Identification of Molecular Correlations of GSDMD with Pyroptosis in Alzheimer's Disease


Cite item

Full Text

Abstract

Aim:An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD).

Methods:The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 µmol/L) of β-amyloid 1-42 (Aβ1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression.

Results:A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aβ1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression.

Conclusion:The association between GSDMD and AD has been observed, and it has been found that Aβ1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aβ1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.

About the authors

Tangtang Song

Institute of Traditional Chinese Medicine, Chengde Medical College

Email: info@benthamscience.net

Yan Chen

Institute of Traditional Chinese Medicine, Chengde Medical University

Email: info@benthamscience.net

Chen Li

Institute of Traditional Chinese Medicine, Chengde Medical University

Email: info@benthamscience.net

Yinhui Yao

Institute of Traditional Chinese Medicine, Chengde Medical University

Email: info@benthamscience.net

Shuai Ma

Institute of Traditional Chinese Medicine, Chengde Medical University

Email: info@benthamscience.net

Yazhen Shang

Institute of Traditional Chinese Medicine, Chengde Medical University

Author for correspondence.
Email: info@benthamscience.net

Jianjun Cheng

Institute of Traditional Chinese Medicine, Chengde Medical University

Email: info@benthamscience.net

References

  1. Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695. doi: 10.1002/alz.13016 PMID: 36918389
  2. Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet, 2021, 397(10284), 1577-1590. doi: 10.1016/S0140-6736(20)32205-4 PMID: 33667416
  3. Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol., 2019, 167, 231-255. doi: 10.1016/B978-0-12-804766-8.00013-3 PMID: 31753135
  4. Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med., 2023, 29(9), 2187-2199. doi: 10.1038/s41591-023-02505-2 PMID: 37667136
  5. Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther., 2023, 8(1), 248. doi: 10.1038/s41392-023-01484-7 PMID: 37386015
  6. Tatulian, S.A. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today, 2022, 27(4), 1027-1043. doi: 10.1016/j.drudis.2022.01.016 PMID: 35121174
  7. Ossenkoppele, R.; van der Kant, R.; Hansson, O. Tau biomarkers in Alzheimer’s disease: Towards implementation in clinical practice and trials. Lancet Neurol., 2022, 21(8), 726-734. doi: 10.1016/S1474-4422(22)00168-5 PMID: 35643092
  8. Yadollahikhales, G.; Rojas, J.C. Anti-amyloid immunotherapies for Alzheimer’s disease: A 2023 clinical update. Neurotherapeutics, 2023, 20(4), 914-931. doi: 10.1007/s13311-023-01405-0 PMID: 37490245
  9. Wang, S.S.; Zhang, Z.; Zhu, T.B.; Chu, S.F.; He, W.B.; Chen, N.H. Myelin injury in the central nervous system and Alzheimer’s disease. Brain Res. Bull., 2018, 140, 162-168. doi: 10.1016/j.brainresbull.2018.05.003 PMID: 29730417
  10. Papuć, E.; Rejdak, K. The role of myelin damage in Alzheimer’s disease pathology. Arch. Med. Sci., 2020, 16(2), 345-341. doi: 10.5114/aoms.2018.76863 PMID: 32190145
  11. Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White matter changes in Alzheimer’s disease: A focus on myelin and oligodendrocytes. Acta Neuropathol. Commun., 2018, 6(1), 22. doi: 10.1186/s40478-018-0515-3 PMID: 29499767
  12. Hirschfeld, L.R.; Risacher, S.L.; Nho, K.; Saykin, A.J. Myelin repair in Alzheimer’s disease: A review of biological pathways and potential therapeutics. Transl. Neurodegener., 2022, 11(1), 47. doi: 10.1186/s40035-022-00321-1 PMID: 36284351
  13. Wood, H. Myelin damage links brain ageing to amyloid-β deposition. Nat. Rev. Neurol., 2023, 19(8), 457. doi: 10.1038/s41582-023-00843-w PMID: 37336944
  14. Chen, J.F.; Liu, K.; Hu, B.; Li, R.R.; Xin, W.; Chen, H.; Wang, F.; Chen, L.; Li, R.X.; Ren, S.Y.; Xiao, L.; Chan, J.R.; Mei, F. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron, 2021, 109(14), 2292-2307.e5. doi: 10.1016/j.neuron.2021.05.012 PMID: 34102111
  15. Jantaratnotai, N.; Ryu, J.K.; Kim, S.U.; McLarnon, J.G. Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 2003, 14(11), 1429-1433. doi: 10.1097/00001756-200308060-00005 PMID: 12960758
  16. Schmued, L.C.; Raymick, J.; Paule, M.G.; Dumas, M.; Sarkar, S. Characterization of myelin pathology in the hippocampal complex of a transgenic mouse model of Alzheimer’s disease. Curr. Alzheimer Res., 2013, 10(1), 30-37. doi: 10.2174/1567205011310010005 PMID: 23157338
  17. Depp, C.; Sun, T.; Sasmita, A.O.; Spieth, L.; Berghoff, S.A.; Nazarenko, T.; Overhoff, K.; Steixner-Kumar, A.A.; Subramanian, S.; Arinrad, S.; Ruhwedel, T.; Möbius, W.; Göbbels, S.; Saher, G.; Werner, H.B.; Damkou, A.; Zampar, S.; Wirths, O.; Thalmann, M.; Simons, M.; Saito, T.; Saido, T.; Krueger-Burg, D.; Kawaguchi, R.; Willem, M.; Haass, C.; Geschwind, D.; Ehrenreich, H.; Stassart, R.; Nave, K.A. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer’s disease. Nature, 2023, 618(7964), 349-357. doi: 10.1038/s41586-023-06120-6 PMID: 37258678
  18. Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in development, myelin generation and beyond. Cells, 2019, 8(11), 1424. doi: 10.3390/cells8111424 PMID: 31726662
  19. Elbaz, B.; Popko, B. Molecular control of oligodendrocyte development. Trends Neurosci., 2019, 42(4), 263-277. doi: 10.1016/j.tins.2019.01.002 PMID: 30770136
  20. Bolino, A. Myelin biology. Neurotherapeutics, 2021, 18(4), 2169-2184. doi: 10.1007/s13311-021-01083-w
  21. Nave, K.A.; Werner, H.B. Myelination of the nervous system: Mechanisms and functions. Annu. Rev. Cell Dev. Biol., 2014, 30(1), 503-533. doi: 10.1146/annurev-cellbio-100913-013101 PMID: 25288117
  22. Xin, W.; Chan, J.R. Myelin plasticity: Sculpting circuits in learning and memory. Nat. Rev. Neurosci., 2020, 21(12), 682-694. doi: 10.1038/s41583-020-00379-8 PMID: 33046886
  23. Bamm, V.V.; Ahmed, M.A.M.; Ladizhansky, V.; Harauz, G. Purification and spectroscopic characterization of the recombinant BG21 isoform of murine golli myelin basic protein. J. Neurosci. Res., 2007, 85(2), 272-284. doi: 10.1002/jnr.21129 PMID: 17131428
  24. Smith, G.S.T.; Paez, P.M.; Spreuer, V.; Campagnoni, C.W.; Boggs, J.M.; Campagnoni, A.T.; Harauz, G. Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J. Neurosci. Res., 2011, 89(4), 467-480. doi: 10.1002/jnr.22570 PMID: 21312222
  25. Zhan, H.; Cheng, L.; Wang, X.; Jin, H.; Liu, Y.; Li, H.; Liu, D.; Zhang, X.; Zheng, W.; Hao, H.; Li, Y. Myelin basic protein and index for neuro-Behçet’s disease. Clin. Immunol., 2023, 250, 109286. doi: 10.1016/j.clim.2023.109286 PMID: 36907539
  26. Liu, B.; Xin, W.; Tan, J.R.; Zhu, R.P.; Li, T.; Wang, D.; Kan, S.S.; Xiong, D.K.; Li, H.H.; Zhang, M.M.; Sun, H.H.; Wagstaff, W.; Zhou, C.; Wang, Z.J.; Zhang, Y.G.; He, T.C. Myelin sheath structure and regeneration in peripheral nerve injury repair. Proc. Natl. Acad. Sci. , 2019, 116(44), 22347-22352. doi: 10.1073/pnas.1910292116 PMID: 31611410
  27. Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514(7521), 187-192. doi: 10.1038/nature13683 PMID: 25119034
  28. Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526(7575), 660-665. doi: 10.1038/nature15514 PMID: 26375003
  29. Rao, Z.; Zhu, Y.; Yang, P.; Chen, Z.; Xia, Y.; Qiao, C.; Liu, W.; Deng, H.; Li, J.; Ning, P.; Wang, Z. Pyroptosis in inflammatory diseases and cancer. Theranostics, 2022, 12(9), 4310-4329. doi: 10.7150/thno.71086 PMID: 35673561
  30. Wei, Y.; Yang, L.; Pandeya, A.; Cui, J.; Zhang, Y.; Li, Z. Pyroptosis-induced inflammation and tissue damage. J. Mol. Biol., 2022, 434(4), 167301. doi: 10.1016/j.jmb.2021.167301 PMID: 34653436
  31. Barnett, K.C.; Li, S.; Liang, K.; Ting, J.P.Y.A. 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell, 2023, 186(11), 2288-2312. doi: 10.1016/j.cell.2023.04.025 PMID: 37236155
  32. Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasomeis involved in the innate immune response to amyloid-beta. Nat. Immun., 2008, 200(9), 857-865. doi: 10.1038/ni.1636
  33. Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.C.; Gelpi, E.; Halle, A.; Korte, M.; Latz, E.; Golenbock, D.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013, 493(7434), 674-678. doi: 10.1038/nature11729 PMID: 23254930
  34. Lee, S.W.; de Rivero Vaccari, J.P.; Truettner, J.S.; Dietrich, W.D.; Keane, R.W. The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. J. Neuroinflammation, 2019, 16(1), 27. doi: 10.1186/s12974-019-1423-6 PMID: 30736791
  35. Rui, W.; Xiao, H.; Fan, Y.; Ma, Z.; Xiao, M.; Li, S.; Shi, J. Systemic inflammasome activation and pyroptosis associate with the progression of amnestic mild cognitive impairment and Alzheimer’s disease. J. Neuroinflammation, 2021, 18(1), 280. doi: 10.1186/s12974-021-02329-2 PMID: 34856990
  36. Shen, H.; Han, C.; Yang, Y.; Guo, L.; Sheng, Y.; Wang, J.; Li, W.; Zhai, L.; Wang, G.; Guan, Q. Pyroptosis executive protein GSDMD as a biomarker for diagnosis and identification of Alzheimer’s disease. Brain Behav., 2021, 11(4), e02063. doi: 10.1002/brb3.2063 PMID: 33587329
  37. Xue, W.; Cui, D.; Qiu, Y. Research progress of pyroptosis in Alzheimer’s disease. Front. Mol. Neurosci., 2022, 15, 872471. doi: 10.3389/fnmol.2022.872471 PMID: 35782390
  38. Wu, K.; Wang, W.; Cheng, Q.; Li, H.; Yan, W.; Zhou, F.; Zhang, R. Pyroptosis in neurodegenerative diseases: From bench to bedside. Cell Biol. Toxicol., 2023, 39(6), 2467-2499. doi: 10.1007/s10565-023-09820-x PMID: 37491594
  39. Li, Y.; Xu, P.; Shan, J.; Sun, W.; Ji, X.; Chi, T.; Liu, P.; Zou, L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed. Pharmacother., 2020, 121(121), 109618. doi: 10.1016/j.biopha.2019.109618 PMID: 31731189
  40. Ju, Y.; Zhao, L.; Li, S.; Zhao, Q. The role of pyroptosis in Alzheimer’s disease. J. Integr. Neurosci., 2023, 22(5), 129. doi: 10.31083/j.jin2205129 PMID: 37735117
  41. Tan, M-S.; Tan, L.; Jiang, T.; Zhu, X-C.; Wang, H-F.; Jia, C-D.; Yu, J-T. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis., 2014, 5(8), e1382. doi: 10.1038/cddis.2014.348 PMID: 25144717
  42. Zhao, Y.; Tian, Y.; Feng, T. Sodium houttuyfonate ameliorates β-amyloid1-42-induced memory impairment and neuroinflammation through inhibiting the NLRP3/GSDMD pathway in Alzheimer’s disease. Mediators Inflamm., 2021, 2021, 1-11. doi: 10.1155/2021/8817698 PMID: 34188608
  43. Han, C.; Yang, Y.; Guan, Q.; Zhang, X.; Shen, H.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Guo, L.; Jiao, Q. New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis. J. Cell. Mol. Med., 2020, 24(14), 8078-8090. doi: 10.1111/jcmm.15439 PMID: 32521573
  44. Moonen, S.; Koper, M.J.; Van Schoor, E.; Schaeverbeke, J.M.; Vandenberghe, R.; von Arnim, C.A.F.; Tousseyn, T.; De Strooper, B.; Thal, D.R. Pyroptosis in Alzheimer’s disease: Cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol., 2023, 145(2), 175-195. doi: 10.1007/s00401-022-02528-y PMID: 36481964
  45. Bai, Y.; Liu, D.; Zhang, H.; Wang, Y.; Wang, D.; Cai, H.; Wen, H.; Yuan, G.; An, H.; Wang, Y.; Shi, T.; Wang, Z. N-salicyloyl tryptamine derivatives as potential therapeutic agents for Alzheimer’s disease with neuroprotective effects. Bioorg. Chem., 2021, 115, 105255. doi: 10.1016/j.bioorg.2021.105255 PMID: 34435574
  46. Chen, H.; Zhao, J.; Hu, J.; Xiao, X.; Shi, W.; Yao, Y.; Wang, Y. Identification of diagnostic biomarkers, immune infiltration characteristics, and potential compounds in rheumatoid arthritis. BioMed Res. Int., 2022, 2022, 1-15. doi: 10.1155/2022/1926661 PMID: 35434133
  47. Yao, Y.; Zhao, J.; Zhou, X.; Hu, J.; Wang, Y. Potential role of a three-gene signature in predicting diagnosis in patients with myocardial infarction. Bioengineered, 2021, 12(1), 2734-2749. doi: 10.1080/21655979.2021.1938498 PMID: 34130601
  48. O’Connor, L.M.; O’Connor, B.A.; Zeng, J.; Lo, C.H. Data mining of microarray datasets in translational neuroscience. Brain Sci., 2023, 13(9), 1318. doi: 10.3390/brainsci13091318 PMID: 37759919
  49. Wang, Z.; Lachmann, A.; Ma’ayan, A. Mining data and metadata from the gene expression omnibus. Biophys. Rev., 2019, 11(1), 103-110. doi: 10.1007/s12551-018-0490-8 PMID: 30594974
  50. O’Connor, L.M.; O’Connor, B.A.; Lim, S.B.; Zeng, J.; Lo, C.H. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J. Pharm. Anal., 2023, 13(8), 836-850. doi: 10.1016/j.jpha.2023.06.011 PMID: 37719197
  51. Narayanan, M.; Huynh, J.L.; Wang, K.; Yang, X.; Yoo, S.; McElwee, J.; Zhang, B.; Zhang, C.; Lamb, J.R.; Xie, T.; Suver, C.; Molony, C.; Melquist, S.; Johnson, A.D.; Fan, G.; Stone, D.J.; Schadt, E.E.; Casaccia, P.; Emilsson, V.; Zhu, J. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol., 2014, 10(7), 743. doi: 10.15252/msb.20145304 PMID: 25080494
  52. Liang, W.S.; Dunckley, T.; Beach, T.G.; Grover, A.; Mastroeni, D.; Walker, D.G.; Caselli, R.J.; Kukull, W.A.; McKeel, D.; Morris, J.C.; Hulette, C.; Schmechel, D.; Alexander, G.E.; Reiman, E.M.; Rogers, J.; Stephan, D.A. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiol. Genomics, 2007, 28(3), 311-322. doi: 10.1152/physiolgenomics.00208.2006 PMID: 17077275
  53. Berchtold, N.C.; Coleman, P.D.; Cribbs, D.H.; Rogers, J.; Gillen, D.L.; Cotman, C.W. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging, 2013, 34(6), 1653-1661. doi: 10.1016/j.neurobiolaging.2012.11.024 PMID: 23273601
  54. Hübner, S.; Sunny, D.E.; Pöhlke, C.; Ruhnau, J.; Vogelgesang, A.; Reich, B.; Heckmann, M. Protective effects of fetal zone steroids are comparable to estradiol in hyperoxia–induced cell death of immature glia. Endocrinology, 2017, 158(5), 1419-1435. doi: 10.1210/en.2016-1763 PMID: 28323976
  55. Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671. doi: 10.1038/nature15541 PMID: 26375259
  56. He, W.; Wan, H.; Hu, L.; Chen, P.; Wang, X.; Huang, Z.; Yang, Z.H.; Zhong, C.Q.; Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res., 2015, 25(12), 1285-1298. doi: 10.1038/cr.2015.139 PMID: 26611636
  57. Li, S.; Sun, Y.; Song, M.; Song, Y.; Fang, Y.; Zhang, Q.; Li, X.; Song, N.; Ding, J.; Lu, M.; Hu, G. NLRP3/caspase-1/GSDMD–mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight, 2021, 6(23), e146852. doi: 10.1172/jci.insight.146852 PMID: 34877938
  58. Li, Z.; Ji, S.; Jiang, M.L.; Xu, Y.; Zhang, C.J. The regulation and modification of GSDMD signaling in diseases. Front. Immunol., 2022, 13, 893912. doi: 10.3389/fimmu.2022.893912 PMID: 35774778
  59. Shao, R.; Lou, X.; Xue, J.; Ning, D.; Chen, G.; Jiang, L. Review: The role of GSDMD in sepsis. Inflamm. Res., 2022, 71(10-11), 1191-1202. doi: 10.1007/s00011-022-01624-9 PMID: 35969260
  60. Hong, W.; Hu, C.; Wang, C.; Zhu, B.; Tian, M.; Qin, H. Effects of amyloid β (Aβ)42 and Gasdermin D on the progression of Alzheimer’s disease in vitro and in vivo through the regulation of astrocyte pyroptosis. Aging , 2023, 15(21), 12209-12224. doi: 10.18632/aging.205174 PMID: 37921870
  61. Weindel, C.G.; Martinez, E.L.; Zhao, X.; Mabry, C.J.; Bell, S.L.; Vail, K.J.; Coleman, A.K.; VanPortfliet, J.J.; Zhao, B.; Wagner, A.R.; Azam, S.; Scott, H.M.; Li, P.; West, A.P.; Karpac, J.; Patrick, K.L.; Watson, R.O. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell, 2022, 185(17), 3214-3231.e23. doi: 10.1016/j.cell.2022.06.038 PMID: 35907404
  62. Kepp, K.P.; Robakis, N.K.; Høilund-Carlsen, P.F.; Sensi, S.L.; Vissel, B. The amyloid cascade hypothesis: An updated critical review. Brain, 2023, 146(10), 3969-3990. doi: 10.1093/brain/awad159 PMID: 37183523
  63. Fedele, E. Anti-amyloid therapies for Alzheimer’s disease and the amyloid cascade hypothesis. Int. J. Mol. Sci., 2023, 24(19), 14499. doi: 10.3390/ijms241914499 PMID: 37833948
  64. Itoh, S.G.; Yagi-Utsumi, M.; Kato, K.; Okumura, H. Key residue for aggregation of Amyloid-β peptides. ACS Chem. Neurosci., 2022, 13(22), 3139-3151. doi: 10.1021/acschemneuro.2c00358 PMID: 36302506
  65. Siddiqi, M.K.; Malik, S.; Majid, N.; Alam, P.; Khan, R.H. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. Adv. Protein Chem. Struct. Biol., 2019, 118, 333-369. doi: 10.1016/bs.apcsb.2019.06.001 PMID: 31928731
  66. Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schiossmacher, M.; Whaley, J.; Swindlehurst, C.; McCormack, R.; Wolfert, R.; Selkoe, D.; Lieberburg, I.; Schenk, D. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature, 1992, 359(6393), 325-327. doi: 10.1038/359325a0 PMID: 1406936
  67. Iwatsubo, T.; Odaka, A.; Suzuki, N.; Mizusawa, H.; Nukina, N.; Ihara, Y. Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43). Neuron, 1994, 13(1), 45-53. doi: 10.1016/0896-6273(94)90458-8 PMID: 8043280
  68. Shulman, D.; Dubnov, S.; Zorbaz, T.; Madrer, N.; Paldor, I.; Bennett, D.A.; Seshadri, S.; Mufson, E.J.; Greenberg, D.S.; Loewenstein, Y.; Soreq, H. Sex-specific declines in cholinergic-targeting tRNA fragments in the nucleus accumbens in Alzheimer’s disease. Alzheimers Dement., 2023, 19(11), 5159-5172. doi: 10.1002/alz.13095 PMID: 37158312
  69. Zheng, M.; Liu, Z.; Mana, L.; Qin, G.; Huang, S.; Gong, Z.; Tian, M.; He, Y.; Wang, P. Shenzhiling oral liquid protects the myelin sheath against Alzheimer’s disease through the PI3K/Akt-mTOR pathway. J. Ethnopharmacol., 2021, 278, 114264. doi: 10.1016/j.jep.2021.114264 PMID: 34082015
  70. Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem., 2018, 120(3), 159-167. doi: 10.1016/j.acthis.2018.02.005 PMID: 29496266
  71. Benov, L. Improved formazan dissolution for bacterial MTT assay. Microbiol. Spectr., 2021, 9(3), e01637-e21. doi: 10.1128/spectrum.01637-21 PMID: 34937171
  72. Parhamifar, L.; Andersen, H.; Moghimi, S.M. Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol. Biol., 2019, 1943, 291-299. doi: 10.1007/978-1-4939-9092-4_18 PMID: 30838623
  73. Chen, X.; He, W.T.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res., 2016, 26(9), 1007-1020. doi: 10.1038/cr.2016.100
  74. Martens, S.; Bridelance, J.; Roelandt, R.; Vandenabeele, P.; Takahashi, N. MLKL in cancer: More than a necroptosis regulator. Cell Death Differ., 2021, 28(6), 1757-1772. doi: 10.1038/s41418-021-00785-0 PMID: 33953348
  75. Zhan, C.; Huang, M.; Yang, X.; Hou, J. MLKL: Functions beyond serving as the executioner of necroptosis. Theranostics, 2021, 11(10), 4759-4769. doi: 10.7150/thno.54072 PMID: 33754026
  76. Frank, D.; Vince, J.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ., 2019, 26(1), 99-114. doi: 10.1038/s41418-018-0212-6 PMID: 30341423
  77. Wang, K.; Sun, Q.; Zhong, X.; Zeng, M.; Zeng, H.; Shi, X.; Li, Z.; Wang, Y.; Zhao, Q.; Shao, F.; Ding, J. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell, 2020, 180(5), 941-955.e20. doi: 10.1016/j.cell.2020.02.002 PMID: 32109412
  78. Ding, J.; Wang, K.; Liu, W.; She, Y.; Sun, Q.; Shi, J.; Sun, H.; Wang, D.C.; Shao, F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535(7610), 111-116. doi: 10.1038/nature18590 PMID: 27281216
  79. Asimakidou, E.; Reynolds, R.; Barron, A.M.; Lo, C.H. Autolysosomal acidification impairment as a mediator for TNFR1 induced neuronal necroptosis in Alzheimer’s disease. Neural Regen. Res., 2024, 19(9), 1869-1870. doi: 10.4103/1673-5374.390979 PMID: 38227498
  80. Rühl, S.; Shkarina, K.; Demarco, B.; Heilig, R.; Santos, J.C.; Broz, P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science, 2018, 362(6417), 956-960. doi: 10.1126/science.aar7607 PMID: 30467171

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers