A Network Pharmacology-based Study on the Anti-aging Properties of Traditional Chinese Medicine Sisheng Bulao Elixir


Cite item

Full Text

Abstract

Background::Traditional Chinese Medicine (TCM) has a rich history of use in preventing senescence for millennia in China. Nonetheless, a systematic method to study the antiaging properties and the underlying molecular mechanism of TCM remains absent.

Objective::The objective of this study is to decipher the anti-aging targets and mechanisms of Sisheng Bulao Elixir (SBE) using a systematic approach based on a novel aging database and network pharmacology.

Methods::Bioactive compounds and target proteins in SBE were identified via the Traditional Chinese Medicine System Pharmacology (TCMSP) database. Aging-related proteins were uncovered through alignment with the Ageing Alta database. A compound-target (CT) protein network analysis highlighted key flavonoids targeting aging. Core aging-related proteins were extracted through protein-protein interaction (PPI) network analysis. Molecular docking validated binding activities between core compounds and aging-related proteins. The antioxidant activity of SBE was confirmed using an in vitro senescent cells model.

Results::A total of 39 active compounds were extracted from a pool of 639 compounds in SBE. Through a matching process with the Aging Alta, 88 target proteins associated with the aging process were identified. Impressively, 80 out of these 88 proteins were found to be targeted by flavonoids. Subsequently, an analysis using CT methodology highlighted 11 top bioactive flavonoids. Notably, core aging-related proteins, including AKT1, MAPK3, TP53, VEGFA, IL6, and HSP90AA1, emerged through the PPI network analysis. Moreover, three flavonoids, namely quercetin, kaempferol, and luteolin, exhibited interactions with over 100 aging-related proteins. Molecular docking studies were conducted on these flavonoids with their shared three target proteins, namely AKT1, HSP90AA1, and IL6, to assess their binding activities. Finally, the antioxidant properties of SBE were validated using an in vitro model of senescent cells.

Conclusion::This study offers novel insights into SBE's anti-aging attributes, providing evidence of its molecular mechanisms. It enhances our understanding of traditional remedies in anti-aging research.

About the authors

Cencan Xing

Daxing Research Institute, University of Science and Technology Beijing

Email: info@benthamscience.net

Zehua Zeng

Daxing Research Institute, University of Science and Technology Beijing

Email: info@benthamscience.net

Yubang Shan

School of Chemistry and Biological Engineering, University of Science and Technology Beijing

Email: info@benthamscience.net

Wenhuan Guo

Department of Obstetrics and Gynecology, Peking University Third Hospital

Email: info@benthamscience.net

Roshan Shah

School of Chemistry and Biological Engineering, University of Science and Technology Beijing

Email: info@benthamscience.net

Luna Wang

School of Chemistry and Biological Engineering, University of Science and Technology Beijing

Email: info@benthamscience.net

Yan Wang

H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi

Author for correspondence.
Email: info@benthamscience.net

Hongwu Du

Daxing Research Institute, University of Science and Technology Beijing

Author for correspondence.
Email: info@benthamscience.net

References

  1. Vergilio, M.M.; Vasques, L.I.; Leonardi, G.R. Characterization of skin aging through high-frequency ultrasound imaging as a technique for evaluating the effectiveness of anti-aging products and procedures: A review. Int. Soci. Skin Imag., 2021, 27, 966-973.
  2. Harman, D. The free radical theory of aging. Antioxid. Redox Signal., 2003, 5(5), 557-561. doi: 10.1089/152308603770310202 PMID: 14580310
  3. Hossain, I.; Park, S.; Husna, A.; Kim, Y.; Kim, H.; Kim, T.H. PIM-PI-1 and Poly(ethylene glycol)/Poly(propylene glycol)-based mechanically robust copolyimide membranes with high CO 2-selectivity and an anti-aging property: A joint experimental–computational exploration. ACS Appl. Mater. Interfaces, 2021, 13(42), 49890-49906. doi: 10.1021/acsami.1c14034 PMID: 34643079
  4. Campisi, J.; Kim, S.; Lim, C.S.; Rubio, M. Cellular senescence, cancer and aging: the telomere connection. Exp. Gerontol., 2001, 36(10), 1619-1637. doi: 10.1016/S0531-5565(01)00160-7 PMID: 11672984
  5. Lin, C.L.; Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus. Int. J. Biol. Macromol., 2009, 45(2), 146-151. doi: 10.1016/j.ijbiomac.2009.04.014 PMID: 19409411
  6. Chang, R.C.C.; So, K.F. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cell. Mol. Neurobiol., 2008, 28(5), 643-652. doi: 10.1007/s10571-007-9181-x PMID: 17710531
  7. Yuan, L.G.; Deng, H.B.; Chen, L.H.; Li, D.D.; He, Q.Y. Reversal of apoptotic resistance by Lycium barbarum glycopeptide 3 in aged T cells. Biomed. Environ. Sci., 2008, 21(3), 212-217. doi: 10.1016/S0895-3988(08)60031-8 PMID: 18714818
  8. Gao, Y.; Wei, Y.; Wang, Y.; Gao, F.; Chen, Z. Lycium Barbarum: A traditional chinese herb and a promising anti-aging agent. Aging Dis., 2017, 8(6), 778-791. doi: 10.14336/AD.2017.0725 PMID: 29344416
  9. Zavarin, E.; Mirov, N.T.; Snajberk, K. Turpentine chemistry and taxonomy of three pines of Southeastern Asia. Phytochemistry, 1966, 5(1), 91-96. doi: 10.1016/S0031-9422(00)85085-2
  10. Ríos, J.L. Chemical constituents and pharmacological properties of Poria cocos. Planta Med., 2011, 77(7), 681-691. doi: 10.1055/s-0030-1270823 PMID: 21347995
  11. Yuan, H.; Jiang, S.; Liu, Y.; Daniyal, M.; Jian, Y.; Peng, C.; Shen, J.; Liu, S.; Wang, W. The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine. J. Ethnopharmacol., 2020, 261, 113043. doi: 10.1016/j.jep.2020.113043 PMID: 32593689
  12. Yan, L.; Wang, J.; He, X.; Jin, Y.; Chen, P.; Bai, Y.; Li, P.; Su, W. Platycladus orientalis seed extract as a potential triple reuptake MAO inhibitor rescue depression phenotype through restoring monoamine neurotransmitters. J. Ethnopharmacol., 2022, 295, 115302. doi: 10.1016/j.jep.2022.115302 PMID: 35489661
  13. Li, X.; He, Y.; Zeng, P.; Liu, Y.; Zhang, M.; Hao, C.; Wang, H.; Lv, Z.; Zhang, L. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China. J. Cell. Mol. Med., 2019, 23(1), 4-20. doi: 10.1111/jcmm.13564 PMID: 30444050
  14. Shen, C.Y.; Jiang, J.G.; Yang, L.; Wang, D.W.; Zhu, W. Anti‐ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br. J. Pharmacol., 2017, 174(11), 1395-1425. doi: 10.1111/bph.13631 PMID: 27659301
  15. Fang, C.L.; Paul, C.R.; Day, C.H.; Chang, R.L.; Kuo, C.H.; Ho, T.J.; Hsieh, D.J.Y.; Viswanadha, V.P.; Kuo, W.W.; Huang, C.Y. Poria cocos (Fuling) targets TGFβ/Smad7 associated collagen accumulation and enhances Nrf2‐antioxidant mechanism to exert anti‐skin aging effects in human dermal fibroblasts. Environ. Toxicol., 2021, 36(5), 729-736. doi: 10.1002/tox.23075 PMID: 33336893
  16. Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690. doi: 10.1038/nchembio.118 PMID: 18936753
  17. Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111. doi: 10.1038/nbt1007-1110 PMID: 17921993
  18. Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80. doi: 10.1007/s11655-019-3064-0 PMID: 30941682
  19. Li, S.; Fan, T-P.; Jia, W.; Lu, A.; Zhang, W. Network pharmacology in traditional chinese medicine. Evid. Based Complement. Alternat. Med., 2014, 2014, 138460. PMID: 24707305
  20. Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120. doi: 10.1016/S1875-5364(13)60037-0 PMID: 23787177
  21. Zhang, R.; Zhu, X.; Bai, H.; Ning, K. Network pharmacology databases for traditional chinese medicine: Review and assessment. Front. Pharmacol., 2019, 10, 123. doi: 10.3389/fphar.2019.00123 PMID: 30846939
  22. Zhou, Z.; Chen, B.; Chen, S.; Lin, M.; Chen, Y.; Jin, S.; Chen, W.; Zhang, Y. Applications of network pharmacology in traditional chinese medicine research. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-7. doi: 10.1155/2020/1646905 PMID: 32148533
  23. Liu, G-H.; Bao, Y.; Qu, J.; Zhang, W.; Zhang, T.; Kang, W.; Yang, F.; Ji, Q.; Jiang, X.; Ma, Y.; Ma, S.; Liu, Z.; Chen, S.; Wang, S.; Sun, S.; Geng, L.; Yan, K.; Yan, P.; Fan, Y.; Song, M.; Ren, J.; Wang, Q.; Yang, S.; Yang, Y.; Xiong, M.; Liang, C.; Li, L-Z.; Cao, T.; Hu, J.; Yang, P.; Ping, J.; Hu, H.; Zheng, Y.; Sun, G.; Li, J.; Liu, L.; Zou, Z.; Ding, Y.; Li, M.; Liu, D.; Wang, M.; Ji, Q.; Sun, X.; Wang, C.; Bi, S.; Shan, H.; Zhuo, X. Aging Atlas: A multi-omics database for aging biology. Nucleic Acids Res., 2021, 49(D1), D825-D830. doi: 10.1093/nar/gkaa894 PMID: 33119753
  24. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13. doi: 10.1186/1758-2946-6-13 PMID: 24735618
  25. Fang, S.; Dong, L.; Liu, L.; Guo, J.; Zhao, L.; Zhang, J.; Bu, D.; Liu, X.; Huo, P.; Cao, W.; Dong, Q.; Wu, J.; Zeng, X.; Wu, Y.; Zhao, Y. HERB: A high-throughput experiment-and reference-guided database of traditional Chinese medicine. Nucleic Acids Res., 2021, 49(D1), D1197-D1206. doi: 10.1093/nar/gkaa1063 PMID: 33264402
  26. Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287. doi: 10.1089/omi.2011.0118 PMID: 22455463
  27. Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27(3), 431-432. doi: 10.1093/bioinformatics/btq675 PMID: 21149340
  28. Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
  29. Studio, D. Discovery Studio; Accelrys, 2008. 2.1
  30. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
  31. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
  32. Zhou, D.; Borsa, M.; Simon, A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell, 2021, 20(2), e13316. doi: 10.1111/acel.13316 PMID: 33524238
  33. Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler. Thromb. Vasc. Biol., 2003, 23(2), 151-152. doi: 10.1161/01.ATV.0000057393.97337.AE PMID: 12588750
  34. Lim, H.; Kwon, Y.S.; Kim, D.; Lee, J.; Kim, H.P. Flavonoids from Scutellaria baicalensis inhibit senescence-associated secretory phenotype production by interrupting IκBζ/C/EBPβ pathway: Inhibition of age-related inflammation. Phytomedicine, 2020, 76, 153255. doi: 10.1016/j.phymed.2020.153255 PMID: 32554301
  35. Yang, Y.-C.; Lin, H.-Y.; Su, K.-Y.; Chen, C.-H.; Yu, Y.-L.; Lin, C.-C.; Yu, S.-L.; Yan, H.-Y.; Su, K.-J.; Chen, Y.-L.S. Rutin, a flavonoid that is a main component of saussurea involucrata, attenuates the senescence effect in D-Galactose aging mouse model. Evidence-Based Complementary and Alternative Medicine, 2012, 2012
  36. Nakajima, A.; Aoyama, Y.; Nguyen, T.T.L.; Shin, E.J.; Kim, H.C.; Yamada, S.; Nakai, T.; Nagai, T.; Yokosuka, A.; Mimaki, Y.; Ohizumi, Y.; Yamada, K. Nobiletin, a citrus flavonoid, ameliorates cognitive impairment, oxidative burden, and hyperphosphorylation of tau in senescence-accelerated mouse. Behav. Brain Res., 2013, 250, 351-360. doi: 10.1016/j.bbr.2013.05.025 PMID: 23714077
  37. Sun, C.; Wang, X.; Zheng, G.; Fan, S.; Lu, J.; Zhang, Z.; Wu, D.; Shan, Q.; Hu, B.; Zheng, Y. Protective effect of different flavonoids against endothelial senescence via NLRP3 inflammasome. J. Funct. Foods, 2016, 26, 598-609. doi: 10.1016/j.jff.2016.08.031
  38. Miyauchi, H.; Minamino, T.; Tateno, K.; Kunieda, T.; Toko, H.; Komuro, I. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J., 2004, 23(1), 212-220. doi: 10.1038/sj.emboj.7600045 PMID: 14713953
  39. Xing, C.; Liu, X.F.; Zhang, C.F.; Yang, L. Hsp90-associated DNA replication checkpoint protein and proteasome-subunit components are involved in the age-related macular degeneration. Chin. Med. J., 2021, 134(19), 2322-2332. doi: 10.1097/CM9.0000000000001773 PMID: 34629418
  40. De Benedetti, F.; Alonzi, T.; Moretta, A.; Lazzaro, D.; Costa, P.; Poli, V.; Martini, A.; Ciliberto, G.; Fattori, E. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest., 1997, 99(4), 643-650. doi: 10.1172/JCI119207 PMID: 9045866
  41. Kim, H.J.; Jung, K.J.; Yu, B.P.; Cho, C.G.; Chung, H.Y. Influence of aging and calorie restriction on MAPKs activity in rat kidney. Exp. Gerontol., 2002, 37(8-9), 1041-1053. doi: 10.1016/S0531-5565(02)00082-7 PMID: 12213555
  42. van Heemst, D.; Mooijaart, S.P.; Beekman, M.; Schreuder, J.; de Craen, A.J.M.; Brandt, B.W.; Eline Slagboom, P.; Westendorp, R.G.J. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp. Gerontol., 2005, 40(1-2), 11-15. doi: 10.1016/j.exger.2004.10.001 PMID: 15732191
  43. Murphy, J.F.; Fitzgerald, D.J. Vascular endothelial cell growth factor (VEGF) induces cyclooxygenase (COX)‐dependent proliferation of endothelial cells (EC) via the VEGF‐2 receptor. FASEB J., 2001, 15(9), 1667-1669. doi: 10.1096/fj.00-0757fje PMID: 11427521
  44. Burton, M.D.; Rytych, J.L.; Amin, R.; Johnson, R.W. Dietary luteolin reduces proinflammatory microglia in the brain of senescent mice. Rejuvenation Res., 2016, 19(4), 286-292. doi: 10.1089/rej.2015.1708 PMID: 26918466
  45. Domaszewska-Szostek, A.; Puzianowska-Kuźnicka, M.; Kuryłowicz, A. Flavonoids in skin senescence prevention and treatment. Int. J. Mol. Sci., 2021, 22(13), 6814. doi: 10.3390/ijms22136814 PMID: 34201952
  46. Jiang, Y.H.; Jiang, L.Y.; Wang, Y.C.; Ma, D.F.; Li, X. Quercetin attenuates atherosclerosis via modulating oxidized LDL-induced endothelial cellular senescence. Front. Pharmacol., 2020, 11, 512. doi: 10.3389/fphar.2020.00512 PMID: 32410992

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers