(S)-10-Hydroxycamptothecin Inhibits EMT-evoked Osteosarcoma Cell Growth and Metastasis by Activating the HIPPO Signaling Pathway
- Authors: Ma X.1, Chang J.1, Sun X.1, Zhou C.1, Zhao P.1, Yang Y.1
-
Affiliations:
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine
- Issue: Vol 27, No 15 (2024)
- Pages: 2239-2248
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/644232
- DOI: https://doi.org/10.2174/0113862073263020231220043405
- ID: 644232
Cite item
Full Text
Abstract
Background:Osteosarcoma is the most common primary bone cancer in children and adolescents with high metastatic ability.
Aim:This study aimed to explore the inhibitory effects of (S)-10-hydroxycamptothecin (HCPT) on osteosarcoma cell growth and metastasis as well as the underlying mechanism.
Methods:The osteosarcoma cells of 143B and U-2 OS (U-2), treated with HCPT (20, 100, or 300 nM), underwent detections, such as CCK-8, flow cytometry, Transwell, wound healing, and immunoblotting. EMT-related key proteins, like N-cadherin, Snail, and Vimentin, were found to be down-regulated, while E-cadherin was up-regulated dose-dependently in HCPT-exposed 143B and U-2 cells. Additionally, incubation of 143B and U-2 cells with HCPT for 3 hours dosedependently reduced the expression ratios of p-LATS1/LATS1, p-MST1/MST1, p-YAP/YAP, and p-TAZ/TAZ.
Results:Taken together, our study has demonstrated HCPT to inhibit osteosarcoma growth and metastasis potentially by activating the HIPPO signaling pathway and reversing EMT.
Conclusion:HCPT might be a candidate agent for the prevention and treatment of osteosarcoma
About the authors
Xiaoping Ma
Longhua Hospital, Shanghai University of Traditional Chinese Medicine
Email: info@benthamscience.net
Junli Chang
Longhua Hospital, Shanghai University of Traditional Chinese Medicine
Email: info@benthamscience.net
Xingyuan Sun
Longhua Hospital, Shanghai University of Traditional Chinese Medicine
Email: info@benthamscience.net
Chujie Zhou
Longhua Hospital, Shanghai University of Traditional Chinese Medicine
Email: info@benthamscience.net
Peng Zhao
Longhua Hospital, Shanghai University of Traditional Chinese Medicine
Email: info@benthamscience.net
Yanping Yang
Longhua Hospital, Shanghai University of Traditional Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Wu, W.; Jing, D.; Meng, Z.; Hu, B.; Zhong, B.; Deng, X.; Jin, X.; Shao, Z. FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Theranostics, 2020, 10(6), 2859-2871. doi: 10.7150/thno.41279 PMID: 32194840
- Li, Z.; Li, X.; Xu, D.; Chen, X.; Li, S.; Zhang, L.; Chan, M.T.V.; Wu, W.K.K. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif., 2021, 54(1), e12936. doi: 10.1111/cpr.12936 PMID: 33103338
- Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol., 2021, 18(10), 609-624. doi: 10.1038/s41571-021-00519-8 PMID: 34131316
- Davis, L.E.; Janeway, K.A.; Weiss, A.R.; Chen, Y.L.E.; Scharschmidt, T.J.; Krailo, M.; Glade Bender, J.L.; Kopp, L.M.; Patel, S.R.; Schwartz, G.K.; Horvath, L.E.; Hawkins, D.S.; Chuk, M.K.; Reinke, D.K.; Gorlick, R.G.; Randall, R.L. Clinical trial enrollment of adolescents and young adults with sarcoma. Cancer, 2017, 123(18), 3434-3440. doi: 10.1002/cncr.30757 PMID: 28493547
- Aljubran, A.H.; Griffin, A.; Pintilie, M.; Blackstein, M. Osteosarcoma in adolescents and adults: Survival analysis with and without lung metastases. Ann. Oncol., 2009, 20(6), 1136-1141. doi: 10.1093/annonc/mdn731 PMID: 19153114
- Meyers, P.A.; Schwartz, C.L.; Krailo, M.; Kleinerman, E.S.; Betcher, D.; Bernstein, M.L.; Conrad, E.; Ferguson, W.; Gebhardt, M.; Goorin, A.M.; Harris, M.B.; Healey, J.; Huvos, A.; Link, M.; Montebello, J.; Nadel, H.; Nieder, M.; Sato, J.; Siegal, G.; Weiner, M.; Wells, R.; Wold, L.; Womer, R.; Grier, H. Osteosarcoma: A randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol., 2005, 23(9), 2004-2011. doi: 10.1200/JCO.2005.06.031 PMID: 15774791
- Saraf, A.J.; Fenger, J.M.; Roberts, R.D. Osteosarcoma: Accelerating progress makes for a hopeful future. Front. Oncol., 2018, 8, 4. doi: 10.3389/fonc.2018.00004 PMID: 29435436
- Li, C.; Wang, S.; Xing, Z.; Lin, A.; Liang, K.; Song, J.; Hu, Q.; Yao, J.; Chen, Z.; Park, P.K.; Hawke, D.H.; Zhou, J.; Zhou, Y.; Zhang, S.; Liang, H.; Hung, M.C.; Gallick, G.E.; Han, L.; Lin, C.; Yang, L.A. ROR1HER3lncRNA signalling axis modulates the HippoYAP pathway to regulate bone metastasis. Nat. Cell Biol., 2017, 19(2), 106-119. doi: 10.1038/ncb3464 PMID: 28114269
- Zhang, Z.; Du, J.; Wang, S. OTUB2 promotes cancer metastasis via HIPPO-Independent activation of YAP and TAZ. Mol. Cell, 2019, 73, 7-21.
- Liu, H.; Dai, X.; Cao, X.; Yan, H.; Ji, X.; Zhang, H.; Shen, S.; Si, Y.; Zhang, H.; Chen, J.; Li, L.; Zhao, J.C.; Yu, J.; Feng, X.H.; Zhao, B. PRDM 4 mediates YAP ‐induced cell invasion by activating leukocyte‐specific integrin β2 expression. EMBO Rep., 2018, 19(6), e45180. doi: 10.15252/embr.201745180 PMID: 29669796
- Zhuo, W.; Kang, Y. Lnc-ing ROR1HER3 and Hippo signalling in metastasis. Nat. Cell Biol., 2017, 19(2), 81-83. doi: 10.1038/ncb3467 PMID: 28139652
- Goulev, Y.; Fauny, J.D.; Gonzalez-Marti, B.; Flagiello, D.; Silber, J.; Zider, A. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr. Biol., 2008, 18(6), 435-441. doi: 10.1016/j.cub.2008.02.034 PMID: 18313299
- Zhao, B.; Ye, X.; Yu, J.; Li, L.; Li, W.; Li, S.; Yu, J.; Lin, J.D.; Wang, C.Y.; Chinnaiyan, A.M.; Lai, Z.C.; Guan, K.L. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev., 2008, 22(14), 1962-1971. doi: 10.1101/gad.1664408 PMID: 18579750
- Zhang, H.; Liu, C.Y.; Zha, Z.Y.; Zhao, B.; Yao, J.; Zhao, S.; Xiong, Y.; Lei, Q.Y.; Guan, K.L. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem., 2009, 284(20), 13355-13362. doi: 10.1074/jbc.M900843200 PMID: 19324877
- Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell, 2010, 19(4), 491-505. doi: 10.1016/j.devcel.2010.09.011 PMID: 20951342
- Yu, F.X.; Zhao, B.; Guan, K.L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell, 2015, 163(4), 811-828. doi: 10.1016/j.cell.2015.10.044 PMID: 26544935
- Chen, D.; Sun, Y.; Wei, Y.; Zhang, P.; Rezaeian, A.H.; Teruya-Feldstein, J.; Gupta, S.; Liang, H.; Lin, H.K.; Hung, M.C.; Ma, L. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat. Med., 2012, 18(10), 1511-1517. doi: 10.1038/nm.2940 PMID: 23001183
- Zhao, B.; Li, L.; Lei, Q.; Guan, K.L. The HippoYAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev., 2010, 24(9), 862-874. doi: 10.1101/gad.1909210 PMID: 20439427
- Hansen, C.G.; Moroishi, T.; Guan, K.L. YAP and TAZ: A nexus for Hippo signaling and beyond. Trends Cell Biol., 2015, 25(9), 499-513. doi: 10.1016/j.tcb.2015.05.002 PMID: 26045258
- Wu, Z.; Wang, C.; Chen, Y.; Sun, Z.; Yan, W. SRPX2 promotes cell proliferation and invasion in osteosarcoma through regulating hippo signaling pathway. OncoTargets Ther., 2020, 13, 1737-1749. doi: 10.2147/OTT.S225602 PMID: 32161469
- Yang, A.; Liu, Z.; Yan, B.; Zhou, M.; Xiong, X. Preparation of camptothecin-loaded targeting nanoparticles and their antitumor effects on hepatocellular carcinoma cell line H22. Drug Deliv., 2016, 23(5), 1699-1706. PMID: 25148540
- Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor agents: I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc., 1966, 88(16), 3888-3890. doi: 10.1021/ja00968a057
- Moertel, C.G.; Schutt, A.J.; Reitemeier, R.J.; Hahn, R.G. Phase II study of 5-azacytidine (NSC-102816) in the treatment of advanced gastrointestinal cancer. Cancer Chemother. Rep., 1972, 56(5), 649-652. PMID: 4119908
- Yau, X-F.; Wang, Y.; Yu, T.; Zhang, Y.H.; Dai, S.J. Variations in camptothecin content in Camptotheca acuminata leaves. Bot. Bull. Acad. Sin., 2003, 44, 99-105.
- Chen, Y.; Wang, Z.; Wang, X.; Su, M.; Xu, F.; Yang, L.; Jia, L.; Zhang, Z. Advances in antitumor nano-drug delivery systems of 10-hydroxycamptothecin. Int. J. Nanomedicine, 2022, 17, 4227-4259. doi: 10.2147/IJN.S377149 PMID: 36134205
- Pommier, Y.; Kohlhagen, G.; Wu, C.; Simmons, D.T. Mammalian DNA topoisomerase I activity and poisoning by camptothecin are inhibited by simian virus 40 large T antigen. Biochemistry, 1998, 37(11), 3818-3823. doi: 10.1021/bi972067d PMID: 9521701
- Bao, H.; Zhang, Q.; Xu, H.; Yan, Z. Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: In vitro and in vivo studies. Int. J. Nanomedicine, 2016, 11, 929-940. PMID: 27022260
- Song, M.; Yin, S.; Zhao, R.; Liu, K.; Kundu, J.K.; Shim, J.H.; Lee, M.H.; Dong, Z. (S)-10-hydroxycamptothecin inhibits esophageal squamous cell carcinoma growth in vitro and in vivo via decreasing topoisomerase I enzyme activity. Cancers, 2019, 11(12), 1964. doi: 10.3390/cancers11121964 PMID: 31817790
- Han, R. Highlight on the studies of anticancer drugs derived from plants in china. Stem Cells, 1994, 12(1), 53-63. doi: 10.1002/stem.5530120110 PMID: 8142920
- Wall, M.E.; Wani, M.C. Camptothecin and analogs: From discovery to clinic. In: In: Camptothecins: New Anticancer Agents; Potmesil, M.; Pinedo, H., Eds.; CRC Press: Boca Raton, 1995; pp. 21-41.
- Wani, M.C.; Wall, M.E. Plant antitumor agents. II. Structure of two new alkaloids from Camptotheca acuminata. J. Org. Chem., 1969, 34(5), 1364-1367. doi: 10.1021/jo01257a036
- Yang, Z.; Luo, X.; Zhang, X.; Liu, J.; Jiang, Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipidpolymer hybrid nanoparticles. Biomed. Mater., 2013, 8(2), 025012. doi: 10.1088/1748-6041/8/2/025012 PMID: 23507576
- Hu, W.; Zhang, C.; Fang, Y.; Lou, C. Anticancer properties of 10-hydroxycamptothecin in a murine melanoma pulmonary metastasis model in vitro and in vivo. Toxicol. In Vitro, 2011, 25(2), 513-520. doi: 10.1016/j.tiv.2010.11.009 PMID: 21093576
- Zhang, X.; Gan, Y.; Gan, L.; Nie, S.; Pan, W. PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: an efficient carrier with enhanced anti-tumour effects against lung cancer. J. Pharm. Pharmacol., 2010, 60(8), 1077-1087. doi: 10.1211/jpp.60.8.0014 PMID: 18644200
- Wei, Y.; Li, C.; Zhang, Y.; He, H.; Zhang, G.; Hao, X.; Liu, H.; Wang, H.; Tian, W. Hydroxycamptothecin mediates antiproliferative effects through apoptosis and autophagy in A549 cells. Oncol. Lett., 2018, 15(5), 6322-6328. doi: 10.3892/ol.2018.8107 PMID: 29616109
- Zhang, Y.; Deng, Q.; Hu, G.X.; Yuan, K.; Yuan, F.; Huang, Y.Q. Effect of hydroxycamptothecin (HCPT) on proliferation and apoptosis of rat hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi, 2010, 18(3), 199-203. Chinese. PMID: 20380797
- Wang, T.; Ding, Y.; Yang, Y.; Wang, Z.; Gao, W.; Li, D.; Wei, J.; Sun, Y. Synergistic antitumour effects of triptolide plus 10-hydroxycamptothecin onbladder cancer. Biomed. Pharmacother., 2019, 115, 108899. doi: 10.1016/j.biopha.2019.108899 PMID: 31063955
- Chai, LP; Su, ZZ; Xian, ZX Inhibition of hydroxycamptothecin on laryngeal squamous carcinoma cell line. Ai zheng = Aizheng, 2003, 22, 372-375.
- Hsiang, Y.H.; Hertzberg, R.; Hecht, S.; Liu, L.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem., 1985, 260(27), 14873-14878. doi: 10.1016/S0021-9258(17)38654-4 PMID: 2997227
- Gu, S.; Lin, C.; Li, Y.; Wei, Z. cao, B.; Shen, Z.; Deng, H. Neddylation inhibitor MLN4924 sensitizes head and neck squamous carcinoma cells to (S)-10-hydroxycamptothecin. Eur. J. Med. Res., 2023, 28(1), 326. doi: 10.1186/s40001-023-01289-y PMID: 37689760
- Wang, Y.; Wang, H.; Zhang, W.; Shao, C.; Xu, P.; Shi, C.H.; Shi, J.G.; Li, Y.M.; Fu, Q.; Xue, W.; Lei, Y.H.; Gao, J.Y.; Wang, J.Y.; Gao, X.P.; Li, J.Q.; Yuan, J.L.; Zhang, Y.T. Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-κB/IKK pathway-induced apoptosis. PLoS One, 2013, 8(1), e50175. doi: 10.1371/journal.pone.0050175 PMID: 23365634
- Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440. doi: 10.1038/nrm831 PMID: 12042765
- Aliabadi, N.; Jamalidoust, M.; Pouladfar, G.; Azarpira, N.; Ziyaeyan, A.; Ziyaeyan, M. Evaluating the therapeutic efficacy of triptolide and (S)-10-hydroxycamptothecin on cutaneous and ocular Herpes Simplex Virus type-1 infections in mice. Heliyon, 2022, 8(8), e10348. doi: 10.1016/j.heliyon.2022.e10348 PMID: 36090228
- Fei, B.; Chi, A.L.; Weng, Y. Hydroxycamptothecin induces apoptosis and inhibits tumor growth in colon cancer by the downregulation of survivin and XIAP expression. World J. Surg. Oncol., 2013, 11(1), 120. doi: 10.1186/1477-7819-11-120 PMID: 23721525
- Meng, Q.; Hu, H.; Jing, X.; Sun, Y.; Zhou, L.; Zhu, Y.; Yu, B.; Cong, H.; Shen, Y. A modular ROS-responsive platform co-delivered by 10-hydroxycamptothecin and dexamethasone for cancer treatment. J. Control. Release, 2021, 340, 102-113. doi: 10.1016/j.jconrel.2021.10.027 PMID: 34718005
- Zhang, H.G.; Cai, R.G.; Chen, S.S.; Wu, F.; Chu, D.T. 10-hydroxy-camptothecin plus fluorouracil/leucovorin for the treatment of patients with advanced colorectal cancer. Zhonghua Yi Xue Za Zhi, 2007, 87(21), 1462-1464. Chinese.. PMID: 17785082
- Huang, H.Q.; Jiang, W.Q.; Hu, X.H.; Lin, X.B.; Liu, K.F.; Li, Y.H.; Lin, Z.; Shen, W.X.; Chen, Q.; He, Y.J.; Guan, Z.Z. Preliminary study of lyophilized 10-hydroxycamptothecin in advanced or recurrent malignancies. Chin. J. Cancer, 2003, 22(12), 1334-1338. PMID: 14693063
- Min, X.; Heng, H.; Yu, H.L.; Dan, M.; Jie, C.; Zeng, Y.; Ning, H.; Liu, Z.G.; Wang, Z.Y.; Lin, W. Anticancer effects of 10-hydroxycamptothecin induce apoptosis of human osteosarcoma through activating caspase-3, p53 and cytochrome c pathways. Oncol. Lett., 2018, 15(2), 2459-2464. PMID: 29434958
- Jakóbisiak, M.; Lasek, W.; Gołąb, J. Natural mechanisms protecting against cancer. Immunol. Lett., 2003, 90(2-3), 103-122. doi: 10.1016/j.imlet.2003.08.005 PMID: 14687712
- Hashem, S.; Ali, T.A.; Akhtar, S.; Nisar, S.; Sageena, G.; Ali, S.; Al-Mannai, S.; Therachiyil, L.; Mir, R.; Elfaki, I.; Mir, M.M.; Jamal, F.; Masoodi, T.; Uddin, S.; Singh, M.; Haris, M.; Macha, M.; Bhat, A.A. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed. Pharmacother., 2022, 150, 113054. doi: 10.1016/j.biopha.2022.113054 PMID: 35658225
- Zhang, G.; Ding, L.; Renegar, R.; Wang, X.; Lu, Q.; Huo, S.; Chen, Y.H. Hydroxycamptothecin‐loaded Fe 3 O 4 nanoparticles induce human lung cancer cell apoptosis through caspase‐8 pathway activation and disrupt tight junctions. Cancer Sci., 2011, 102(6), 1216-1222. doi: 10.1111/j.1349-7006.2011.01930.x PMID: 21435100
- Garcia-Carbonero, R.; Supko, J.G. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin. Cancer Res., 2002, 8(3), 641-661. PMID: 11895891
- Ling, Y.H.; Andersson, B.S.; Nelson, J.A. DNA topoisomerase I as a site of action for 10-hydroxycamptothecin in human promyelocytic leukemia cells. Cancer Biochem. Biophys., 1990, 11(1), 23-30. PMID: 2159843
- Ren, X.; Zhang, L.; Zhang, Y.; Mao, L.; Jiang, H. Mitochondria response to camptothecin and hydroxycamptothecine-induced apoptosis in Spodoptera exigua cells. Pestic. Biochem. Physiol., 2017, 140, 97-104. doi: 10.1016/j.pestbp.2017.07.003 PMID: 28755702
- Wang, L.; Zhang, J.; Zhao, C.; Jia, Z.; Feng, X. Melatonin reverses 10-hydroxycamptothecin-induced apoptosis and autophagy in mouse oocyte. Reprod. Sci., 2021, 28(7), 1839-1849. doi: 10.1007/s43032-020-00359-4 PMID: 33104985
- Marconi, G.D.; Fonticoli, L.; Rajan, T.S.; Pierdomenico, S.D.; Trubiani, O.; Pizzicannella, J.; Diomede, F. Epithelial-mesenchymal transition (EMT): The Type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells, 2021, 10(7), 1587. doi: 10.3390/cells10071587 PMID: 34201858
- Chen, C.; Xie, L.; Ren, T.; Huang, Y.; Xu, J.; Guo, W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett., 2021, 500, 1-10. doi: 10.1016/j.canlet.2020.12.024 PMID: 33359211
- Li, S.; Zhang, J.; Qian, S.; Wu, X.; Sun, L.; Ling, T.; Jin, Y.; Li, W.; Sun, L.; Lai, M.; Xu, F. S100A8 promotes epithelial‐mesenchymal transition and metastasis under TGF‐β/USF2 axis in colorectal cancer. Cancer Commun. (Lond.), 2021, 41(2), 154-170. doi: 10.1002/cac2.12130 PMID: 33389821
- Wang, X.; Lai, Q.; He, J.; Li, Q.; Ding, J.; Lan, Z.; Gu, C.; Yan, Q.; Fang, Y.; Zhao, X.; Liu, S. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int. J. Med. Sci., 2019, 16(1), 51-59. doi: 10.7150/ijms.27359 PMID: 30662328
- Chang, J.; Li, Y.; Wang, X.; Hu, S.; Wang, H.; Shi, Q.; Wang, Y.; Yang, Y. Polyphyllin I suppresses human osteosarcoma growth by inactivation of Wnt/β-catenin pathway in vitro and in vivo. Sci. Rep., 2017, 7(1), 7605. doi: 10.1038/s41598-017-07194-9 PMID: 28790389
- Lu, W.; Kang, Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell, 2019, 49(3), 361-374. doi: 10.1016/j.devcel.2019.04.010 PMID: 31063755
- Tripathi, V.; Popescu, N.C.; Zimonjic, D.B. DLC1 suppresses NF-κB activity in prostate cancer cells due to its stabilizing effect on adherens junctions. Springerplus, 2014, 3(1), 27. doi: 10.1186/2193-1801-3-27 PMID: 24683532
- Yang, A.D.; Fan, F.; Camp, E.R.; van Buren, G.; Liu, W.; Somcio, R.; Gray, M.J.; Cheng, H.; Hoff, P.M.; Ellis, L.M. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin. Cancer Res., 2006, 12(14), 4147-4153. doi: 10.1158/1078-0432.CCR-06-0038 PMID: 16857785
- Wang, H.; Li, Q.F.; Chow, H.Y.; Choi, S.C.; Leung, Y.C. Arginine deprivation inhibits pancreatic cancer cell migration, invasion and EMT via the down regulation of Snail, Slug, Twist, and MMP1/9. J. Physiol. Biochem., 2020, 76(1), 73-83. doi: 10.1007/s13105-019-00716-1 PMID: 31823303
- Zhou, B.; Xu, H.; Xia, M.; Sun, C.; Li, N.; Guo, E.; Guo, L.; Shan, W.; Lu, H.; Wu, Y.; Li, Y.; Yang, D.; Weng, D.; Meng, L.; Hu, J.; Ma, D.; Chen, G.; Li, K. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer. Front. Med., 2017, 11(2), 214-222. doi: 10.1007/s11684-017-0518-7 PMID: 28470508
- Wang, L.; Li, S.; Luo, H.; Lu, Q.; Yu, S. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J. Exp. Clin. Cancer Res., 2022, 41(1), 303. doi: 10.1186/s13046-022-02477-0 PMID: 36242053
- Qin, Z.; Wang, T.; Su, S.; Shen, L.; Zhu, G.; Liu, Q.; Zhang, L.; Liu, K.; Zhang, Y.; Zhou, Z.; Zhang, X.; Wen, L.; Yao, Y.; Sun, W.; Guo, Y.; Liu, K.; Liu, L.; Wang, X.; Wei, Y.; Wang, J.; Xiao, H.; Liu, P.; Bian, X.; Chen, D.; Wang, B. BRD4 promotes gastric cancer progression and metastasis through acetylation-dependent stabilization of snail. Cancer Res., 2019, 79(19), 4869-4881. doi: 10.1158/0008-5472.CAN-19-0442 PMID: 31311807
- Li, F.L.; Guan, K.L. The two sides of Hippo pathway in cancer. Semin. Cancer Biol., 2022, 85, 33-42. doi: 10.1016/j.semcancer.2021.07.006 PMID: 34265423
- Yu, B.; Su, J.; Shi, Q.; Liu, Q.; Ma, J.; Ru, G.; Zhang, L.; Zhang, J.; Hu, X.; Tang, J. KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling. Nat. Commun., 2022, 13(1), 2192. doi: 10.1038/s41467-022-29899-w PMID: 35449131
- Wang, J.; Yu, H.; Dong, W.; Zhang, C.; Hu, M.; Ma, W.; Jiang, X.; Li, H.; Yang, P.; Xiang, D. N6-MethyladenosineMediated Up-Regulation of FZD10 regulates liver cancer stem cells properties and lenvatinib resistance through WNT/β-Catenin and Hippo Signaling Pathways. Gastroenterology, 2023, 164(6), 990-1005. doi: 10.1053/j.gastro.2023.01.041 PMID: 36764493
- Nguyen, C.D.K.; Yi, C. YAP/TAZ signaling and resistance to cancer therapy. Trends Cancer, 2019, 5(5), 283-296. doi: 10.1016/j.trecan.2019.02.010 PMID: 31174841
- Zhang, J.; Liu, H.; Hou, L.; Wang, G.; Zhang, R.; Huang, Y.; Chen, X.; Zhu, J. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol. Cancer, 2017, 16(1), 151. doi: 10.1186/s12943-017-0719-3 PMID: 28893265
- Chipoy, C.; Brounais, B.; Trichet, V.; Battaglia, S.; Berreur, M.; Oliver, L.; Juin, P.; Rédini, F.; Heymann, D.; Blanchard, F. Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53. Oncogene, 2007, 26(46), 6653-6664. doi: 10.1038/sj.onc.1210492 PMID: 17471233
- Yuan, Z.F.; Tang, Y.M.; Xu, X.J.; Li, S.S.; Zhang, J.Y. 10-Hydroxycamptothecin induces apoptosis in human neuroblastoma SMS-KCNR cells through p53, cytochrome c and caspase 3 pathways. Neoplasma, 2016, 63(1), 72-79. doi: 10.4149/neo_2016_009 PMID: 26639236
Supplementary files
