Phytochemistry and Pharmacological Activity of Malva sylvestris L: A Detailed Insight


Cite item

Full Text

Abstract

:Malva sylvestris L., is commonly referred to as Mallow and is found in Europe, Asia and Africa. This has been traditionally used for inflammation, gastrointestinal disturbances, skin disorders, menstrual pains, and urological disorders. This review covers phytoconstituents and Pharmacological activities of M. sylvestris. The plant contains a large number of phytochemical constituents having diverse pharmacological activities. The plant contains many phenolic compounds responsible for its strong antioxidant activity. Coumarins from Mallow have a potential anticancer activity. Malva sylvestris also contains essential as well as non-essential elements and minerals. Many researchers have provided evidence that Malva sylvestris is a good candidate for use as a medicinal herb and has good nutritional value. The leaves, in particular, offer properties like anticancer, skin whitening, and anti-aging. Furthermore, the aqueous extract was recently shown to have an anti-ulcerogenic effect. Malva sylvestris has a high potential for use in cosmetics such as skin whitening and anti-aging treatments. Methanolic extracts of Malva sylvestris leaves, and flowers showed strong antibacterial activity against a common plant pathogen bacterium. The plant also contains Malvone A, which is responsible for antibacterial action. The plant also possesses anti-inflammatory, analgesic, wound healing properties and various other activities.

About the authors

Zahid Paul

Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir

Email: info@benthamscience.net

Aamir Malla

Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir

Email: info@benthamscience.net

Mohammad Dar

Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir

Email: info@benthamscience.net

Mubashir Masoodi

Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mir, R.H.; Shah, A.J.; Mohi-Ud-Din, R.; Pottoo, F.H.; Dar, M.; Jachak, S.M.; Masoodi, M.H.J.C.m.c. Natural anti-inflammatory compounds as drug candidates in alzheimer’s disease. Curr. Med. Chem., 2021, 28(23), 4799-4825. doi: 10.2174/0929867327666200730213215
  2. Süntar, I.J.P.R. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochem. Rev., 2020, 19(5), 1199-1209. doi: 10.1007/s11101-019-09629-9
  3. Shah, A.J.; Mir, R.H.; Pottoo, F.H.; Masoodi, M.H.; Bhat, Z.A.J.C.N. Depression: An insight into heterocyclic and cyclic hydrocarbon compounds inspired from natural sources. Curr. Neuropharmacol., 2020, 19(11), 2020.
  4. Silva, R.F.; Pogačnik, L.J.A. Polyphenols from food and natural products: Neuroprotection and safety. Antioxidants, 2020, 9(1), 61.
  5. Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Masoodi, M.H.; Singh, I.P.; Bhat, Z.A.J.C.C.; Screening, H.T. Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus berberis linn: A comprehensive review. Comb. Chem. High Throughput Screen., 2021, 24(5), 624-644. doi: 10.2174/1386207323999201102141206
  6. Mir, R.H.; Shah, A.J.; Sabreen, S.; Wani, T.U.; Masoodi, M.H.; Akkol, E.K.; Bhat, Z.A.; Khan, H.J.C.N. Plant-derived natural compounds for the treatment of amyotrophic lateral sclerosis: An update. Curr. Neuropharmacol., 2022, 20(1), 179.
  7. Mir, P.A.; Mohi-Ud-Din, R.; Banday, N.; Maqbool, M.; Raza, S.N.; Farooq, S.; Afzal, S.; Mir, R.H.J.A.C.A.i.M.C. Anticancer potential of thymoquinone: A novel bioactive natural compound from nigella sativa L. Anticancer. Agents Med. Chem., 2022, 222(20), 3401-3415. doi: 10.2174/1871520622666220511233314
  8. Mir, R.H.; Wani, T.U.; Jan, R.; Shah, A.J.; Sabreen, S.; Mir, P.A.; Rasool, S.; Masoodi, M.H.; Bhat, Z.A. Nigella sativa as a therapeutic candidate for arthritis and related disorders. In: Black Seeds (Nigella Sativa); Elsevier, 2022; pp. 295-312.
  9. Rahman, M.M.; Bibi, S.; Rahaman, M.S.; Rahman, F.; Islam, F.; Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, M.A.; Maeesa, S.K.J.B. Natural therapeutics and nutraceuticals for lung diseases: traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother., 2022, 150, 113041.
  10. Khan, S.U.; Hamza, B.; Mir, R.H.; Fatima, K.; Malik, F.J.C.M.M. Lavender plant: Farming and Health benefits. Curr. Mol. Med., 2023.
  11. Lone, N.A.; Malik, T.A.; Sharma, R.R.; Mir, R.H.; Abdullah, T.S.; Singh, I.P.; Bhat, Z.A.J.P.R.M.C.M. Bioactivity guided isolation and characterization of anti-hepatotoxic markers from Berberis pachyacantha Koehne. Pharmacol. Res. Mod. Chin., 2022, 4, 100144.
  12. Mir, R.H.; Mir, P.A.; Uppal, J.; Chawla, A.; Patel, M.; Bardakci, F.; Adnan, M.; Mohi-Ud-Din, R.J.M. Evolution of natural product scaffolds as potential proteasome inhibitors in developing cancer therapeutics. Metabolites, 2023, 13(4), 509.
  13. Hassan, R.; Mohi-ud-din, R.; Dar, M.O.; Shah, A.J.; Mir, P.A.; Shaikh, M.; Pottoo, F.H. Bioactive heterocyclic compounds as potential therapeutics in the treatment of gliomas. Anticancer. Agents Med. Chem., 2022, 22(3), 551-565. doi: 10.2174/1871520621666210901112954 PMID: 34488596
  14. Hassan, R.; Masoodi, M.H.J.C.T.M. Saussurea lappa: A comprehensive review on its pharmacological activity and phytochemistry. Curr. Tradit. Med., 2020, 6(1), 13-23. doi: 10.2174/2215083805666190626144909
  15. Mohi-Ud-Din, R.; Mir, R.H.; Wani, T.U.; Shah, A.J.; Banday, N.; Pottoo, F.H.J.C.C.; Screening, H.T. Berberine in the treatment of neurodegenerative diseases and nanotechnology enabled targeted delivery. Comb. Chem. High Throughput Screen., 2022, 25(4), 616-633. doi: 10.2174/1386207324666210804122539
  16. Kumar, V.; Kaur, J.; Chawla, R. Ethno-botanical and economic significance of edible plants used as food by tribal community of the western himalaya. In: Edible Plants in Health and Diseases; Cultural, Practical and Economic Value; Springer,, 2022; 1, pp. 259-283.
  17. Zohary, M. Flora Palaestina (The Israel Academy of Sciences and Humanities, Jerusalem). Part two 1987; , 1987, pp. 211-221.
  18. Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol., 2006, 108(1), 31-37. doi: 10.1016/j.jep.2006.04.010 PMID: 16737790
  19. Kültür, Ş. Medicinal plants used in Kırklareli Province (Turkey). J. Ethnopharmacol., 2007, 111(2), 341-364. doi: 10.1016/j.jep.2006.11.035 PMID: 17257791
  20. Guarrera, P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia, 2003, 74(6), 515-544. doi: 10.1016/S0367-326X(03)00122-9 PMID: 12946715
  21. Ishtiaq, M.; Hanif, W.; Khan, M.A.; Ashraf, M.; Butt, A.M. An ethnomedicinal survey and documentation of important medicinal folklore food phytonims of flora of Samahni valley, (Azad Kashmir) Pakistan. Pak. J. Biol. Sci., 2007, 10(13), 2241-2256. doi: 10.3923/pjbs.2007.2241.2256 PMID: 19070189
  22. Idolo, M.; Motti, R.; Mazzoleni, S. Ethnobotanical and phytomedicinal knowledge in a long-history protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines). J. Ethnopharmacol., 2010, 127(2), 379-395. doi: 10.1016/j.jep.2009.10.027 PMID: 19874882
  23. Leporatti, M.L.; Corradi, L. Ethnopharmacobotanical remarks on the province of Chieti town (Abruzzo, central Italy). J. Ethnopharmacol., 2001, 74(1), 17-40. doi: 10.1016/S0378-8741(00)00325-1 PMID: 11137345
  24. Hanlidou, E.; Karousou, R.; Kleftoyanni, V.; Kokkini, S. The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J. Ethnopharmacol., 2004, 91(2-3), 281-299. doi: 10.1016/j.jep.2004.01.007 PMID: 15120452
  25. Pieroni, A.; Quave, C.L.; Villanelli, M.L.; Mangino, P.; Sabbatini, G.; Santini, L.; Boccetti, T.; Profili, M.; Ciccioli, T.; Rampa, L.G.; Antonini, G.; Girolamini, C.; Cecchi, M.; Tomasi, M. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J. Ethnopharmacol., 2004, 91(2-3), 331-344. doi: 10.1016/j.jep.2004.01.015 PMID: 15120458
  26. Passalacqua, N.G.; Guarrera, P.M.; De Fine, G. Contribution to the knowledge of the folk plant medicine in Calabria region (Southern Italy). Fitoterapia, 2007, 78(1), 52-68. doi: 10.1016/j.fitote.2006.07.005 PMID: 17084993
  27. Cornara, L.; La Rocca, A.; Marsili, S.; Mariotti, M.G. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J. Ethnopharmacol., 2009, 125(1), 16-30. doi: 10.1016/j.jep.2009.06.021 PMID: 19563876
  28. Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol., 2008, 116(1), 144-151. doi: 10.1016/j.jep.2007.11.015 PMID: 18164564
  29. Scherrer, A.M.; Motti, R.; Weckerle, C.S. Traditional plant use in the areas of monte vesole and ascea, cilento national park (Campania, Southern Italy). J. Ethnopharmacol., 2005, 97(1), 129-143. doi: 10.1016/j.jep.2004.11.002 PMID: 15652287
  30. Marc, E.B.; Nelly, A.; Annick, D-D.; Frederic, D. Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J. Ethnopharmacol., 2008, 120(3), 315-334. doi: 10.1016/j.jep.2008.08.024 PMID: 18809483
  31. Pollio, A.; De Natale, A.; Appetiti, E.; Aliotta, G.; Touwaide, A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol., 2008, 116(3), 469-482. doi: 10.1016/j.jep.2007.12.013 PMID: 18276094
  32. Lardos, A. The botanical materia medica of the Iatrosophikon—A collection of prescriptions from a monastery in Cyprus. J. Ethnopharmacol., 2006, 104(3), 387-406. doi: 10.1016/j.jep.2005.12.035 PMID: 16459038
  33. Leonti, M.; Casu, L.; Sanna, F.; Bonsignore, L. A comparison of medicinal plant use in Sardinia and Sicily—De Materia Medica revisited? J. Ethnopharmacol., 2009, 121(2), 255-267. doi: 10.1016/j.jep.2008.10.027 PMID: 19038321
  34. Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol., 2010, 48(6), 1466-1472. doi: 10.1016/j.fct.2010.03.012 PMID: 20233600
  35. Quave, C.L.; Pieroni, A.; Bennett, B.C. Dermatological remedies in the traditional pharmacopoeia of Vulture-Alto Bradano, inland southern Italy. J. Ethnobiol. Ethnomed., 2008, 4(1), 5. doi: 10.1186/1746-4269-4-5 PMID: 18254949
  36. Garden, M.B. Tropicos. 2010. Available from: http://www.tropicos.org
  37. Toledo, M.G.T.; Alquini, Y.; Nakashima, T. Anatomical characterization of Cunila microcephala Benth leaves. (Lamiaceae). RBCF Rev. Bras. Cienc. Farm., 2004, 40(4), 487-493. doi: 10.1590/S1516-93322004000400006
  38. European pharmacopoeia; 5th edition: supplement 5.2; Council of Europe: Strasbourg, 2005.
  39. Gasparetto, J.C.; Martins, C.A.F.; Hayashi, S.S.; Otuky, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. J. Pharm. Pharmacol., 2012, 64(2), 172-189. doi: 10.1111/j.2042-7158.2011.01383.x PMID: 22221093
  40. Godefroid, S.; Monbaliu, D.; Koedam, N. The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels, Belgium. Landsc. Urban Plan., 2007, 80(1-2), 45-55. doi: 10.1016/j.landurbplan.2006.06.001
  41. Bretzel, F.; Pezzarossa, B.; Benvenuti, S.; Bravi, A.; Malorgio, F. Soil influence on the performance of 26 native herbaceous plants suitable for sustainable Mediterranean landscaping. Acta Oecol., 2009, 35(5), 657-663. doi: 10.1016/j.actao.2009.06.008
  42. Qasem, J.R. Nutrient accumulation by weeds and their associated vegetable crops. J. Hortic. Sci., 1992, 67(2), 189-195. doi: 10.1080/00221589.1992.11516236
  43. Comba, L.; Corbet, S.A.; Hunt, L.; Warren, B. Flowers, nectar and insect visits: Evaluating British plant species for pollinator-friendly gardens. Ann. Bot., 1999, 83(4), 369-383. doi: 10.1006/anbo.1998.0835
  44. Carreck, N.L.; Williams, I.H. Food for insect pollinators on farmland: Insect visits to flowers of annual seed mixtures. J. Insect Conserv., 2002, 6(1), 13-23. doi: 10.1023/A:1015764925536
  45. Murase, M. Rearing records of three pyralines. Jpn. Heter. J., 2008, 247, 388-389.
  46. Satar, S.; Kersting, U.; Uygun, N. Development and fecundity of Aphis gossypii Glover (Homoptera: Aphididae) on three Malvaceae hosts. Turk. J. Agric. For., 1999, 23(6), 637-644.
  47. Classen, B.; Amelunxen, F.; Blaschek, W. Concentric bodies in a parasitic fungus of Malva sylvestris (Malvaceae) pollen. J. Phytopathol., 2000, 148(5), 313-317. doi: 10.1046/j.1439-0434.2000.00490.x
  48. Ercan, H. ELEKCİOĞLU, İ. H., Determination of root-knot nematodes species (Meloidogyne spp.) on weeds in Adana and Mersin province. Turk. Entomol. Derg., 2009, 33(3), 179-192.
  49. Wilson, C.R. Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms. Plant Pathol., 1998, 47(2), 171-176. doi: 10.1046/j.1365-3059.1998.00227.x
  50. Pappu, H.R.; Jones, R.A.C.; Jain, R.K. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res., 2009, 141(2), 219-236. doi: 10.1016/j.virusres.2009.01.009 PMID: 19189852
  51. Lavina, A.; Aramburu, J.; Moriones, E. Occurrence of tomato spotted wilt and cucumber mosaic viruses in field-grown tomato crops and associated weeds in northeastern Spain. Plant Pathol., 1996, 45(5), 837-842. doi: 10.1111/j.1365-3059.1996.tb02893.x
  52. Qasem, J.R. Chemical weed control in seedbed sown onion (Allium cepa L.). Crop Prot., 2006, 25(6), 618-622. doi: 10.1016/j.cropro.2005.09.008
  53. Mas, M.T.; Poggio, S.L.; Verdú, A.M.C. Weed community structure of mandarin orchards under conventional and integrated management in northern Spain. Agric. Ecosyst. Environ., 2007, 119(3-4), 305-310. doi: 10.1016/j.agee.2006.07.016
  54. Qasem, J.R. Weed competition in cauliflower (Brassica oleracea L. var. botrytis) in the Jordan Valley. Sci. Hortic., 2009, 121(3), 255-259. doi: 10.1016/j.scienta.2009.02.010
  55. Zand, E.; Baghestani, M.A.; AghaAlikhani, M.; Soufizadeh, S.; Khayami, M.M.; PourAzar, R.; Sabeti, P.; Jamali, M.; Bagherani, N.; Forouzesh, S. Chemical control of weeds in wheat (Triticum aestivum L.) in Iran. Crop Prot., 2010, 29(11), 1223-1231. doi: 10.1016/j.cropro.2010.07.004
  56. Qasem, J.R. Chemical weed control in garlic (Allium sativum L.) in Jordan. Crop Prot., 1996, 15(1), 21-26. doi: 10.1016/0261-2194(95)00085-2
  57. Jansen, C.; Schuphan, I.; Schmidt, B. Glufosinate metabolism in excised shoots and leaves of twenty plant species. Weed Sci., 2000, 48(3), 319-326. doi: 10.1614/0043-1745(2000)0480319:GMIESA2.0.CO;2
  58. Andrade Pinto, J.M.; Souza, E.A.; Oliveira, D.F. Use of plant extracts in the control of common bean anthracnose. Crop Prot., 2010, 29(8), 838-842. doi: 10.1016/j.cropro.2010.03.006
  59. Madejón, E.; de Mora, A.P.; Felipe, E.; Burgos, P.; Cabrera, F. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ. Pollut., 2006, 139(1), 40-52. doi: 10.1016/j.envpol.2005.04.034 PMID: 16005126
  60. Boojar, M.M.A.; Goodarzi, F. The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere, 2007, 67(11), 2138-2147. doi: 10.1016/j.chemosphere.2006.12.071 PMID: 17316756
  61. Anastasakis, K.; Kalderis, D.; Diamadopoulos, E. Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination, 2009, 249(2), 786-791. doi: 10.1016/j.desal.2008.09.013
  62. Bergmann, E.; Bender, J.; Weigel, H.J. Growth responses and foliar sensitivities of native herbaceous species to ozone exposures. Water Air Soil Pollut., 1995, 85(3), 1437-1442. doi: 10.1007/BF00477183
  63. Wohlgemuth, H.; Mittelstrass, K.; Kschieschan, S.; Bender, J.; Weigel, H.J.; Overmyer, K.; Kangasjärvi, J.; Sandermann, H.; Langebartels, C. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ., 2002, 25(6), 717-726. doi: 10.1046/j.1365-3040.2002.00859.x
  64. Langebartels, C.; Wohlgemuth, H.; Kschieschan, S.; Grün, S.; Sandermann, H. Oxidative burst and cell death in ozone-exposed plants. Plant Physiol. Biochem., 2002, 40(6-8), 567-575. doi: 10.1016/S0981-9428(02)01416-X
  65. Dohrmann, A.B.; Tebbe, C.C. Genetic profiling of bacterial communities from the rhizospheres of ozone damaged Malva sylvestris (Malvaceae). Eur. J. Soil Biol., 2006, 42(4), 191-199. doi: 10.1016/j.ejsobi.2006.02.001
  66. Bender, J.; Bergmann, E.; Weigel, H.J. Responses of biomass production and reproductive development to ozone exposure differ between European wild plant species. Water Air Soil Pollut., 2006, 176(1-4), 253-267. doi: 10.1007/s11270-006-9167-1
  67. Classen, B.; Blaschek, W. An arabinogalactan-protein from cell culture of Malva sylvestris. Planta Med., 2002, 68(3), 232-236. doi: 10.1055/s-2002-23127 PMID: 11914960
  68. Ganai, B.A.; Masood, A.; Baig, M.A. Isolation, purification and partial characterization of sulphite oxidase from Malva sylvestris. Phytochemistry, 1997, 45(5), 879-880. doi: 10.1016/S0031-9422(97)82709-4
  69. Ganai, B.; Masood, A.; Zargar, M.; Syed, M. Kinetics of sulfite oxidase purified from Malva sylvestris. I Control Pollution, 2006, 22(1), 77-82.
  70. Ahmad, G.; Hassan, R.; Dhiman, N.; Ali, A. J. C. C.; Screening, H. T. Assessment of anti-inflammatory activity of 3-acetylmyricadiol in LPSStimulated Raw 264. 7 Macrophages, 2022, 25(1), 204-210.
  71. Mir, R.H.; Sabreen, S. Isoflavones of Soy: Chemistry and Health Benefits. In: Edible Plants in Health and Diseases: Volume 1: Cultural, Practical and Economic Value; Springer, 2022; pp. 303-324.
  72. Mohi-ud-din, R.; Mir, R.H.; Sabreen, S.; Jan, R.; Pottoo, F.H.; Singh, I.P. Recent insights into therapeutic potential of plant-derived flavonoids against cancer. Anticancer. Agents Med. Chem., 2022, 22(20), 3343-3369. doi: 10.2174/1871520622666220421094055 PMID: 35593353
  73. Mir, R.H.; Banday, N.; Sabreen, S.; Shah, A.J.; Jan, R.; Wani, T.U.; Farooq, S.; Bhat, Z.A. Resveratrol: A potential drug candidate with multispectrum therapeutic application. Stud. Nat. Prod. Chem., 2022, 73, 99-137.
  74. Mir, R.H.; Mir, P.A.; Shah, A.J.; Banday, N.; Sabreen, S.; Maqbool, M.; Jan, R.; Shafi, N.; Masoodi, M.H.J.S.i.N.P.C. Curcumin as a privileged scaffold molecule for various biological targets in drug development. Stud. Nat. Prod. Chem., 2022, 73, 405-434. doi: 10.1016/B978-0-323-91097-2.00010-8
  75. Sikorska, M.; Matławska, I.; Fra ski, R. 8-Hydroxyflavonoid glucuronides of Malope trifida. Acta Physiol. Plant., 2004, 26(3), 291-297. doi: 10.1007/s11738-004-0019-6
  76. Mir, R.H.; Masoodi, M.H.J.C.B.C. Anti-inflammatory plant polyphenolics and cellular action mechanisms. Curr. Bioact. Compd., 2020, 16(6), 809-817. doi: 10.2174/1573407215666190419205317
  77. Mir, R.H.; Mir, P.A.; Maqbool, M.; Banday, N.; Farooq, S.; Raza, S.N.; Chawla, P.A. Therapeutic potential of plant-derived flavonoids against inflammation. In: Recent Developments in Anti-Inflammatory Therapy; Elsevier, 2023; pp. 279-293. doi: 10.1016/B978-0-323-99988-5.00019-X
  78. Billeter, M.; Meier, B.; Sticher, O. 8-hydroxyflavonoid glucuronides from Malva sylvestris. Phytochemistry, 1991, 30(3), 987-990. doi: 10.1016/0031-9422(91)85292-8
  79. Nawwar, M.A.M.; El Dein, A.; El Sherbeiny, A.; El Ansari, M.A.; El Sissi, H.I. Two new sulphated flavonol glucosides from leaves of Malva sylvestris. Phytochemistry, 1977, 16(1), 145-146. doi: 10.1016/0031-9422(77)83042-2
  80. Nawwar, M.A.M.; Buddrus, J. A gossypetin glucuronide sulphate from the leaves of Malva sylvestris. Phytochemistry, 1981, 20(10), 2446-2448. doi: 10.1016/S0031-9422(00)82694-1
  81. Pourrat, H.; Texier, O.; Barthomeuf, C. Identification and assay of anthocyanin pigments in malva-sylvestris L. Pharm. Acta Helv., 1990, 65(3), 93-96.
  82. Brouillard, R. The in vivo expression of anthocyanin colour in plants. Phytochemistry, 1983, 22(6), 1311-1323. doi: 10.1016/S0031-9422(00)84008-X
  83. Merlin, J.C.; Statoua, A.; Brouillard, R. Investigation of the in vivo organization of anthocyanins using resonance raman microspectrometry. Phytochemistry, 1985, 24(7), 1575-1581. doi: 10.1016/S0031-9422(00)81069-9
  84. Farina, A.; Doldo, A.; Cotichini, V.; Rajevic, M.; Quaglia, M.G.; Mulinacci, N.; Vincieri, F.F. HPTLC and reflectance mode densitometry of anthocyanins in Malva Silvestris L.: a comparison with gradient-elution reversed-phase HPLC. J. Pharm. Biomed. Anal., 1995, 14(1-2), 203-211. doi: 10.1016/0731-7085(95)01632-5 PMID: 8833983
  85. Lewis, C.; Walker, J.R.; Lancaster, J.E. Effect of polysaccharides on the colour of anthocyanins. Food Chem., 1995, 54(3), 315-319. doi: 10.1016/0308-8146(95)00026-F
  86. Mas, T.; Susperregui, J.; Berké, B.; Chèze, C.; Moreau, S.; Nuhrich, A.; Vercauteren, J. DNA triplex stabilization property of natural anthocyanins. Phytochemistry, 2000, 53(6), 679-687. doi: 10.1016/S0031-9422(99)00619-6 PMID: 10746881
  87. Torskangerpoll, K.; Børve, K.J.; Andersen, Ø.M.; Sæthre, L.J. Color and substitution pattern in anthocyanidins. A combined quantum chemical–chemometrical study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 1999, 55(4), 761-771. doi: 10.1016/S1386-1425(98)00202-9
  88. Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc., 2007, 43(1), 13-25. doi: 10.1016/j.vibspec.2006.06.001
  89. Takeda, K.; Enoki, S.; Harborne, J.B.; Eagles, J. Malonated anthocyanins in malvaceae: Malonylmalvin from Malva sylvestris. Phytochemistry, 1989, 28(2), 499-500. doi: 10.1016/0031-9422(89)80040-8
  90. Daniela, A.; Pichichero, E.; Canuti, L.; Cicconi, R.; Karou, D.; D’Arcangelo, G.; Canini, A. Identification of phenolic compounds from medicinal and melliferous plants and their cytotoxic activity in cancer cells. Caryologia, 2007, 60(1-2), 90-95. doi: 10.1080/00087114.2007.10589552
  91. Franz, G. Die Schleimpolysaccharide von Althaea officinalis und Malva silvestris. Planta Med., 1966, 14(1), 90-110. doi: 10.1055/s-0028-1100032
  92. Tomoda, M.; Gonda, R.; Shimizu, N.; Yamada, H. Plant mucilages. XLII. An anti-complementary mucilage from the Leaves of Malva sylvestris var. mauritiana. Chem. Pharm. Bull., 1989, 37(11), 3029-3032. doi: 10.1248/cpb.37.3029 PMID: 2632049
  93. Nosalova, G.; Mokry, J.; Franova, S. Pharmacological modulation of cough reflex. Adv. Phytomed., 2006, 2, 87-110. doi: 10.1016/S1572-557X(05)02006-4
  94. Classen, B.; Amelunxen, F.; Blaschek, W. Ultrastructural investigations on the development of mucilage idioblasts and cavities of Malva sylvestris ssp. mauritiana. Sci. Pharm., 1998, 66(4), 363-380.
  95. Karawya, M.; Balbaa, S.; Afifi, M. Investigation of the carbohydrate contents of certain mucilaginous plants. Planta Med., 1971, 20(3), 14-23. doi: 10.1055/s-0028-1099659 PMID: 5154598
  96. Classen, B.; Blaschek, W. High molecular weight acidic polysaccharides from Malva sylvestris and Alcea rosea. Planta Med., 1998, 64(7), 640-644. doi: 10.1055/s-2006-957538 PMID: 9810269
  97. Hiçsönmez, Ü.; Ereeş, F.S.; Özdemir, C.; Özdemir, A.; Çam, S. Determination of major and minor elements in the Malva sylvestris L. from Turkey using ICP-OES techniques. Biol. Trace Elem. Res., 2009, 128(3), 248-257. doi: 10.1007/s12011-008-8270-0 PMID: 19083156
  98. Katapodis, P.; Kavarnou, A.; Kintzios, S.; Pistola, E.; Kekos, D.; Macris, B.J.; Christakopoulos, P. Production of acidic xylo-oligosaccharides by a family 10 endoxylanase from Thermoascus aurantiacus and use as plant growth regulators. Biotechnol. Lett., 2002, 24(17), 1413-1416. doi: 10.1023/A:1019898414801
  99. Flack, H.D. On enantiomorph-polarity estimation. Acta Crystallogr. A, 1983, 39(6), 876-881. doi: 10.1107/S0108767383001762
  100. Cutillo, F.; Dabrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry, 2006, 67(5), 481-485. doi: 10.1016/j.phytochem.2005.11.023 PMID: 16403542
  101. Emets, T.I.; Steblyuk, M.V.; Klyuev, N.A.; Petrenko, V.V. Some components of the seed oil ofMalva sylvestris. Chem. Nat. Compd., 1994, 30(3), 292-294. doi: 10.1007/BF00629959
  102. Veshkurova, O.; Golubenko, Z.; Pshenichnov, E.; Arzanova, I.; Uzbekov, V.; Sultanova, E.; Salikhov, S.; Williams, H.J.; Reibenspies, J.H.; Puckhaber, L.S.; Stipanovic, R.D. Malvone A, a phytoalexin found in Malva sylvestris (family Malvaceae). Phytochemistry, 2006, 67(21), 2376-2379. doi: 10.1016/j.phytochem.2006.08.010 PMID: 16996095
  103. Tosi, B.; Tirillini, B.; Donini, A.; Bruni, A. Presence of scopoletin in Malva sylvestris. Int. J. Pharmacogn., 1995, 33(4), 353-355.
  104. Conforti, F.; Ioele, G.; Statti, G.A.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem. Toxicol., 2008, 46(10), 3325-3332. doi: 10.1016/j.fct.2008.08.004 PMID: 18768152
  105. Mukarram, M.; Ahmad, I.; Ahmad, M. HBr-Reactive acids of Malva sylvestris seed oil. J. Am. Oil Chem. Soc., 1984, 61(6), 1060-1060. doi: 10.1007/BF02636219
  106. Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodríguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A, 1996, 719(1), 229-235. doi: 10.1016/0021-9673(95)00414-9 PMID: 8589832
  107. Redžić, S.; Hodžić, N.; Tuka, M. Plant pigments (antioxidants) of medicinal plants Malva Sylvestris l. and Malva Moschata l. (Malvaceae). Bosn. J. Basic Med. Sci., 2005, 5(2), 53-58. doi: 10.17305/bjbms.2005.3284 PMID: 16053456
  108. Desideri, D.; Meli, M.A.; Roselli, C. Determination of essential and non-essential elements in some medicinal plants by polarised X ray fluorescence spectrometer (EDPXRF). Microchem. J., 2010, 95(2), 174-180. doi: 10.1016/j.microc.2009.11.010
  109. Khan, S.; Rehman, S.; Zeb Khan, A.; Amjad Khan, M.; Tahir Shah, M. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf., 2010, 73(7), 1820-1827. doi: 10.1016/j.ecoenv.2010.08.016 PMID: 20810165
  110. Willey, N.J.; Fawcett, K. Inter-taxa differences in root uptake of 103/106Ru by plants. J. Environ. Radioact., 2006, 86(2), 227-240. doi: 10.1016/j.jenvrad.2005.09.002 PMID: 16256252
  111. Willey, N.; Fawcett, K. A phylogenetic effect on strontium concentrations in angiosperms. Environ. Exp. Bot., 2006, 57(3), 258-269. doi: 10.1016/j.envexpbot.2005.06.005
  112. Willey, N.J.; Tang, S.; McEwen, A.; Hicks, S. The effects of plant traits and phylogeny on soil-to-plant transfer of 99Tc. J. Environ. Radioact., 2010, 101(9), 757-766. doi: 10.1016/j.jenvrad.2010.04.019 PMID: 20554099
  113. Watanabe, E.; Tanomaru, J.M.G.; Nascimento, A.P.; Matoba-Júnior, F.; Tanomaru-Filho, M.; Yoko Ito, I. Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against staphylococcus aureus: an in vitro study. J. Appl. Oral Sci., 2008, 16(4), 275-279. doi: 10.1590/S1678-77572008000400009 PMID: 19089260
  114. Quave, C.L.; Plano, L.R.W.; Pantuso, T.; Bennett, B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 2008, 118(3), 418-428. doi: 10.1016/j.jep.2008.05.005 PMID: 18556162
  115. Razavi, S.M.; Zarrini, G.; Molavi, G.; Ghasemi, G. Bioactivity of malva sylvestris L., a medicinal plant from iran. Iran. J. Basic Med. Sci., 2011, 14(6), 574-579. PMID: 23493458
  116. Cogo, L.L.; Monteiro, C.L.B.; Miguel, M.D.; Miguel, O.G.; Cunico, M.M.; Ribeiro, M.L.; Camargo, E.R.; Kussen, G.M.B.; Nogueira, K.S.; Costa, L.M.D. Anti-Helicobacter pylori activity of plant extracts traditionally used for the treatment of gastrointestinal disorders. Braz. J. Microbiol., 2010, 41(2), 304-309. doi: 10.1590/S1517-83822010000200007 PMID: 24031496
  117. Bonjar, S. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol., 2004, 94(2-3), 301-305. doi: 10.1016/j.jep.2004.06.007 PMID: 15325735
  118. Coelho de Souza, G.; Haas, A.P.S.; von Poser, G.L.; Schapoval, E.E.S.; Elisabetsky, E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J. Ethnopharmacol., 2004, 90(1), 135-143. doi: 10.1016/j.jep.2003.09.039 PMID: 14698521
  119. Sleiman, N.H.; Daher, C.F. Malva sylvestris water extract: A potential anti-Inflammatory and anti-ulcerogenic remedy. Planta Med., 2009, 75(9), PH10. doi: 10.1055/s-0029-1234727
  120. Magro, A.; Carolino, M.; Bastos, M.; Mexia, A. Efficacy of plant extracts against stored products fungi. Rev. Iberoam. Micol., 2006, 23(3), 176-178. doi: 10.1016/S1130-1406(06)70039-0 PMID: 17196025
  121. Chiclana, C.F.; Enrique, A.; Consolini, A.E. Topical antiinflammatory activity of Malva sylvestris L. (Malvaceae) on carragenin-induced edema in rats. Lat. Am. J. Pharm., 2009, 28(2), 275-278.
  122. Benso, B.; Franchin, M.; Massarioli, A.P.; Paschoal, J.A.R.; Alencar, S.M.; Franco, G.C.N.; Rosalen, P.L. Anti-inflammatory, anti-osteoclastogenic and antioxidant effects of Malva sylvestris extract and fractions: in vitro and in vivo studies. PLoS One, 2016, 11(9), e0162728. doi: 10.1371/journal.pone.0162728 PMID: 27643502
  123. Choi, K.S.; Kundu, J.K.; Chun, K.S.; Na, H.K.; Surh, Y.J. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: P38 MAP kinase and JNK as potential targets. Arch. Biochem. Biophys., 2014, 559, 38-45. doi: 10.1016/j.abb.2014.05.016 PMID: 24875145
  124. Kauss, T.; Moynet, D.; Rambert, J.; Al-Kharrat, A.; Brajot, S.; Thiolat, D.; Ennemany, R.; Fawaz, F.; Mossalayi, M.D. Rutoside decreases human macrophage-derived inflammatory mediators and improves clinical signs in adjuvant-induced arthritis. Arthritis Res. Ther., 2008, 10(1), R19. doi: 10.1186/ar2372 PMID: 18252009
  125. Seddighfar, M.; Mirghazanfari, S.M.; Dadpay, M. Analgesic and anti-inflammatory properties of hydroalcoholic extracts of Malva sylvestris, Carum carvi or Medicago sativa, and their combination in a rat model. J. Integr. Med., 2020, 18(2), 181-188. doi: 10.1016/j.joim.2020.02.003 PMID: 32113847
  126. Esteves, P.F.; Sato, A.; Esquibel, M.A.; de Campos-Buzzi, F.; Meira, A.V.; Cechinel-Filho, V. Antinociceptive activity of Malva sylvestris L. Lat. Am. J. Pharm., 2009, 28(3), 454-456.
  127. Petkova, N.; Popova, A.; Alexieva, I. Antioxidant properties and some phytochemical components of the edible medicinal Malva sylvestris L. Faslnamah-i Giyahan-i Daruyi, 2019, 7(1), 96-99.
  128. DellaGreca, M.; Cutillo, F.; Abrosca, B. D.; Fiorentino, A.; Pacifico, S.; Zarrelli, A. Antioxidant and radical scavenging properties of Malva sylvestris. Nat. Prod. Commun., 2009, 4(7), 1934578X0900400702. doi: 10.1177/1934578X0900400702
  129. Nehir El, S.; Karakaya, S. Radical scavenging and iron-chelating activities of some greens used as traditional dishes in Mediterranean diet. Int. J. Food Sci. Nutr., 2004, 55(1), 67-74. doi: 10.1080/09637480310001642501 PMID: 14630594
  130. Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res., 2007, 21(7), 615-621. doi: 10.1002/ptr.2129 PMID: 17357975
  131. Marouane, W.; Soussi, A.; Murat, J.C.; Bezzine, S.; El Feki, A. The protective effect of Malva sylvestris on rat kidney damaged by vanadium. Lipids Health Dis., 2011, 10(1), 65. doi: 10.1186/1476-511X-10-65 PMID: 21513564
  132. Irfan, A.; Imran, M.; Khalid, M.; Sami Ullah, M.; Khalid, N.; Assiri, M.A.; Thomas, R.; Muthu, S.; Raza Basra, M.A.; Hussein, M.; Al-Sehemi, A.G.; Shahzad, M. Phenolic and flavonoid contents in Malva sylvestris and exploration of active drugs as antioxidant and anti-COVID19 by quantum chemical and molecular docking studies. J. Saudi Chem. Soc., 2021, 25(8), 101277. doi: 10.1016/j.jscs.2021.101277
  133. Hussain, L.; Ikram, J.; Rehman, K.; Tariq, M.; Ibrahim, M.; Akash, M.S.H. Hepatoprotective effects of Malva sylvestris L. against paracetamol-induced hepatotoxicity. Turk. J. Biol., 2014, 38(3), 396-402. doi: 10.3906/biy-1312-32
  134. Mohi-Ud-Din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A.J.C.d.m Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879. doi: 10.2174/1389200220666191105121653
  135. Matsuo, K.; Irie, N. Osteoclast–osteoblast communication. Arch. Biochem. Biophys., 2008, 473(2), 201-209. doi: 10.1016/j.abb.2008.03.027 PMID: 18406338
  136. Matsuoka, K.; Park, K.; Ito, M.; Ikeda, K.; Takeshita, S. Osteoclast-derived complement component 3a stimulates osteoblast differentiation. J. Bone Miner. Res., 2014, 29(7), 1522-1530. doi: 10.1002/jbmr.2187 PMID: 24470120
  137. Zaidi, M. Skeletal remodeling in health and disease. Nat. Med., 2007, 13(7), 791-801. doi: 10.1038/nm1593 PMID: 17618270
  138. Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.; Hamedi, B. Wound healing activity of Malva sylvestris and Punica granatum in alloxan-induced diabetic rats. Acta Pol. Pharm., 2010, 67(5), 511-516. PMID: 20873419
  139. Ghorbani, A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran. J. Ethnopharmacol., 2005, 102(1), 58-68. doi: 10.1016/j.jep.2005.05.035 PMID: 16024194
  140. Zargari, A. Medicinal Plants, 5th edn; Tehran University Publication: Tehran, 1992.
  141. PERSICUS. 2nd National Congress on Medicinal Plants 15, 16 May 2013 Tehran-Iran 2013.
  142. Nasiri, E.; Hosseinimehr, S.J.; Azadbakht, M.; Akbari, J.; Enayati-Fard, R.; Azizi, S. Effect of Malva sylvestris cream on burn injury and wounds in rats. Avicenna J. Phytomed., 2015, 5(4), 341-354. PMID: 26909337
  143. Hamedi, A.; Rezaei, H.; Azarpira, N.; Jafarpour, M.; Ahmadi, F. Effects of Malva sylvestris and its isolated polysaccharide on experimental ulcerative colitis in rats. J. Evid. Based Complementary Altern. Med., 2016, 21(1), 14-22. doi: 10.1177/2156587215589184 PMID: 26045553
  144. Dumas, M.; Noblesse, E.; Krzych, V.; Cauchard, J.H. Use of an extract of common mallow as an hydrating agent, and cosmetic composition containing it. U.S Patent US8455013B2, 2013.
  145. Mohamadi Yarijani, Z.; Najafi, H.; Shackebaei, D.; Madani, S.H.; Modarresi, M.; Jassemi, S.V. Amelioration of renal and hepatic function, oxidative stress, inflammation and histopathologic damages by Malva sylvestris extract in gentamicin induced renal toxicity. Biomed. Pharmacother., 2019, 112, 108635. doi: 10.1016/j.biopha.2019.108635 PMID: 30798126
  146. Benso, B.; Rosalen, P.L.; Pasetto, S.; Marquezin, M.C.S.; Freitas-Blanco, V.; Murata, R.M. Malva sylvestris derivatives as inhibitors of HIV-1 BaL infection. Nat. Prod. Res., 2021, 35(6), 1064-1069. doi: 10.1080/14786419.2019.1619720 PMID: 31429300
  147. Chitnis, S.; Mondal, D.; Agrawal, K.C. Zidovudine (AZT) treatment suppresses granulocyte-monocyte colony stimulating factor receptor type alpha (GM-CSFRα) gene expression in murine bone marrow cells. Life Sci., 2002, 71(8), 967-978. doi: 10.1016/S0024-3205(02)01790-3 PMID: 12084393
  148. Talbourdet, S.; Sadick, N.S.; Lazou, K.; Bonnet-Duquennoy, M.; Kurfurst, R.; Neveu, M.; Heusèle, C.; André, P.; Schnebert, S.; Draelos, Z.D.; Perrier, E. Modulation of gene expression as a new skin anti-aging strategy. J. Drugs Dermatol., 2007, 6(Suppl. 6), s25-s33. PMID: 17691207
  149. Guarrera, P.M. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia, 2005, 76(1), 1-25. doi: 10.1016/j.fitote.2004.09.006 PMID: 15664457
  150. Camejo-Rodrigues, J.; Ascensão, L.; Bonet, M.À.; Vallès, J. An ethnobotanical study of medicinal and aromatic plants in the Natural Park of "Serra de São Mamede" (Portugal). J. Ethnopharmacol., 2003, 89(2-3), 199-209. doi: 10.1016/S0378-8741(03)00270-8 PMID: 14611883
  151. Zhen-yu, W. Impact of anthocyanin fromMalva sylvestris on plasma lipids and free radical. J. For. Res., 2005, 16(3), 228-232. doi: 10.1007/BF02856821

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers