Nuclear Factor Kappa B: A Nobel Therapeutic Target of Flavonoids Against Parkinson's Disease
- Authors: Singh N.K.1, Singh A.1, Mayank 2
-
Affiliations:
- Division of Pharmacology, Institute of Pharmaceutical Research,, GLA University
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University
- Issue: Vol 27, No 14 (2024)
- Pages: 2062-2077
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/644124
- DOI: https://doi.org/10.2174/0113862073295568240105025006
- ID: 644124
Cite item
Full Text
Abstract
Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.
Keywords
About the authors
Niraj Kumar Singh
Division of Pharmacology, Institute of Pharmaceutical Research,, GLA University
Author for correspondence.
Email: info@benthamscience.net
Ashini Singh
Division of Pharmacology, Institute of Pharmaceutical Research,, GLA University
Email: info@benthamscience.net
Mayank
Division of Pharmacology, Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
References
- Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinsons disease in the United States. Mov. Disord., 2013, 28(3), 311-318. doi: 10.1002/mds.25292 PMID: 23436720
- Singh, N.K.; Singh, A.; Varshney, M.; Agrawal, R. A research update on exendin-4 as a novel molecule against parkinsons disease. Curr. Mol. Med., 2023, 23(9), 889-900. doi: 10.2174/1566524023666230529093314 PMID: 37254536
- Davie, C.A. A review of Parkinsons disease. Br. Med. Bull., 2008, 86(1), 109-127. doi: 10.1093/bmb/ldn013 PMID: 18398010
- Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinsons disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240. doi: 10.1111/cbdd.14210 PMID: 36752710
- Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinsons disease. FEBS J., 2018, 285(19), 3657-3668. doi: 10.1111/febs.14607 PMID: 30028088
- Bansal, K.; Singh, S.; Singh, V.; Bajpai, M. Nutraceuticals a food for thought in the treatment of parkinsons disease. Curr. Nutr. Food Sci., 2023, 19(9), 961-977. doi: 10.2174/1573401319666230515104325
- Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimers and Parkinsons disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
- Verma, A.; Goyal, A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574. doi: 10.1007/s43450-022-00277-3
- Amor, S.; Puentes, F.; Baker, D.; Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169. doi: 10.1111/j.1365-2567.2009.03225.x PMID: 20561356
- Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinsons disease. Adv. Protein Chem. Struct. Biol., 2012, 88, 69-132. doi: 10.1016/B978-0-12-398314-5.00004-0 PMID: 22814707
- Monahan, A.J.; Warren, M.; Carvey, P.M. Neuroinflammation and peripheral immune infiltration in Parkinsons disease: An autoimmune hypothesis. Cell Transplant., 2008, 17(4), 363-372. doi: 10.3727/096368908784423328 PMID: 18522239
- Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinsons disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518. doi: 10.1016/j.nbd.2009.11.004 PMID: 19913097
- Pajares, M.I.; Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in parkinsons disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687. doi: 10.3390/cells9071687 PMID: 32674367
- Church, F.C. Treatment options for motor and non-motor symptoms of parkinsons disease. Biomolecules, 2021, 11(4), 612. doi: 10.3390/biom11040612 PMID: 33924103
- Karin, M.; Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol., 2002, 3(3), 221-227. doi: 10.1038/ni0302-221 PMID: 11875461
- Li, Q.; Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734. doi: 10.1038/nri910 PMID: 12360211
- Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol., 2007, 8(1), 49-62. doi: 10.1038/nrm2083 PMID: 17183360
- Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
- Mattson, M.P.; Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 2001, 107(3), 247-254. doi: 10.1172/JCI11916 PMID: 11160145
- Rocha, S.M.; Kirkley, K.S.; Chatterjee, D.; Aboellail, T.A.; Smeyne, R.J.; Tjalkens, R.B. Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the inhibition of p62/SEQUESTOSOME -1-dependent autophagy in the rotenone model of Parkinsons disease. Glia, 2023, 71(9), 2154-2179. doi: 10.1002/glia.24385 PMID: 37199240
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023. doi: 10.1038/sigtrans.2017.23 PMID: 29158945
- Mattson, M.P.; Meffert, M.K. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ., 2006, 13(5), 852-860. doi: 10.1038/sj.cdd.4401837 PMID: 16397579
- Salles, A.; Romano, A.; Freudenthal, R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. J. Physiol. Paris, 2014, 108(4-6), 256-262. doi: 10.1016/j.jphysparis.2014.05.002 PMID: 24854662
- Dutta, D.; Jana, M.; Majumder, M.; Mondal, S.; Roy, A.; Pahan, K. Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat. Commun., 2021, 12(1), 5382. doi: 10.1038/s41467-021-25767-1 PMID: 34508096
- Shi, Z.M.; Han, Y.W.; Han, X.H.; Zhang, K.; Chang, Y.N.; Hu, Z.M.; Qi, H.X.; Ting, C.; Zhen, Z.; Hong, W. Upstream regulators and downstream effectors of NF-κB in Alzheimers disease. J. Neurol. Sci., 2016, 366, 127-134. doi: 10.1016/j.jns.2016.05.022 PMID: 27288790
- Srinivasan, M.; Lahiri, D.K. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimers disease and multiple sclerosis. Expert Opin. Ther. Targets, 2015, 19(4), 471-487. doi: 10.1517/14728222.2014.989834 PMID: 25652642
- Singh, S.S.; Rai, S.N.; Birla, H.; Zahra, W.; Rathore, A.S.; Singh, S.P. NF-κB-mediated neuroinflammation in Parkinsons Disease and potential therapeutic effect of polyphenols. Neurotox. Res., 2020, 37(3), 491-507. doi: 10.1007/s12640-019-00147-2 PMID: 31823227
- Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295. doi: 10.3389/fphar.2019.01295 PMID: 31749703
- Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimers disease: Old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536. doi: 10.1111/j.1471-4159.2004.02743.x PMID: 15485484
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901. doi: 10.3390/molecules27092901 PMID: 35566252
- Kaltschmidt, B.; Helweg, L.P; Greiner, J.F.W.; Kaltschmidt, C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front. Mol. Neurosci., 2022, 15, 954541. doi: 10.3389/fnmol.2022.954541 PMID: 35983068
- Ghosh, G.; Wang, V.Y.F.; Huang, D.B.; Fusco, A. NF-κB regulation: Lessons from structures. Immunol. Rev., 2012, 246(1), 36-58. doi: 10.1111/j.1600-065X.2012.01097.x PMID: 22435546
- Moynagh, P.N. The NF-κB pathway. J. Cell Sci., 2005, 118(20), 4589-4592. doi: 10.1242/jcs.02579 PMID: 16219681
- Gilmore, T.D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene, 2006, 25(51), 6680-6684. doi: 10.1038/sj.onc.1209954 PMID: 17072321
- Cai, M.; Zhuang, W.; Lv, E.; Liu, Z.; Wang, Y.; Zhang, W.; Fu, W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinsons disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem. Int., 2022, 152, 105221. doi: 10.1016/j.neuint.2021.105221 PMID: 34780806
- Hoffmann, A.; Natoli, G.; Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene, 2006, 25(51), 6706-6716. doi: 10.1038/sj.onc.1209933 PMID: 17072323
- Dolatshahi, M.; Ranjbar Hameghavandi, M.H.; Sabahi, M.; Rostamkhani, S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur. J. Neurosci., 2021, 54(1), 4101-4123. doi: 10.1111/ejn.15242 PMID: 33884689
- Brasier, A.R. The NF-kappaB regulatory network. Cardiovasc. Toxicol., 2006, 6(2), 111-130. doi: 10.1385/CT:6:2:111 PMID: 17303919
- Tergaonkar, V. NF κB pathway: A good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol., 2006, 38(10), 1647-1653. doi: 10.1016/j.biocel.2006.03.023 PMID: 16766221
- Pomerantz, J.L.; Baltimore, D. Two Pathways to NF-κ. B. Mol. Cell, 2002, 10(4), 693-695. doi: 10.1016/S1097-2765(02)00697-4 PMID: 12419209
- Songkiatisak, P. Rahman, S.M.T.; Aqdas, M.; Sung, M.H. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun. Ageing, 2022, 19(1), 20. doi: 10.1186/s12979-022-00277-w PMID: 35581646
- Scheidereit, C. IκB kinase complexes: Gateways to NF-κB activation and transcription Oncogene, 2006, 25(51), 6685-6705. doi: 10.1038/sj.onc.1209934 PMID: 17072322
- Panet, H.; Barzilai, A.; Daily, D.; Melamed, E.; Offen, D. Activation of nuclear transcription factor kappa B (NF-κB) is essential for dopamine-induced apoptosis in PC12 cells. J. Neurochem., 2001, 77(2), 391-398. doi: 10.1046/j.1471-4159.2001.00213.x PMID: 11299301
- Baiguera, C.; Alghisi, M.; Pinna, A.; Bellucci, A.; De Luca, M.A.; Frau, L.; Morelli, M.; Ingrassia, R.; Benarese, M.; Porrini, V.; Pellitteri, M.; Bertini, G.; Fabene, P.F.; Sigala, S.; Spillantini, M.G.; Liou, H.C.; Spano, P.F.; Pizzi, M. Late-onset Parkinsonism in NF B/c-Rel-deficient mice. Brain, 2012, 135(9), 2750-2765. doi: 10.1093/brain/aws193 PMID: 22915735
- Parrella, E.; Bellucci, A.; Porrini, V.; Benarese, M.; Lanzillotta, A.; Faustini, G.; Longhena, F.; Abate, G.; Uberti, D.; Pizzi, M. NF-κB/c-Rel deficiency causes Parkinsons disease-like prodromal symptoms and progressive pathology in mice. Transl. Neurodegener., 2019, 8(1), 16. doi: 10.1186/s40035-019-0154-z PMID: 31139367
- Wang, Z.; Dong, H.; Wang, J.; Huang, Y.; Zhang, X.; Tang, Y.; Li, Q.; Liu, Z.; Ma, Y.; Tong, J.; Huang, L.; Fei, J.; Yu, M.; Wang, J.; Huang, F. Pro-survival and anti-inflammatory roles of NF-κB c-Rel in the Parkinsons disease models. Redox Biol., 2020, 30, 101427. doi: 10.1016/j.redox.2020.101427 PMID: 31986466
- Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinsons disease. Proc. Natl. Acad. Sci. , 2007, 104(47), 18754-18759. doi: 10.1073/pnas.0704908104 PMID: 18000063
- Gan, L.; Li, Z.; Lv, Q.; Huang, W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinsons disease model. Int. J. Pharm., 2019, 567, 118449. doi: 10.1016/j.ijpharm.2019.118449 PMID: 31226473
- Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinsons disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120. doi: 10.1016/j.cbi.2017.10.019 PMID: 29054324
- Jiang, X.; Wang, X.; Tuo, M.; Ma, J.; Xie, A. RAGE and its emerging role in the pathogenesis of Parkinsons disease. Neurosci. Lett., 2018, 672, 65-69. doi: 10.1016/j.neulet.2018.02.049 PMID: 29477598
- Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinsons disease: Could targeting these pathways write a good ending? J. Cell. Physiol., 2019, 234(1), 23-32. doi: 10.1002/jcp.26865 PMID: 30078201
- Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinsons disease. Neurotox. Res., 2003, 5(3), 165-176. doi: 10.1007/BF03033137 PMID: 12835121
- Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinsons disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet., 2011, 20(15), 3067-3078. doi: 10.1093/hmg/ddr210 PMID: 21558425
- Harraz, M.M.; Dawson, T.M.; Dawson, V.L. MicroRNAs in Parkinsons disease. J. Chem. Neuroanat., 2011, 42(2), 127-130. doi: 10.1016/j.jchemneu.2011.01.005 PMID: 21295133
- Correddu, D.; Leung, I.K.H. Targeting mRNA translation in Parkinsons disease. Drug Discov. Today, 2019, 24(6), 1295-1303. doi: 10.1016/j.drudis.2019.04.003 PMID: 30974176
- Martín-Nieto, J.; Uribe, M.L.; Esteve-Rudd, J.; Herrero, M.T.; Campello, L. A role for DJ-1 against oxidative stress in the mammalian retina. Neurosci. Lett., 2019, 708, 134361. doi: 10.1016/j.neulet.2019.134361 PMID: 31276729
- Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Mouradian, M.M.; Junn, E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinsons disease. FEBS Lett., 2015, 589(3), 319-325. doi: 10.1016/j.febslet.2014.12.014 PMID: 25541488
- Yao, L.; Zhu, Z.; Wu, J.; Zhang, Y.; Zhang, H.; Sun, X.; Qian, C.; Wang, B.; Xie, L.; Zhang, S.; Lu, A.G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinsons disease. FASEB J., 2019, 33(7), 8648-8665. doi: 10.1096/fj.201900363R PMID: 30995872
- Wu, S.P.; Zhang, J.W.; Ma, J.J.; Li, X.; Qi, Y.W.; Yang, H.Q. The role of miR-146a in MPTP treated mice with Parkinsons disease. Int. J. Clin. Exp. Med., 2019, 12(4), 3668-3676.
- Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy , 2020, 10(8), 1209. doi: 10.3390/agronomy10081209
- Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol., 2022, 13, 1006434. doi: 10.3389/fimmu.2022.1006434 PMID: 36353622
- Schmitt-Schillig, S.; Schaffer, S.; Weber, C.C.; Eckert, G.P.; Müller, W.E. Flavonoids and the aging brain. J. Physiol. Pharmacol., 2005, 56(1)(Suppl. 1), 23-36. PMID: 15800383
- Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446. doi: 10.1016/S0891-5849(00)00498-6 PMID: 11182299
- Bellavite, P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants, 2023, 12(2), 280. doi: 10.3390/antiox12020280 PMID: 36829840
- Behl, T.; Kaur, G.; Sehgal, A.; Zengin, G.; Singh, S.; Ahmadi, A.; Bungau, S. Flavonoids, the family of plant-derived antioxidants making inroads into novel therapeutic design against ionizing radiation-induced oxidative stress in parkinsons disease. Curr. Neuropharmacol., 2022, 20(2), 324-343. doi: 10.2174/1570159X19666210524152817 PMID: 34030619
- Magalingam, K.B.; Radhakrishnan, A.K.; Haleagrahara, N. Protective mechanisms of flavonoids in parkinsons disease. Oxid. Med. Cell. Longev., 2015, 2015, 1-14. doi: 10.1155/2015/314560 PMID: 26576219
- Gao, B.; Chang, C.; Zhou, J.; Zhao, T.; Wang, C.; Li, C.; Gao, G. Pycnogenol protects against rotenone-induced neurotoxicity in PC12 cells through regulating NF-κB-iNOS signaling pathway. DNA Cell Biol., 2015, 34(10), 643-649. doi: 10.1089/dna.2015.2953 PMID: 26203556
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16. doi: 10.1155/2013/162750 PMID: 24470791
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinsons disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
- Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.; Kim, M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 2019, 11(3), 648. doi: 10.3390/nu11030648 PMID: 30884890
- Li, Y.; Zeng, Y.; Meng, T.; Gao, X.; Huang, B.; He, D.; Ran, X.; Du, J.; Zhang, Y.; Fu, S.; Hu, G. Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinsons disease by suppressing the activation of the AKT and NF-κB signaling pathways. Int. Immunopharmacol., 2019, 75, 105739. doi: 10.1016/j.intimp.2019.105739 PMID: 31351366
- Kim, D.C.; Quang, T.; Oh, H.; Kim, Y.C. Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in LPS-Stimulated BV2 and primary rat microglial cells. Molecules, 2017, 22(12), 2130. doi: 10.3390/molecules22122130 PMID: 29207498
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747. doi: 10.1093/ajcn/79.5.727 PMID: 15113710
- Patel, M.; Singh, S. Apigenin attenuates functional and structural alterations via targeting NF-kB/Nrf2 signaling pathway in LPS-induced parkinsonism in experimental rats. Neurotox. Res., 2022, 40(4), 941-960. doi: 10.1007/s12640-022-00521-7 PMID: 35608813
- Zhang, X.; Yang, Y.; Du, L.; Zhang, W.; Du, G. Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int. Immunopharmacol., 2017, 50, 38-47. doi: 10.1016/j.intimp.2017.06.007 PMID: 28623717
- Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinsons disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139. doi: 10.1002/jnr.23307 PMID: 24166733
- Gao, X.; He, D.; Liu, D.; Hu, G.; Zhang, Y.; Meng, T.; Su, Y.; Zhou, A.; Huang, B.; Du, J.; Fu, S. Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-κB signaling axis. Immunobiology, 2020, 225(4), 151965. doi: 10.1016/j.imbio.2020.151965 PMID: 32747020
- Habib, C.N.; Mohamed, M.R.; Tadros, M.G.; Tolba, M.F.; Menze, E.T.; Masoud, S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinsons disease in rats. Eur. J. Pharmacol., 2022, 914, 174573. doi: 10.1016/j.ejphar.2021.174573 PMID: 34656609
- Qi, G.; Mi, Y.; Fan, R.; Li, R.; Liu, Z.; Liu, X. Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J. Agric. Food Chem., 2019, 67(18), 5122-5134. doi: 10.1021/acs.jafc.9b00133 PMID: 30995031
- Meng, H.W.; Shen, Z.B.; Meng, X.S. Leng-Wei; Yin, Z.Q.; Wang, X.R.; Zou, T.F.; Liu, Z.G.; Wang, T.X.; Zhang, S.; Chen, Y.L.; Yang, X.X.; Li, Q.S.; Duan, Y.J. Novel flavonoid 1,3,4-oxadiazole derivatives ameliorate MPTP-induced Parkinsons disease via Nrf2/NF-κB signaling pathway. Bioorg. Chem., 2023, 138, 106654. doi: 10.1016/j.bioorg.2023.106654 PMID: 37300959
- Zhou, X.; Gan, P.; Hao, L.; Tao, L.; Jia, J.; Gao, B.; Liu, J.; Zheng, L.T.; Zhen, X. Antiinflammatory effects of orientin-2"-O-galactopyranoside on lipopolysaccharide-stimulated microglia. Biol. Pharm. Bull., 2014, 37(8), 1282-1294. doi: 10.1248/bpb.b14-00083 PMID: 25087950
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 29, 47. doi: 10.1017/jns.2016.41
- Akinmoladun, A.C.; Famusiwa, C.D.; Josiah, S.S.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A. Dihydroquercetin improves rotenone-induced Parkinsonism by regulating NF-κB-mediated inflammation pathway in rats. J. Biochem. Mol. Toxicol., 2022, 36(5), e23022. doi: 10.1002/jbt.23022 PMID: 35187747
- Josiah, S.S.; Famusiwa, C.D.; Crown, O.O.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A.; Akinmoladun, A.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 2022, 90, 158-171. doi: 10.1016/j.neuro.2022.03.004 PMID: 35337893
- Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull. Natl. Mus. Nat. Sci., 2013, 39(1), 25-51.
- Zhang, F.X.; Xu, R.S. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinsons disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed. Pharmacother., 2018, 97, 1011-1019. doi: 10.1016/j.biopha.2017.08.132 PMID: 29136779
- Lee, M.; McGeer, E.G.; McGeer, P.L. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol. Aging, 2016, 46, 113-123. doi: 10.1016/j.neurobiolaging.2016.06.015 PMID: 27479153
- Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int. J. Mol. Sci., 2017, 18(9), 1989. doi: 10.3390/ijms18091989 PMID: 28914791
- Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B.; Arturo, H.C.P.; Pilapil, D.Y.H., IV; Tan, S.M.M.; Wei, D.Q.; Wenzel-Storjohann, A.; Tasdemir, D.; Yen, C.H.; Ji, S.Y.; Kim, G.Y.; Choi, Y.H.; Macabeo, A.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-Enriched n -Butanol Fraction from Uvaria alba. ACS Omega, 2023, 8(6), 5377-5392. doi: 10.1021/acsomega.2c06451 PMID: 36816691
- Wang, Y.H.; Yu, H.T.; Pu, X.P.; Du, G.H. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells. J. Mol. Neurosci., 2014, 53(4), 562-570. doi: 10.1007/s12031-013-0222-2 PMID: 24510749
- Zheng, L.T.; Ock, J.; Kwon, B.M.; Suk, K. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol., 2008, 8(3), 484-494. doi: 10.1016/j.intimp.2007.12.012 PMID: 18279803
- Zhou, J.; Deng, Y.; Li, F.; Yin, C.; Shi, J.; Gong, Q. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed. Pharmacother., 2019, 111, 315-324. doi: 10.1016/j.biopha.2018.10.201 PMID: 30590319
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377. doi: 10.3390/molecules26175377 PMID: 34500810
- Yang, J.; Jia, M.; Zhang, X.; Wang, P. Calycosin attenuates MPTP-induced Parkinsons disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother. Res., 2019, 33(2), 309-318. doi: 10.1002/ptr.6221 PMID: 30421460
- Zhao, Y.; Sang, Y.; Sun, Y.; Wu, J. Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway. Mediators Inflamm., 2022, 2022, 1-11. doi: 10.1155/2022/5824657 PMID: 35418806
- Chinta, S.J.; Ganesan, A.; Reis-Rodrigues, P.; Lithgow, G.J.; Andersen, J.K. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinsons disease. Neurotox. Res., 2013, 23(2), 145-153. doi: 10.1007/s12640-012-9328-5 PMID: 22573480
- Bai, Y.; Zhou, J.; Zhu, H.; Tao, Y.; Wang, L.; Yang, L.; Wu, H.; Huang, F.; Shi, H.; Wu, X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinsons disease via JNK / AKT NFκ/B signaling pathway. Phytother. Res., 2023, 37(3), 848-859. doi: 10.1002/ptr.7665 PMID: 36484427
- Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225. doi: 10.1016/S1369-703X(02)00221-8
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1), 1361779. doi: 10.1080/16546628.2017.1361779 PMID: 28970777
- Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.I.; Kim, M.O. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol., 2019, 56(1), 671-687. doi: 10.1007/s12035-018-1101-1 PMID: 29779175
Supplementary files
