Effect and Mechanisms of Huangqi-Shanzhuyu in the Treatment of Diabetic Nephropathy based on Network Pharmacology and In Vitro Experiments


Cite item

Full Text

Abstract

Background::Huangqi-Shanzhuyu (HS), a classic combination of Chinese herbal formulae, has been widely used for the treatment of diabetic nephropathy (DN). However, its pharmacological mechanism of action is still unclear.

Methods::The active ingredients of HS and their potential targets were identified through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the DN-related targets were determined from GeneCards, Online Mendelian Inheritance in Man (OMIM), PharmGkb, and Therapeutic Target Database (TTD). The Cytoscape software was used to construct a herb-disease-target network and screen core genes. STRING was employed to generate a protein-protein interaction (PPI) network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the mechanism of action of HS in DN. Animal experiments and molecular docking were used to verify the potential mechanism.

Results::In total, 40 active ingredients and 180 effective targets of HS in DN were identified and 1115 DN-related targets were retrieved. From the PPI network, VEGFA, AKT1, IL6, IL1B, TP53, MMP9, PTGS2, CASP3, EGF and EGFR were identified as core genes. The anti-DN mechanism mainly involved multiple signaling pathways such as AGEs-RAGE. Animal experiments and molecular docking analysis confirmed that HS downregulated the expression of IL-1 and IL-6 via kaempferol-mediated inhibition of JNK1 phosphorylation.

Conclusions::HS exhibits a therapeutic effect in DN through its multiple ingredients that act on several targets and multiple signaling pathways, including AGEs-RAGE.

About the authors

Yu Han

Department of Pharmacy, Hebei Children's Hospital

Author for correspondence.
Email: info@benthamscience.net

Shufei Wei

Department of Urology,, Fourth Hospital of Hebei Medical University

Email: info@benthamscience.net

Chao Liu

Department of Laboratory Animal Science, Hebei Medical University

Email: info@benthamscience.net

Ying Nie

College of Pharmacy, Hebei Medical University

Email: info@benthamscience.net

Shizhao Yuan

College of Pharmacy, Hebei Medical University

Email: info@benthamscience.net

Yinghua Ma

Department of Pharmacy, Hebei Children's Hospital

Email: info@benthamscience.net

Yile Zhao

Department of Pharmacy, Hebei Children's Hospital

Email: info@benthamscience.net

Guying Zhang

Department of Pharmacy, Hebei Children's Hospital

Email: info@benthamscience.net

References

  1. Valencia, W.M.; Florez, H. How to prevent the microvascular complications of type 2 diabetes beyond glucose control. BMJ, 2017, 356, i6505. doi: 10.1136/bmj.i6505 PMID: 28096078
  2. Arora, M.K.; Singh, U.K. Molecular mechanisms in the pathogenesis of diabetic nephropathy: An update. Vascul. Pharmacol., 2013, 58(4), 259-271. doi: 10.1016/j.vph.2013.01.001 PMID: 23313806
  3. Kopel, J.; Pena-Hernandez, C.; Nugent, K. Evolving spectrum of diabetic nephropathy. World J. Diabetes, 2019, 10(5), 269-279. doi: 10.4239/wjd.v10.i5.269
  4. Samsu, N. Diabetic nephropathy: Challenges in pathogenesis, diagnosis, and treatment. BioMed Res. Int., 2021, 2021, 1-17. doi: 10.1155/2021/1497449 PMID: 34307650
  5. Tang, G.; Li, S.; Zhang, C.; Chen, H.; Wang, N.; Feng, Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm. Sin. B, 2021, 11(9), 2749-2767. doi: 10.1016/j.apsb.2020.12.020 PMID: 34589395
  6. Peng, Y.; Ren, D.; Song, Y.; Hu, Y.; Wu, L.; Wang, Q.; He, Y.; Zhou, H.; Liu, S.; Cong, H. Effects of a combined fucoidan and traditional Chinese medicine formula on hyperglycaemia and diabetic nephropathy in a type II diabetes mellitus rat model. Int. J. Biol. Macromol., 2020, 147, 408-419. doi: 10.1016/j.ijbiomac.2019.12.201 PMID: 31881302
  7. Shang, X.N. Systematic Review of Astragalus Injection Combined with ACEI or ARB in the Treatment of Stage III and IV Diabetic Nephropathy; Beijing University of Chinese Medicine, 2017.
  8. Gao, X.; Liu, Y.; An, Z.; Ni, J. Active components and pharmacological effects of cornus officinalis: Literature review. Front. Pharmacol., 2021, 12, 633447. doi: 10.3389/fphar.2021.633447 PMID: 33912050
  9. Zhou, Y.C.; Zhang, L.J.; Zhang, Y.L. New progress on chemical constituents and pharmacological effects of cornus officinalis. Inf. Tradit. Chin. Med., 2020, 37(01), 114-120.
  10. Liu, J.; Chen, B.G.; Zhang, X.C. Characteristics of medication use in traditional Chinese medicine. J. Tradit. Chin. Med., 2016, 15(05), 39-41.
  11. Yang, C.M.; Cheng, W.; Li, Y.Y.; Gao, J.D. Based on real-world data, we discussed the treatment of diabetic nephropathy by traditional Chinese medicine Study of medication rules. Mod. Traditional Chin. Med. Materia Medica-World Sci. Technol., 2022, 24(10), 3949-3957.
  12. Ha, J. SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association. Knowl. Base. Syst., 2023, 263, 110295. doi: 10.1016/j.knosys.2023.110295
  13. Jiashuo, W.U.; Fangqing, Z.; Zhuangzhuang, L.I.; Weiyi, J.; Yue, S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med., 2022, 42(3), 479-486. PMID: 35610020
  14. Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci., 2022, 43(2), 136-150. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
  15. Liao, H.; Hu, L.; Cheng, X.; Wang, X.; Li, J.; Banbury, L.; Li, R. Are the therapeutic effects of huangqi (Astragalus membranaceus) on diabetic nephropathy correlated with its regulation of macrophage inos activity? J. Immunol. Res., 2017, 2017, 1-9. doi: 10.1155/2017/3780572 PMID: 29250558
  16. Wu, C.; Wang, J.; Zhang, R.; Zhao, H.; Li, X.; Wang, L.; Liu, P.; Li, P. Research progress on Cornus officinalis and its active compounds in the treatment of diabetic nephropathy. Front. Pharmacol., 2023, 14, 1207777. doi: 10.3389/fphar.2023.1207777 PMID: 37475719
  17. Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res., 2021, 35(10), 5352-5364. doi: 10.1002/ptr.7144 PMID: 34101925
  18. Yang, Y.; Chen, Z.; Zhao, X.; Xie, H.; Du, L.; Gao, H.; Xie, C. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review. Front. Endocrinol., 2022, 13, 990299. doi: 10.3389/fendo.2022.990299 PMID: 36157449
  19. Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702. doi: 10.1016/j.biopha.2020.110702 PMID: 32882583
  20. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30. doi: 10.1093/nar/28.1.27 PMID: 10592173
  21. Chen, Y.; Chen, J.; Jiang, M.; Fu, Y.; Zhu, Y.; Jiao, N.; Liu, L.; Du, Q.; Wu, H.; Xu, H.; Sun, J. Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling. Life Sci., 2020, 252, 117653. doi: 10.1016/j.lfs.2020.117653 PMID: 32277978
  22. Wu, X.Q.; Zhang, D.D.; Wang, Y.N.; Tan, Y.Q.; Yu, X.Y.; Zhao, Y.Y. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic. Biol. Med., 2021, 171, 260-271. doi: 10.1016/j.freeradbiomed.2021.05.025 PMID: 34019934
  23. Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 2022, 12(4), 542. doi: 10.3390/biom12040542 PMID: 35454131
  24. Li, J.; Ji, T.; Su, S.; Zhu, Y.; Chen, X.; Shang, E.; Guo, S.; Qian, D.; Duan, J. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway. J. Ethnopharmacol., 2022, 283, 114713. doi: 10.1016/j.jep.2021.114713 PMID: 34626776
  25. Jeong, S.R.; Park, H.Y.; Kim, Y.; Lee, K.W. Methylglyoxal-derived advanced glycation end products induce matrix metalloproteinases through activation of ERK/JNK/NF-κB pathway in kidney proximal epithelial cells. Food Sci. Biotechnol., 2020, 29(5), 675-682. doi: 10.1007/s10068-019-00704-7 PMID: 32419966
  26. Abdelkader, N.F.; Ibrahim, S.M.; Moustafa, P.E.; Elbaset, M.A. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed. Pharmacother., 2022, 145, 112395. doi: 10.1016/j.biopha.2021.112395 PMID: 34775239
  27. Stenvinkel, P.; Ketteler, M.; Johnson, R.J.; Lindholm, B.; Pecoits-Filho, R.; Riella, M.; Heimbürger, O.; Cederholm, T.; Girndt, M. IL-10, IL-6, and TNF-α: Central factors in the altered cytokine network of uremia—The good, the bad, and the ugly. Kidney Int., 2005, 67(4), 1216-1233. doi: 10.1111/j.1523-1755.2005.00200.x PMID: 15780075
  28. Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; Roy-Chaudhury, A.; Go, A.S.; Joffe, M.; He, J.; Balakrishnan, V.S.; Kimmel, P.L.; Kusek, J.W.; Raj, D.S. Inflammation and progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol., 2016, 11(9), 1546-1556. doi: 10.2215/CJN.13121215 PMID: 27340285
  29. Taslıpınar, A.; Yaman, H.; Yılmaz, M.I.; Demırbas, S.; Saglam, M.; Taslıpınar, M.Y.; Agıllı, M.; Kurt, Y.G.; Sonmez, A.; Azal, O.; Bolu, E.; Yenıcesu, M.; Kutlu, M. The relationship between inflammation, endothelial dysfunction and proteinuria in patients with diabetic nephropathy. Scand. J. Clin. Lab. Invest., 2011, 71(7), 606-612. doi: 10.3109/00365513.2011.598944 PMID: 21864054
  30. Papaoikonomou, S.; Tentolouris, N.; Tousoulis, D.; Papadodiannis, D.; Miliou, A.; Papageorgiou, N.; Hatzis, G.; Stefanadis, C. The association of the 174G>C polymorphism of interleukin 6 gene with diabetic nephropathy in patients with type 2 diabetes mellitus. J. Diabetes Complications, 2013, 27(6), 576-579. doi: 10.1016/j.jdiacomp.2013.06.006 PMID: 23871133
  31. Chang, W.T.; Huang, M.C.; Chung, H.F.; Chiu, Y.F.; Chen, P.S.; Chen, F.P.; Lee, C.Y.; Shin, S.J.; Hwang, S.J.; Huang, Y.F.; Hsu, C.C. Interleukin-6 gene polymorphisms correlate with the progression of nephropathy in Chinese patients with type 2 diabetes: A prospective cohort study. Diabetes Res. Clin. Pract., 2016, 120, 15-23. doi: 10.1016/j.diabres.2016.07.013 PMID: 27500547
  32. Ung, T.T.; Nguyen, T.T.; Lian, S.; Li, S.; Xia, Y.; Kim, N.H.; Jung, Y.D. Nicotine stimulates IL-6 expression by activating the AP-1 and STAT-3 pathways in human endothelial EA.hy926 cells. J. Cell. Biochem., 2019, 120(4), 5531-5541. doi: 10.1002/jcb.27837 PMID: 30317657
  33. Xiao, W.; Hodge, D.R.; Wang, L.; Yang, X.; Zhang, X.; Farrar, W.L. NF-kappaB activates IL-6 expression through cooperation with c-Jun and IL6-AP1 site, But is independent of its IL6-NFkappaB regulatory site in autocrine human multiple myeloma cells. Cancer Biol. Ther., 2004, 3(10), 1007-1017. doi: 10.4161/cbt.3.10.1141 PMID: 15467434
  34. Jang, S.; Kelley, K.W.; Johnson, R.W. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc. Natl. Acad. Sci. , 2008, 105(21), 7534-7539. doi: 10.1073/pnas.0802865105 PMID: 18490655
  35. Saklatvala, J.; Dean, J.; Finch, A. Protein kinase cascades in intracellular signalling by interleukin-I and tumour necrosis factor. Biochem. Soc. Symp., 1999, 64, 63-77. PMID: 10207621
  36. Li, W.; Zheng, S.; Tang, C.; Zhu, Y.; Wang, X. JNK-AP-1 pathway involved in interleukin-1β-induced calcitonin gene-related peptide secretion in human type II alveolar epithelial cells. Peptides, 2007, 28(6), 1252-1259. doi: 10.1016/j.peptides.2007.03.021 PMID: 17481780

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers