmania, anti-inflammatory and anticancer activities of a novel quercetin acetylated derivative. Molecules, 2021, 26(22), 6923. doi: 10.3390/molecules26226923 PMID: 34834016
  12. Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: A review. Polym. Bull., 2022, 1-22.
  13. Al Attar, A.A.; Fahed, G.I.; Hoballah, M.M.; Pedersen, S.; El-Yazbi, A.F.; Nasser, S.A.; Bitto, A.; Orekhov, A.N.; Eid, A.H. Mechanisms underlying the effects of caloric restriction on hypertension. Biochem. Pharmacol., 2022, 200, 115035. doi: 10.1016/j.bcp.2022.115035 PMID: 35427570
  14. Galleano, M.; Pechanova, O.; Fraga, C.G. Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol., 2010, 11(8), 837-848. doi: 10.2174/138920110793262114 PMID: 20874688
  15. Chen, S.; Wang, J.; Jia, F.; Shen, Z.; Zhang, W.; Wang, Y.; Ren, K.; Fu, G.; Ji, J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J. Mater. Chem. B Mater. Biol. Med., 2022, 10(14), 2454-2462. doi: 10.1039/D1TB01828K PMID: 34698745
  16. Mount, P.F.; Kemp, B.E.; Power, D.A. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J. Mol. Cell. Cardiol., 2007, 42(2), 271-279. doi: 10.1016/j.yjmcc.2006.05.023 PMID: 16839566
  17. Chen, J.; Zhang, J.; Shaik, N.F.; Yi, B.; Wei, X.; Yang, X.F.; Naik, U.P.; Summer, R.; Yan, G.; Xu, X.; Sun, J. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase. J. Biol. Chem., 2019, 294(51), 19565-19576. doi: 10.1074/jbc.RA119.011317 PMID: 31719145
  18. Mattagajasingh, I.; Kim, C.S.; Naqvi, A.; Yamamori, T.; Hoffman, T.A.; Jung, S.B.; DeRicco, J.; Kasuno, K.; Irani, K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14855-14860. doi: 10.1073/pnas.0704329104 PMID: 17785417
  19. López-Fernández-Sobrino, R.; Soliz-Rueda, J.R.; Ávila-Román, J.; Arola-Arnal, A.; Suárez, M.; Muguerza, B.; Bravo, F.I. Blood pressure-lowering effect of wine lees phenolic compounds is mediated by endothelial-derived factors: Role of sirtuin 1. Antioxidants, 2021, 10(7), 1073. doi: 10.3390/antiox10071073 PMID: 34356306
  20. Man, A.W.C.; Li, H.; Xia, N. The role of sirtuin1 in regulating endothelial function, arterial remodeling and vascular aging. Front. Physiol., 2019, 10, 1173. doi: 10.3389/fphys.2019.01173 PMID: 31572218
  21. Endres, B.T.; Sandoval, R.M.; Rhodes, G.J.; Campos-Bilderback, S.B.; Kamocka, M.M.; McDermott-Roe, C.; Staruschenko, A.; Molitoris, B.A.; Geurts, A.M.; Palygin, O. Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am. J. Physiol. Renal Physiol., 2017, 313(2), F163-F173. doi: 10.1152/ajprenal.00466.2016 PMID: 28404591
  22. Peng, J.; Li, Q.; Li, K.; Zhu, L.; Lin, X.; Lin, X.; Shen, Q.; Li, G.; Xie, X. Quercetin improves glucose and lipid metabolism of diabetic rats: Involvement of akt signaling and SIRT1. J. Diabetes Res., 2017, 2017, 1-10. doi: 10.1155/2017/3417306 PMID: 29379801
  23. Pereira, S.C.; Parente, J.M.; Belo, V.A.; Mendes, A.S.; Gonzaga, N.A.; do Vale, G.T.; Ceron, C.S.; Tanus-Santos, J.E.; Tirapelli, C.R.; Castro, M.M. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis, 2018, 270, 146-153. doi: 10.1016/j.atherosclerosis.2018.01.031 PMID: 29425960
  24. Machha, A.; Mustafa, M.R. Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J. Cardiovasc. Pharmacol., 2005, 46(1), 36-40. doi: 10.1097/01.fjc.0000162769.83324.c1 PMID: 15965352
  25. Li, Y.; Wang, W.; Chao, Y.; Zhang, F.; Wang, C. CTRP13 attenuates vascular calcification by regulating Runx2. FASEB J., 2019, 33(8), 9627-9637. doi: 10.1096/fj.201900293RRR PMID: 31145871
  26. Zhang, X.F.; Zhang, W.J.; Dong, C.; Hu, W.L.; Sun, Y.Y.; Bao, Y.; Zhang, C.F.; Guo, C.R.; Wang, C.Z.; Yuan, C.S. Analgesia effect of baicalein against NTG-induced migraine in rats. Biomed. Pharmacother., 2017, 90, 116-121. doi: 10.1016/j.biopha.2017.03.052 PMID: 28343071
  27. Perry, C.A.; Gadde, K.M. The role of calorie restriction in the prevention of cardiovascular disease. Curr. Atheroscler. Rep., 2022, 24(4), 235-242. doi: 10.1007/s11883-022-00999-8 PMID: 35107761
  28. Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol., 2021, 18(11), 785-802. doi: 10.1038/s41569-021-00559-8 PMID: 34050340
  29. Kurtz, T.W.; Pravenec, M.; DiCarlo, S.E. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin. Sci., 2022, 136(8), 599-620. doi: 10.1042/CS20210566 PMID: 35452099
  30. Popiolek-Kalisz, J.; Fornal, E. The effects of quercetin supplementation on blood pressure - meta-analysis. Curr. Probl. Cardiol., 2022, 47(11), 101350. doi: 10.1016/j.cpcardiol.2022.101350 PMID: 35948195
  31. Wang, Y.; Liu, X.; Zhang, C.; Wang, Z. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats. J. Nutr. Biochem., 2018, 56, 133-141. doi: 10.1016/j.jnutbio.2018.01.007 PMID: 29567533
  32. Feng, X.; Bu, F.; Huang, L.; Xu, W.; Wang, W.; Wu, Q. Preclinical evidence of the effect of quercetin on diabetic nephropathy: A meta-analysis of animal studies. Eur. J. Pharmacol., 2022, 921, 174868. doi: 10.1016/j.ejphar.2022.174868 PMID: 35248552
  33. Oyagbemi, A.A.; Omobowale, T.O.; Ola-Davies, O.E.; Asenuga, E.R.; Ajibade, T.O.; Adejumobi, O.A.; Arojojoye, O.A.; Afolabi, J.M.; Ogunpolu, B.S.; Falayi, O.O.; Hassan, F.O.; Ochigbo, G.O.; Saba, A.B.; Adedapo, A.A.; Yakubu, M.A. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. Biofactors, 2018, 44(5), 465-479. doi: 10.1002/biof.1445 PMID: 30171731
  34. Tomeleri, C.M.; Marcori, A.J.; Ribeiro, A.S.; Gerage, A.M.; Padilha, C.; Schiavoni, D.; Souza, M.F.; Mayhew, J.L.; do Nascimento, M.A.; Venturini, D.; Barbosa, D.S.; Cyrino, E.S. Chronic blood pressure reductions and increments in plasma nitric oxide bioavailability. Int. J. Sports Med., 2017, 38(4), 290-299. doi: 10.1055/s-0042-121896 PMID: 28219107
  35. Kumar, S.; Singh, R.K.; Bhardwaj, T.R. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother., 2017, 85, 182-201. doi: 10.1016/j.biopha.2016.11.125 PMID: 27940398
  36. Tajbakhsh, S.; Aliakbari, K.; Hussey, D.J.; Lower, K.M.; Donato, A.J.; Sokoya, E.M. Differential telomere shortening in blood versus arteries in an animal model of type 2 diabetes. J. Diabetes Res., 2015, 2015, 1-9. doi: 10.1155/2015/153829 PMID: 26346823
  37. Gadkari, T.V.; Cortes, N.; Madrasi, K.; Tsoukias, N.M.; Joshi, M.S. Agmatine induced NO dependent rat mesenteric artery relaxation and its impairment in salt-sensitive hypertension. Nitric Oxide, 2013, 35, 65-71. doi: 10.1016/j.niox.2013.08.005 PMID: 23994446
  38. Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I.C.; Zarzuelo, A.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J. Hypertens., 2006, 24(1), 75-84. doi: 10.1097/01.hjh.0000198029.22472.d9 PMID: 16331104
  39. Yeganeh-Hajahmadi, M.; Najafipour, H.; Rostamzadeh, F.; Masoumi-Ardakani, Y. SIRT1 and Klotho expression in the heart and kidneys of rats with acute and chronic renovascular hypertension. Croat. Med. J., 2021, 62(5), 504-512. doi: 10.3325/cmj.2021.62.504 PMID: 34730891
  40. Liu, Z.; Wang, C.; Pei, J.; Li, M.; Gu, W. SIRT1: A novel protective molecule in pre-eclampsia. Int. J. Med. Sci., 2022, 19(6), 993-1002. doi: 10.7150/ijms.73012 PMID: 35813294

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024