The Role of Innate Immunity in Osteoarthritis and the Connotation of "Immune-joint" Axis: A Narrative Review


如何引用文章

全文:

详细

Osteoarthritis (OA) is a degenerative disease that results in constriction of the joint space due to the gradual deterioration of cartilage, alterations in subchondral bone, and synovial membrane. Recently, scientists have found that OA involves lesions in the whole joint, in addition to joint wear and tear and cartilage damage. Osteoarthritis is often accompanied by a subclinical form of synovitis, which is a chronic, relatively low-grade inflammatory response mainly mediated by the innate immune system. The "immune-joint" axis refers to an interaction of an innate immune response with joint inflammation and the whole joint range. Previous studies have underestimated the role of the immune-joint axis in OA, and there is no related research. For this reason, this review aimed to evaluate the existing evidence on the influence of innate immune mechanisms on the pathogenesis of OA. The innate immune system is the body's first line of defense. When the innate immune system is triggered, it instantly activates the downstream inflammatory signal pathway, causing an inflammatory response, while also promoting immune cells to invade joint synovial tissue and accelerate the progression of OA. We have proposed the concept of the \"immune-joint\" axis and explored it from two aspects of Traditional Chinese Medicine (TCM) theory and modern medical research, such as the innate immunity and OA, macrophages and OA, complement and OA, and other cells and OA, to enrich the scientific connotation of the \"immune-joint\" axis.

作者简介

Gaoyan Kuang

Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine

Email: info@benthamscience.net

Xuyi Tan

Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science

Email: info@benthamscience.net

Xin Liu

Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine

Email: info@benthamscience.net

Naping Li

Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine

Email: info@benthamscience.net

Nanxing Yi

, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Yilin Mi

, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Qiyun Shi

, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Fan Zeng

, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Xinjun Xie

Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine

编辑信件的主要联系方式.
Email: info@benthamscience.net

Min Lu

Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine

编辑信件的主要联系方式.
Email: info@benthamscience.net

Xiaotong Xu

Department of Orthopedic Surgery, The First Hospital of Hunan University of Chinese Medicine

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Malfait, A.M. Osteoarthritis year in review 2015: Biology. Osteoarthritis Cartilage, 2016, 24(1), 21-26. doi: 10.1016/j.joca.2015.09.010 PMID: 26707989
  2. Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum., 2012, 64(6), 1697-1707. doi: 10.1002/art.34453 PMID: 22392533
  3. Park, E.H.; Fritz, J. The role of imaging in osteoarthritis. Best Pract. Res. Clin. Rheumatol., 2023, •••, 101866. doi: 10.1016/j.berh.2023.101866 PMID: 37659890
  4. Ching, K.; Houard, X.; Berenbaum, F.; Wen, C. Hypertension meets osteoarthritis-revisiting the vascular aetiology hypothesis. Nat. Rev. Rheumatol., 2021, 17(9), 533-549. doi: 10.1038/s41584-021-00650-x PMID: 34316066
  5. Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12(10), 580-592. doi: 10.1038/nrrheum.2016.136 PMID: 27539668
  6. Lopes, H.S.; Waiteman, M.C.; Priore, L.B.; Glaviano, N.R.; Bazett-Jones, D.M.; Briani, R.V.; Azevedo, F.M. There is more to the knee joint than just the quadriceps: A systematic review with metaanalysis and evidence gap map of hamstring strength, flexibility, and morphology in individuals with gradual-onset knee disorders. J. Sport Health Sci., 2023, S2095-2546(23), 00077-7. doi: 10.1016/j.jshs.2023.08.004 PMID: 37669706
  7. Fernandez-Madrid, F.; Karvonen, R.L.; Teitge, R.A.; Miller, P.R.; An, T.; Negendank, W.G. Synovial thickening detected by MR imaging in osteoarthritis of the knee confirmed by biopsy as synovitis. Magn. Reson. Imaging, 1995, 13(2), 177-183. doi: 10.1016/0730-725X(94)00119-N PMID: 7739358
  8. Mathiessen, A.; Conaghan, P.G. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res. Ther., 2017, 19(1), 18. doi: 10.1186/s13075-017-1229-9 PMID: 28148295
  9. van den Bosch, M.H.J.; van Lent, P.L.E.M.; van der Kraan, P.M. Identifying effector molecules, cells, and cytokines of innate immunity in OA. Osteoarthritis Cartilage, 2020, 28(5), 532-543. doi: 10.1016/j.joca.2020.01.016 PMID: 32044352
  10. Sun, C.; Zhou, X.; Guo, T.; Meng, J. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front. Immunol., 2023, 14, 1168818. doi: 10.3389/fimmu.2023.1168818 PMID: 37388748
  11. Cavaillon, J.M. The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J. Leukoc. Biol., 2011, 90(3), 413-424. doi: 10.1189/jlb.0211094 PMID: 21628329
  12. Turk, J.L. Almroth Wright--phagocytosis and opsonization. J. R. Soc. Med., 1994, 87(10), 576-577. doi: 10.1177/014107689408701002 PMID: 7966100
  13. Gray, K.J.; Gibbs, J.E. Adaptive immunity, chronic inflammation and the clock. Semin. Immunopathol., 2022, 44(2), 209-224. doi: 10.1007/s00281-022-00919-7 PMID: 35233691
  14. Cencioni, M.T.; Genchi, A.; Brittain, G.; de Silva, T.I.; Sharrack, B.; Snowden, J.A.; Alexander, T.; Greco, R.; Muraro, P.A. Immune reconstitution following autologous hematopoietic stem cell transplantation for multiple sclerosis: A review on behalf of the EBMT autoimmune diseases working party. Front. Immunol., 2022, 12, 813957. doi: 10.3389/fimmu.2021.813957 PMID: 35178046
  15. Bai, Z.; Zhou, Y.; Ye, Z.; Xiong, J.; Lan, H.; Wang, F. Tumor-Infiltrating lymphocytes in colorectal cancer: The fundamental indication and application on immunotherapy. Front. Immunol., 2022, 12, 808964. doi: 10.3389/fimmu.2021.808964 PMID: 35095898
  16. Zhang, D.Y. ZGG. Research progress on innate immune memory of macrophages. Chin. J. Cell Biol., 2022, 44(01), 120-128.
  17. McComb, S.; Thiriot, A.; Akache, B.; Krishnan, L.; Stark, F. Introduction to the immune system. Methods Mol. Biol., 2019, 2024, 1-24. doi: 10.1007/978-1-4939-9597-4_1 PMID: 31364040
  18. Berzins, S.P.; Smyth, M.J.; Baxter, A.G. Presumed guilty: natural killer T cell defects and human disease. Nat. Rev. Immunol., 2011, 11(2), 131-142. doi: 10.1038/nri2904 PMID: 21267014
  19. Abella, V.; Scotece, M.; Conde, J.; Pino, J.; Gonzalez-Gay, M.A.; Gómez-Reino, J.J.; Mera, A.; Lago, F.; Gómez, R.; Gualillo, O. Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat. Rev. Rheumatol., 2017, 13(2), 100-109. doi: 10.1038/nrrheum.2016.209 PMID: 28053336
  20. Zhang, X.; Huebner, J.L.; Kraus, V.B. Extracellular vesicles as biological indicators and potential sources of autologous therapeutics in osteoarthritis. Int. J. Mol. Sci., 2021, 22(15), 8351. doi: 10.3390/ijms22158351 PMID: 34361116
  21. Thomson, A.; Hilkens, C.M.U. Synovial macrophages in osteoarthritis: The key to understanding pathogenesis? Front. Immunol., 2021, 12, 678757. doi: 10.3389/fimmu.2021.678757 PMID: 34211470
  22. Ahmad, M.; Hachemi, Y.; Paxian, K.; Mengele, F.; Koenen, M.; Tuckermann, J. A jack of all trades: Impact of glucocorticoids on cellular cross-talk in osteoimmunology. Front. Immunol., 2019, 10, 2460. doi: 10.3389/fimmu.2019.02460 PMID: 31681333
  23. Wu, C.L.; Harasymowicz, N.S.; Klimak, M.A.; Collins, K.H.; Guilak, F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage, 2020, 28(5), 544-554. doi: 10.1016/j.joca.2019.12.007 PMID: 31926267
  24. Xie, J.; Huang, Z.; Yu, X.; Zhou, L.; Pei, F. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev., 2019, 46, 36-44. doi: 10.1016/j.cytogfr.2019.03.004 PMID: 30910350
  25. Kraus, V.B.; McDaniel, G.; Huebner, J.L.; Stabler, T.V.; Pieper, C.F.; Shipes, S.W.; Petry, N.A.; Low, P.S.; Shen, J.; McNearney, T.A.; Mitchell, P. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage, 2016, 24(9), 1613-1621. doi: 10.1016/j.joca.2016.04.010 PMID: 27084348
  26. Orecchioni, M.; Ghosheh, Y.; Pramod, A.B.; Ley, K. Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS–) vs. alternatively activated macrophages. Front. Immunol., 2019, 10, 1084. doi: 10.3389/fimmu.2019.01084 PMID: 31178859
  27. Wu, Y.; Li, J.; Zeng, Y.; Pu, W.; Mu, X.; Sun, K.; Peng, Y.; Shen, B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int. J. Oral Sci., 2022, 14(1), 40. doi: 10.1038/s41368-022-00187-z PMID: 35927232
  28. Bhattaram, P.; Chandrasekharan, U. The joint synovium: A critical determinant of articular cartilage fate in inflammatory joint diseases. Semin. Cell Dev. Biol., 2017, 62, 86-93. doi: 10.1016/j.semcdb.2016.05.009 PMID: 27212252
  29. Mao, L.; Wu, W.; Wang, M.; Guo, J.; Li, H.; Zhang, S.; Xu, J.; Zou, J. Targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv., 2021, 28(1), 1861-1876. doi: 10.1080/10717544.2021.1971798 PMID: 34515606
  30. McNulty, A.L.; Rothfusz, N.E.; Leddy, H.A.; Guilak, F. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J. Orthop. Res., 2013, 31(7), 1039-1045. doi: 10.1002/jor.22334 PMID: 23483596
  31. Haseeb, A.; Haqqi, T.M. Immunopathogenesis of osteoarthritis. Clin. Immunol., 2013, 146(3), 185-196. doi: 10.1016/j.clim.2012.12.011 PMID: 23360836
  32. Xiong, Y.; Mi, B.B.; Lin, Z.; Hu, Y.Q.; Yu, L.; Zha, K.K.; Panayi, A.C.; Yu, T.; Chen, L.; Liu, Z.P.; Patel, A.; Feng, Q.; Zhou, S.H.; Liu, G.H. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil. Med. Res., 2022, 9(1), 65. doi: 10.1186/s40779-022-00426-8 PMID: 36401295
  33. Zhang, H.; Cai, D.; Bai, X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage, 2020, 28(5), 555-561. doi: 10.1016/j.joca.2020.01.007 PMID: 31982565
  34. Wang, D.; Chai, X.Q.; Hu, S.S.; Pan, F. Joint synovial macrophages as a potential target for intra-articular treatment of osteoarthritis-related pain. Osteoarthritis Cartilage, 2022, 30(3), 406-415. PMID: 34861384
  35. Li, L.; Lv, G.; Wang, B.; Kuang, L. XIST/miR‐376c‐5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis. J. Cell. Physiol., 2020, 235(1), 281-293. doi: 10.1002/jcp.28968 PMID: 31215024
  36. Wang, J.; Wei, W.; Zhang, X.; Cao, S.; Hu, B.; Ye, Y.; Jiang, M.; Wang, T.; Zuo, J.; He, S.; Yang, C. Synthesis and biological evaluation of C-17-amino-substituted pyrazole-fused betulinic acid derivatives as novel agents for osteoarthritis treatment. J. Med. Chem., 2021, 64(18), 13676-13692. doi: 10.1021/acs.jmedchem.1c01019 PMID: 34491054
  37. Alves, C.H.; Farrell, E.; Vis, M.; Colin, E.M.; Lubberts, E. Animal models of bone loss in inflammatory arthritis: from cytokines in the bench to novel treatments for bone loss in the bedside—a comprehensive review. Clin. Rev. Allergy Immunol., 2016, 51(1), 27-47. doi: 10.1007/s12016-015-8522-7 PMID: 26634933
  38. Sorge, R.E.; Trang, T.; Dorfman, R.; Smith, S.B.; Beggs, S.; Ritchie, J.; Austin, J.S.; Zaykin, D.V.; Meulen, H.V.; Costigan, M.; Herbert, T.A.; Yarkoni-Abitbul, M.; Tichauer, D.; Livneh, J.; Gershon, E.; Zheng, M.; Tan, K.; John, S.L.; Slade, G.D.; Jordan, J.; Woolf, C.J.; Peltz, G.; Maixner, W.; Diatchenko, L.; Seltzer, Z.; Salter, M.W.; Mogil, J.S. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat. Med., 2012, 18(4), 595-599. doi: 10.1038/nm.2710 PMID: 22447075
  39. Lu, J.; Guan, H.; Wu, D.; Hu, Z.; Zhang, H.; Jiang, H.; Yu, J.; Zeng, K.; Li, H.; Zhang, H.; Pan, C.; Cai, D.; Yu, X. Pseudolaric acid B ameliorates synovial inflammation and vessel formation by stabilizing PPARγ to inhibit NF‐κB signalling pathway. J. Cell. Mol. Med., 2021, 25(14), 6664-6678. doi: 10.1111/jcmm.16670 PMID: 34117708
  40. Wang, R.; Xu, B. TGF-β1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res., 2021, 384(1), 113-127. doi: 10.1007/s00441-020-03319-1 PMID: 33404840
  41. Li, X.; Wang, X.; Liu, Q.; Yan, J.; Pan, D.; Wang, L.; Xu, Y.; Wang, F.; Liu, Y.; Li, X.; Yang, M. ROS‐responsive boronate‐stabilized polyphenol–poloxamer 188 assembled dexamethasone nanodrug for macrophage repolarization in osteoarthritis treatment. Adv. Healthc. Mater., 2021, 10(20), 2100883. doi: 10.1002/adhm.202100883 PMID: 34137218
  42. ZHOU H.L.Q.; Zhang, H.Y. Exploring the scientific connotation of ‘treatment from the spleen’ of atherosclerosis based on macrophage pyroptosis. Zhonghua Zhongyiyao Zazhi, 2022, 37(02), 890-893.
  43. Yin, H.; Fang, L.; Wang, L.; Xia, Y.; Tian, J.; Ma, L.; Zhang, J.; Li, N.; Li, W.; Yao, S.; Zhang, L. Acute silica exposure triggers pulmonary inflammation through macrophage pyroptosis: An experimental simulation. Front. Immunol., 2022, 13, 874459. doi: 10.3389/fimmu.2022.874459 PMID: 35464414
  44. Lin, J.; Shou, X.; Mao, X.; Dong, J.; Mohabeer, N.; Kushwaha, K.; Wang, L.; Su, Y.; Fang, H.; Li, D. Oxidized low density lipoprotein induced caspase-1 mediated pyroptotic cell death in macrophages: implication in lesion instability? PLoS One, 2013, 8(4), e62148. doi: 10.1371/journal.pone.0062148 PMID: 23637985
  45. Demarco, B.; Danielli, S.; Fischer, F.A.; Bezbradica, J.S. How pyroptosis contributes to inflammation and fibroblast-macrophage cross-talk in rheumatoid arthritis. Cells, 2022, 11(8), 1307. doi: 10.3390/cells11081307 PMID: 35455985
  46. Yang, Y.J. ZSY, Zhang Jiang ea. ZSY ZJe. Discussion on scientific connotation of " stress on muscles and bones" acupuncture treatment. Zhonghua Zhongyiyao Xuekan, 2022, 40(03), 209-211.
  47. Ge, G.; Bai, J.; Wang, Q.; Liang, X.; Tao, H.; Chen, H.; Wei, M.; Niu, J.; Yang, H.; Xu, Y.; Hao, Y.; Xue, Y.; Geng, D. Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Sci. China Life Sci., 2022, 65(3), 588-603. doi: 10.1007/s11427-020-1939-1 PMID: 34125371
  48. Zhang, L.; Xing, R.; Huang, Z.; Zhang, N.; Zhang, L.; Li, X.; Wang, P. Inhibition of synovial macrophage pyroptosis alleviates synovitis and fibrosis in knee osteoarthritis. Mediators Inflamm., 2019, 2019, 1-11. doi: 10.1155/2019/2165918 PMID: 31582897
  49. Walport, M.J. Complement. N. Engl. J. Med., 2001, 344(14), 1058-1066. doi: 10.1056/NEJM200104053441406 PMID: 11287977
  50. Sarma, J.V.; Ward, P.A. The complement system. Cell Tissue Res., 2011, 343(1), 227-235. doi: 10.1007/s00441-010-1034-0 PMID: 20838815
  51. Qu, H.; Ricklin, D.; Lambris, J.D. Recent developments in low molecular weight complement inhibitors. Mol. Immunol., 2009, 47(2-3), 185-195. doi: 10.1016/j.molimm.2009.08.032 PMID: 19800693
  52. Assirelli, E.; Pulsatelli, L.; Dolzani, P.; Mariani, E.; Lisignoli, G.; Addimanda, O.; Meliconi, R. Complement expression and activation in osteoarthritis joint compartments. Front. Immunol., 2020, 11, 535010. doi: 10.3389/fimmu.2020.535010 PMID: 33193305
  53. Nesargikar, P.; Spiller, B.; Chavez, R. The complement system: History, pathways, cascade and inhibitors. Eur. J. Microbiol. Immunol. (Bp.), 2012, 2(2), 103-111. doi: 10.1556/EuJMI.2.2012.2.2 PMID: 24672678
  54. Li, L.; Li, Y.; Feng, D.; Xu, L.; Yin, F.; Zang, H.; Liu, C.; Wang, F. Preparation of low molecular weight chondroitin sulfates, screening of a high anti-complement capacity of low molecular weight chondroitin sulfate and its biological activity studies in attenuating osteoarthritis. Int. J. Mol. Sci., 2016, 17(10), 1685. doi: 10.3390/ijms17101685 PMID: 27727159
  55. Sturfelt, G.; Truedsson, L. Complement in the immunopathogenesis of rheumatic disease. Nat. Rev. Rheumatol., 2012, 8(8), 458-468. doi: 10.1038/nrrheum.2012.75 PMID: 22664835
  56. Dunkelberger, J.R.; Song, W.C. Complement and its role in innate and adaptive immune responses. Cell Res., 2010, 20(1), 34-50. doi: 10.1038/cr.2009.139 PMID: 20010915
  57. Wang, Q.; Rozelle, A.L.; Lepus, C.M.; Scanzello, C.R.; Song, J.J.; Larsen, D.M.; Crish, J.F.; Bebek, G.; Ritter, S.Y.; Lindstrom, T.M.; Hwang, I.; Wong, H.H.; Punzi, L.; Encarnacion, A.; Shamloo, M.; Goodman, S.B.; Wyss-Coray, T.; Goldring, S.R.; Banda, N.K.; Thurman, J.M.; Gobezie, R.; Crow, M.K.; Holers, V.M.; Lee, D.M.; Robinson, W.H. Identification of a central role for complement in osteoarthritis. Nat. Med., 2011, 17(12), 1674-1679. doi: 10.1038/nm.2543 PMID: 22057346
  58. Riegger, J.; Huber-Lang, M.; Brenner, R.E. Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage, 2020, 28(5), 685-697. doi: 10.1016/j.joca.2020.01.004 PMID: 31981738
  59. Yu, C.; Zang, H.; Yang, C.; Liang, D.; Quan, S.; Li, D.; Li, Y.; Dong, Q.; Wang, F.; Li, L. Study of chondroitin sulfate E oligosaccharide as a promising complement C5 inhibitor for osteoarthritis alleviation. Mater. Sci. Eng. C, 2021, 127, 112234. doi: 10.1016/j.msec.2021.112234 PMID: 34225875
  60. Huang, Z.; Feng, Y.; Zhu, X.; Wang, L.; Lu, W. MK801 regulates the expression of key osteoarthritis factors in osteoarthritis synovial fibroblasts through complement C5. Res. Vet. Sci., 2021, 136, 377-384. doi: 10.1016/j.rvsc.2021.03.003 PMID: 33799167
  61. Lubbers, R.; van Schaarenburg, R.A.; Kwekkeboom, J.C.; Levarht, E.W.N.; Bakker, A.M.; Mahdad, R.; Monteagudo, S.; Cherifi, C.; Lories, R.J.; Toes, R.E.M.; Ioan-Facsinay, A.; Trouw, L.A. Complement component C1q is produced by isolated articular chondrocytes. Osteoarthritis Cartilage, 2020, 28(5), 675-684. doi: 10.1016/j.joca.2019.09.007 PMID: 31634584
  62. Vuddamalay, Y.; van Meerwijk, J.P.M. CD28− and CD28lowCD8+ Regulatory T Cells: Of Mice and Men. Front. Immunol., 2017, 8, 31. doi: 10.3389/fimmu.2017.00031 PMID: 28167946
  63. Konya, C.; Goronzy, J.J.; Weyand, C.M. Treating autoimmune disease by targeting CD8 + T suppressor cells. Expert Opin. Biol. Ther., 2009, 9(8), 951-965. doi: 10.1517/14712590903020759 PMID: 19522557
  64. Zhao, C.; Li, X.; Li, Z.; Li, M.; Liu, Z. Moxibustion regulates T-regulatory/T-helper 17 cell balance by modulating the microRNA-221/suppressor of cytokine signaling 3 axis in a mouse model of rheumatoid arthritis. J. Integr. Med., 2022, 20(5), 453-462. doi: 10.1016/j.joim.2022.06.002 PMID: 35729047
  65. Xia, J.; Ni, Z.; Wang, J.; Zhu, S.; Ye, H. Overexpression of lymphocyte activation gene-3 inhibits regulatory T cell responses in osteoarthritis. DNA Cell Biol., 2017, 36(10), 862-869. doi: 10.1089/dna.2017.3771 PMID: 28800255
  66. Li, S.; Wan, J.; Anderson, W.; Sun, H.; Zhang, H.; Peng, X.; Yu, Z.; Wang, T.; Yan, X.; Smith, W. Downregulation of IL-10 secretion by Treg cells in osteoarthritis is associated with a reduction in Tim-3 expression. Biomed. Pharmacother., 2016, 79, 159-165. doi: 10.1016/j.biopha.2016.01.036 PMID: 27044824
  67. Gálvez, I.; Torres-Piles, S.; Ortega, E. Innate/inflammatory bioregulation and clinical effectiveness of whole-body hyperthermia (balneotherapy) in elderly patients with osteoarthritis. Int. J. Hyperthermia, 2018, 35(1), 340-347. doi: 10.1080/02656736.2018.1502896 PMID: 30295126
  68. Huss, R.S.; Huddleston, J.I.; Goodman, S.B.; Butcher, E.C.; Zabel, B.A. Synovial tissue-infiltrating natural killer cells in osteoarthritis and periprosthetic inflammation. Arthritis Rheum., 2010, 62(12), 3799-3805. doi: 10.1002/art.27751 PMID: 20848566
  69. Nagler, A.; Lanier, L.L.; Cwirla, S.; Phillips, J.H. Comparative studies of human FcRIII-positive and negative natural killer cells. J. Immunol., 1989, 143(10), 3183-3191. doi: 10.4049/jimmunol.143.10.3183 PMID: 2530273
  70. Caligiuri, M.A. Human natural killer cells. Blood, 2008, 112(3), 461-469. doi: 10.1182/blood-2007-09-077438 PMID: 18650461
  71. Jaime, P.; García-Guerrero, N.; Estella, R.; Pardo, J.; García-Álvarez, F.; Martinez-Lostao, L. CD56+/CD16− Natural Killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage, 2017, 25(10), 1708-1718. doi: 10.1016/j.joca.2017.06.007 PMID: 28668542
  72. Chan, A.; Filer, A.; Parsonage, G.; Kollnberger, S.; Gundle, R.; Buckley, C.D.; Bowness, P. Mediation of the proinflammatory cytokine response in rheumatoid arthritis and spondylarthritis by interactions between fibroblast-like synoviocytes and natural killer cells. Arthritis Rheum., 2008, 58(3), 707-717. doi: 10.1002/art.23264 PMID: 18311795

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024