Nuclear Factor Kappa B: A Nobel Therapeutic Target of Flavonoids Against Parkinson's Disease


Cite item

Full Text

Abstract

Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.

About the authors

Niraj Kumar Singh

Division of Pharmacology, Institute of Pharmaceutical Research,, GLA University

Author for correspondence.
Email: info@benthamscience.net

Ashini Singh

Division of Pharmacology, Institute of Pharmaceutical Research,, GLA University

Email: info@benthamscience.net

Mayank

Division of Pharmacology, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

References

  1. Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord., 2013, 28(3), 311-318. doi: 10.1002/mds.25292 PMID: 23436720
  2. Singh, N.K.; Singh, A.; Varshney, M.; Agrawal, R. A research update on exendin-4 as a novel molecule against parkinson’s disease. Curr. Mol. Med., 2023, 23(9), 889-900. doi: 10.2174/1566524023666230529093314 PMID: 37254536
  3. Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull., 2008, 86(1), 109-127. doi: 10.1093/bmb/ldn013 PMID: 18398010
  4. Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240. doi: 10.1111/cbdd.14210 PMID: 36752710
  5. Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J., 2018, 285(19), 3657-3668. doi: 10.1111/febs.14607 PMID: 30028088
  6. Bansal, K.; Singh, S.; Singh, V.; Bajpai, M. Nutraceuticals a food for thought in the treatment of parkinson’s disease. Curr. Nutr. Food Sci., 2023, 19(9), 961-977. doi: 10.2174/1573401319666230515104325
  7. Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415. doi: 10.1111/jfbc.14415 PMID: 36106706
  8. Verma, A.; Goyal, A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574. doi: 10.1007/s43450-022-00277-3
  9. Amor, S.; Puentes, F.; Baker, D.; Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169. doi: 10.1111/j.1365-2567.2009.03225.x PMID: 20561356
  10. Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinson’s disease. Adv. Protein Chem. Struct. Biol., 2012, 88, 69-132. doi: 10.1016/B978-0-12-398314-5.00004-0 PMID: 22814707
  11. Monahan, A.J.; Warren, M.; Carvey, P.M. Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: An autoimmune hypothesis. Cell Transplant., 2008, 17(4), 363-372. doi: 10.3727/096368908784423328 PMID: 18522239
  12. Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518. doi: 10.1016/j.nbd.2009.11.004 PMID: 19913097
  13. Pajares, M.I.; Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687. doi: 10.3390/cells9071687 PMID: 32674367
  14. Church, F.C. Treatment options for motor and non-motor symptoms of parkinson’s disease. Biomolecules, 2021, 11(4), 612. doi: 10.3390/biom11040612 PMID: 33924103
  15. Karin, M.; Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol., 2002, 3(3), 221-227. doi: 10.1038/ni0302-221 PMID: 11875461
  16. Li, Q.; Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734. doi: 10.1038/nri910 PMID: 12360211
  17. Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol., 2007, 8(1), 49-62. doi: 10.1038/nrm2083 PMID: 17183360
  18. Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934. doi: 10.1016/j.cell.2010.02.016 PMID: 20303880
  19. Mattson, M.P.; Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 2001, 107(3), 247-254. doi: 10.1172/JCI11916 PMID: 11160145
  20. Rocha, S.M.; Kirkley, K.S.; Chatterjee, D.; Aboellail, T.A.; Smeyne, R.J.; Tjalkens, R.B. Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the inhibition of p62/SEQUESTOSOME -1-dependent autophagy in the rotenone model of Parkinson’s disease. Glia, 2023, 71(9), 2154-2179. doi: 10.1002/glia.24385 PMID: 37199240
  21. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023. doi: 10.1038/sigtrans.2017.23 PMID: 29158945
  22. Mattson, M.P.; Meffert, M.K. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ., 2006, 13(5), 852-860. doi: 10.1038/sj.cdd.4401837 PMID: 16397579
  23. Salles, A.; Romano, A.; Freudenthal, R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. J. Physiol. Paris, 2014, 108(4-6), 256-262. doi: 10.1016/j.jphysparis.2014.05.002 PMID: 24854662
  24. Dutta, D.; Jana, M.; Majumder, M.; Mondal, S.; Roy, A.; Pahan, K. Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat. Commun., 2021, 12(1), 5382. doi: 10.1038/s41467-021-25767-1 PMID: 34508096
  25. Shi, Z.M.; Han, Y.W.; Han, X.H.; Zhang, K.; Chang, Y.N.; Hu, Z.M.; Qi, H.X.; Ting, C.; Zhen, Z.; Hong, W. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J. Neurol. Sci., 2016, 366, 127-134. doi: 10.1016/j.jns.2016.05.022 PMID: 27288790
  26. Srinivasan, M.; Lahiri, D.K. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin. Ther. Targets, 2015, 19(4), 471-487. doi: 10.1517/14728222.2014.989834 PMID: 25652642
  27. Singh, S.S.; Rai, S.N.; Birla, H.; Zahra, W.; Rathore, A.S.; Singh, S.P. NF-κB-mediated neuroinflammation in Parkinson’s Disease and potential therapeutic effect of polyphenols. Neurotox. Res., 2020, 37(3), 491-507. doi: 10.1007/s12640-019-00147-2 PMID: 31823227
  28. Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295. doi: 10.3389/fphar.2019.01295 PMID: 31749703
  29. Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536. doi: 10.1111/j.1471-4159.2004.02743.x PMID: 15485484
  30. Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901. doi: 10.3390/molecules27092901 PMID: 35566252
  31. Kaltschmidt, B.; Helweg, L.P; Greiner, J.F.W.; Kaltschmidt, C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front. Mol. Neurosci., 2022, 15, 954541. doi: 10.3389/fnmol.2022.954541 PMID: 35983068
  32. Ghosh, G.; Wang, V.Y.F.; Huang, D.B.; Fusco, A. NF-κB regulation: Lessons from structures. Immunol. Rev., 2012, 246(1), 36-58. doi: 10.1111/j.1600-065X.2012.01097.x PMID: 22435546
  33. Moynagh, P.N. The NF-κB pathway. J. Cell Sci., 2005, 118(20), 4589-4592. doi: 10.1242/jcs.02579 PMID: 16219681
  34. Gilmore, T.D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene, 2006, 25(51), 6680-6684. doi: 10.1038/sj.onc.1209954 PMID: 17072321
  35. Cai, M.; Zhuang, W.; Lv, E.; Liu, Z.; Wang, Y.; Zhang, W.; Fu, W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson’s disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem. Int., 2022, 152, 105221. doi: 10.1016/j.neuint.2021.105221 PMID: 34780806
  36. Hoffmann, A.; Natoli, G.; Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene, 2006, 25(51), 6706-6716. doi: 10.1038/sj.onc.1209933 PMID: 17072323
  37. Dolatshahi, M.; Ranjbar Hameghavandi, M.H.; Sabahi, M.; Rostamkhani, S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur. J. Neurosci., 2021, 54(1), 4101-4123. doi: 10.1111/ejn.15242 PMID: 33884689
  38. Brasier, A.R. The NF-kappaB regulatory network. Cardiovasc. Toxicol., 2006, 6(2), 111-130. doi: 10.1385/CT:6:2:111 PMID: 17303919
  39. Tergaonkar, V. NF κB pathway: A good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol., 2006, 38(10), 1647-1653. doi: 10.1016/j.biocel.2006.03.023 PMID: 16766221
  40. Pomerantz, J.L.; Baltimore, D. Two Pathways to NF-κ. B. Mol. Cell, 2002, 10(4), 693-695. doi: 10.1016/S1097-2765(02)00697-4 PMID: 12419209
  41. Songkiatisak, P. Rahman, S.M.T.; Aqdas, M.; Sung, M.H. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun. Ageing, 2022, 19(1), 20. doi: 10.1186/s12979-022-00277-w PMID: 35581646
  42. Scheidereit, C. IκB kinase complexes: Gateways to NF-κB activation and transcription Oncogene, 2006, 25(51), 6685-6705. doi: 10.1038/sj.onc.1209934 PMID: 17072322
  43. Panet, H.; Barzilai, A.; Daily, D.; Melamed, E.; Offen, D. Activation of nuclear transcription factor kappa B (NF-κB) is essential for dopamine-induced apoptosis in PC12 cells. J. Neurochem., 2001, 77(2), 391-398. doi: 10.1046/j.1471-4159.2001.00213.x PMID: 11299301
  44. Baiguera, C.; Alghisi, M.; Pinna, A.; Bellucci, A.; De Luca, M.A.; Frau, L.; Morelli, M.; Ingrassia, R.; Benarese, M.; Porrini, V.; Pellitteri, M.; Bertini, G.; Fabene, P.F.; Sigala, S.; Spillantini, M.G.; Liou, H.C.; Spano, P.F.; Pizzi, M. Late-onset Parkinsonism in NF B/c-Rel-deficient mice. Brain, 2012, 135(9), 2750-2765. doi: 10.1093/brain/aws193 PMID: 22915735
  45. Parrella, E.; Bellucci, A.; Porrini, V.; Benarese, M.; Lanzillotta, A.; Faustini, G.; Longhena, F.; Abate, G.; Uberti, D.; Pizzi, M. NF-κB/c-Rel deficiency causes Parkinson’s disease-like prodromal symptoms and progressive pathology in mice. Transl. Neurodegener., 2019, 8(1), 16. doi: 10.1186/s40035-019-0154-z PMID: 31139367
  46. Wang, Z.; Dong, H.; Wang, J.; Huang, Y.; Zhang, X.; Tang, Y.; Li, Q.; Liu, Z.; Ma, Y.; Tong, J.; Huang, L.; Fei, J.; Yu, M.; Wang, J.; Huang, F. Pro-survival and anti-inflammatory roles of NF-κB c-Rel in the Parkinson’s disease models. Redox Biol., 2020, 30, 101427. doi: 10.1016/j.redox.2020.101427 PMID: 31986466
  47. Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. , 2007, 104(47), 18754-18759. doi: 10.1073/pnas.0704908104 PMID: 18000063
  48. Gan, L.; Li, Z.; Lv, Q.; Huang, W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm., 2019, 567, 118449. doi: 10.1016/j.ijpharm.2019.118449 PMID: 31226473
  49. Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120. doi: 10.1016/j.cbi.2017.10.019 PMID: 29054324
  50. Jiang, X.; Wang, X.; Tuo, M.; Ma, J.; Xie, A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci. Lett., 2018, 672, 65-69. doi: 10.1016/j.neulet.2018.02.049 PMID: 29477598
  51. Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell. Physiol., 2019, 234(1), 23-32. doi: 10.1002/jcp.26865 PMID: 30078201
  52. Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176. doi: 10.1007/BF03033137 PMID: 12835121
  53. Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet., 2011, 20(15), 3067-3078. doi: 10.1093/hmg/ddr210 PMID: 21558425
  54. Harraz, M.M.; Dawson, T.M.; Dawson, V.L. MicroRNAs in Parkinson’s disease. J. Chem. Neuroanat., 2011, 42(2), 127-130. doi: 10.1016/j.jchemneu.2011.01.005 PMID: 21295133
  55. Correddu, D.; Leung, I.K.H. Targeting mRNA translation in Parkinson’s disease. Drug Discov. Today, 2019, 24(6), 1295-1303. doi: 10.1016/j.drudis.2019.04.003 PMID: 30974176
  56. Martín-Nieto, J.; Uribe, M.L.; Esteve-Rudd, J.; Herrero, M.T.; Campello, L. A role for DJ-1 against oxidative stress in the mammalian retina. Neurosci. Lett., 2019, 708, 134361. doi: 10.1016/j.neulet.2019.134361 PMID: 31276729
  57. Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Mouradian, M.M.; Junn, E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett., 2015, 589(3), 319-325. doi: 10.1016/j.febslet.2014.12.014 PMID: 25541488
  58. Yao, L.; Zhu, Z.; Wu, J.; Zhang, Y.; Zhang, H.; Sun, X.; Qian, C.; Wang, B.; Xie, L.; Zhang, S.; Lu, A.G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J., 2019, 33(7), 8648-8665. doi: 10.1096/fj.201900363R PMID: 30995872
  59. Wu, S.P.; Zhang, J.W.; Ma, J.J.; Li, X.; Qi, Y.W.; Yang, H.Q. The role of miR-146a in MPTP treated mice with Parkinson’s disease. Int. J. Clin. Exp. Med., 2019, 12(4), 3668-3676.
  60. Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy , 2020, 10(8), 1209. doi: 10.3390/agronomy10081209
  61. Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol., 2022, 13, 1006434. doi: 10.3389/fimmu.2022.1006434 PMID: 36353622
  62. Schmitt-Schillig, S.; Schaffer, S.; Weber, C.C.; Eckert, G.P.; Müller, W.E. Flavonoids and the aging brain. J. Physiol. Pharmacol., 2005, 56(1)(Suppl. 1), 23-36. PMID: 15800383
  63. Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446. doi: 10.1016/S0891-5849(00)00498-6 PMID: 11182299
  64. Bellavite, P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants, 2023, 12(2), 280. doi: 10.3390/antiox12020280 PMID: 36829840
  65. Behl, T.; Kaur, G.; Sehgal, A.; Zengin, G.; Singh, S.; Ahmadi, A.; Bungau, S. Flavonoids, the family of plant-derived antioxidants making inroads into novel therapeutic design against ionizing radiation-induced oxidative stress in parkinson’s disease. Curr. Neuropharmacol., 2022, 20(2), 324-343. doi: 10.2174/1570159X19666210524152817 PMID: 34030619
  66. Magalingam, K.B.; Radhakrishnan, A.K.; Haleagrahara, N. Protective mechanisms of flavonoids in parkinson’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 1-14. doi: 10.1155/2015/314560 PMID: 26576219
  67. Gao, B.; Chang, C.; Zhou, J.; Zhao, T.; Wang, C.; Li, C.; Gao, G. Pycnogenol protects against rotenone-induced neurotoxicity in PC12 cells through regulating NF-κB-iNOS signaling pathway. DNA Cell Biol., 2015, 34(10), 643-649. doi: 10.1089/dna.2015.2953 PMID: 26203556
  68. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16. doi: 10.1155/2013/162750 PMID: 24470791
  69. Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
  70. Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.; Kim, M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 2019, 11(3), 648. doi: 10.3390/nu11030648 PMID: 30884890
  71. Li, Y.; Zeng, Y.; Meng, T.; Gao, X.; Huang, B.; He, D.; Ran, X.; Du, J.; Zhang, Y.; Fu, S.; Hu, G. Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinson’s disease by suppressing the activation of the AKT and NF-κB signaling pathways. Int. Immunopharmacol., 2019, 75, 105739. doi: 10.1016/j.intimp.2019.105739 PMID: 31351366
  72. Kim, D.C.; Quang, T.; Oh, H.; Kim, Y.C. Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in LPS-Stimulated BV2 and primary rat microglial cells. Molecules, 2017, 22(12), 2130. doi: 10.3390/molecules22122130 PMID: 29207498
  73. Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747. doi: 10.1093/ajcn/79.5.727 PMID: 15113710
  74. Patel, M.; Singh, S. Apigenin attenuates functional and structural alterations via targeting NF-kB/Nrf2 signaling pathway in LPS-induced parkinsonism in experimental rats. Neurotox. Res., 2022, 40(4), 941-960. doi: 10.1007/s12640-022-00521-7 PMID: 35608813
  75. Zhang, X.; Yang, Y.; Du, L.; Zhang, W.; Du, G. Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int. Immunopharmacol., 2017, 50, 38-47. doi: 10.1016/j.intimp.2017.06.007 PMID: 28623717
  76. Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139. doi: 10.1002/jnr.23307 PMID: 24166733
  77. Gao, X.; He, D.; Liu, D.; Hu, G.; Zhang, Y.; Meng, T.; Su, Y.; Zhou, A.; Huang, B.; Du, J.; Fu, S. Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-κB signaling axis. Immunobiology, 2020, 225(4), 151965. doi: 10.1016/j.imbio.2020.151965 PMID: 32747020
  78. Habib, C.N.; Mohamed, M.R.; Tadros, M.G.; Tolba, M.F.; Menze, E.T.; Masoud, S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur. J. Pharmacol., 2022, 914, 174573. doi: 10.1016/j.ejphar.2021.174573 PMID: 34656609
  79. Qi, G.; Mi, Y.; Fan, R.; Li, R.; Liu, Z.; Liu, X. Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J. Agric. Food Chem., 2019, 67(18), 5122-5134. doi: 10.1021/acs.jafc.9b00133 PMID: 30995031
  80. Meng, H.W.; Shen, Z.B.; Meng, X.S. Leng-Wei; Yin, Z.Q.; Wang, X.R.; Zou, T.F.; Liu, Z.G.; Wang, T.X.; Zhang, S.; Chen, Y.L.; Yang, X.X.; Li, Q.S.; Duan, Y.J. Novel flavonoid 1,3,4-oxadiazole derivatives ameliorate MPTP-induced Parkinson’s disease via Nrf2/NF-κB signaling pathway. Bioorg. Chem., 2023, 138, 106654. doi: 10.1016/j.bioorg.2023.106654 PMID: 37300959
  81. Zhou, X.; Gan, P.; Hao, L.; Tao, L.; Jia, J.; Gao, B.; Liu, J.; Zheng, L.T.; Zhen, X. Antiinflammatory effects of orientin-2"-O-galactopyranoside on lipopolysaccharide-stimulated microglia. Biol. Pharm. Bull., 2014, 37(8), 1282-1294. doi: 10.1248/bpb.b14-00083 PMID: 25087950
  82. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 29, 47. doi: 10.1017/jns.2016.41
  83. Akinmoladun, A.C.; Famusiwa, C.D.; Josiah, S.S.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A. Dihydroquercetin improves rotenone-induced Parkinsonism by regulating NF-κB-mediated inflammation pathway in rats. J. Biochem. Mol. Toxicol., 2022, 36(5), e23022. doi: 10.1002/jbt.23022 PMID: 35187747
  84. Josiah, S.S.; Famusiwa, C.D.; Crown, O.O.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A.; Akinmoladun, A.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 2022, 90, 158-171. doi: 10.1016/j.neuro.2022.03.004 PMID: 35337893
  85. Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull. Natl. Mus. Nat. Sci., 2013, 39(1), 25-51.
  86. Zhang, F.X.; Xu, R.S. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed. Pharmacother., 2018, 97, 1011-1019. doi: 10.1016/j.biopha.2017.08.132 PMID: 29136779
  87. Lee, M.; McGeer, E.G.; McGeer, P.L. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol. Aging, 2016, 46, 113-123. doi: 10.1016/j.neurobiolaging.2016.06.015 PMID: 27479153
  88. Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int. J. Mol. Sci., 2017, 18(9), 1989. doi: 10.3390/ijms18091989 PMID: 28914791
  89. Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B.; Arturo, H.C.P.; Pilapil, D.Y.H., IV; Tan, S.M.M.; Wei, D.Q.; Wenzel-Storjohann, A.; Tasdemir, D.; Yen, C.H.; Ji, S.Y.; Kim, G.Y.; Choi, Y.H.; Macabeo, A.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-Enriched n -Butanol Fraction from Uvaria alba. ACS Omega, 2023, 8(6), 5377-5392. doi: 10.1021/acsomega.2c06451 PMID: 36816691
  90. Wang, Y.H.; Yu, H.T.; Pu, X.P.; Du, G.H. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells. J. Mol. Neurosci., 2014, 53(4), 562-570. doi: 10.1007/s12031-013-0222-2 PMID: 24510749
  91. Zheng, L.T.; Ock, J.; Kwon, B.M.; Suk, K. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol., 2008, 8(3), 484-494. doi: 10.1016/j.intimp.2007.12.012 PMID: 18279803
  92. Zhou, J.; Deng, Y.; Li, F.; Yin, C.; Shi, J.; Gong, Q. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed. Pharmacother., 2019, 111, 315-324. doi: 10.1016/j.biopha.2018.10.201 PMID: 30590319
  93. Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377. doi: 10.3390/molecules26175377 PMID: 34500810
  94. Yang, J.; Jia, M.; Zhang, X.; Wang, P. Calycosin attenuates MPTP-induced Parkinson’s disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother. Res., 2019, 33(2), 309-318. doi: 10.1002/ptr.6221 PMID: 30421460
  95. Zhao, Y.; Sang, Y.; Sun, Y.; Wu, J. Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway. Mediators Inflamm., 2022, 2022, 1-11. doi: 10.1155/2022/5824657 PMID: 35418806
  96. Chinta, S.J.; Ganesan, A.; Reis-Rodrigues, P.; Lithgow, G.J.; Andersen, J.K. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox. Res., 2013, 23(2), 145-153. doi: 10.1007/s12640-012-9328-5 PMID: 22573480
  97. Bai, Y.; Zhou, J.; Zhu, H.; Tao, Y.; Wang, L.; Yang, L.; Wu, H.; Huang, F.; Shi, H.; Wu, X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson’s disease via JNK / AKT NFκ/B signaling pathway. Phytother. Res., 2023, 37(3), 848-859. doi: 10.1002/ptr.7665 PMID: 36484427
  98. Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225. doi: 10.1016/S1369-703X(02)00221-8
  99. Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1), 1361779. doi: 10.1080/16546628.2017.1361779 PMID: 28970777
  100. Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.I.; Kim, M.O. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol., 2019, 56(1), 671-687. doi: 10.1007/s12035-018-1101-1 PMID: 29779175

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers