Hesperidin Alleviates Acute Necrotizing Pancreatitis by Activating SIRT1 - Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation
- Authors: Zhang R.1, Lan J.1, Chen Q.1, Liu Y.2, Hu L.1, Cao J.3, Zhao H.1, Shen Y.4
-
Affiliations:
- Department of Pharmacy, Guizhou Provincial Peoples Hospital
- Department of Hepatobiliary Surgery II, Guizhou Provincial Peoples Hospital
- Department of Endoscopy, Guizhou Provincial Peoples Hospital
- School of Pharmacy and Bioengineering, Chongqing University of Technology
- Issue: Vol 27, No 12 (2024)
- Pages: 1745-1757
- Section: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/643954
- DOI: https://doi.org/10.2174/1386207326666230803140408
- ID: 643954
Cite item
Full Text
Abstract
Background:Acute necrotizing pancreatitis is a serious pancreatic injury with limited effective treatments. This study aims to investigate the therapeutic effects of hesperidin on Larginine- induced acute pancreatitis and its potential targets.
Methods:The authors induced acute pancreatitis in mice by administering two hourly intraperitoneal injections of L-arginine-HCl, and evaluated the impact of hesperidin on pancreatic and lung tissues, plasma amylase activity, and myeloperoxidase content. Additionally, necrosis and mitochondrial function was tested in primary pancreatic acinar cells. The interactions between hesperidin and proteins involved in necrosis and mitochondrial dysfunction were further invested using in silico molecular docking and molecular dynamic simulations.
Results:Hesperidin effectively ameliorated the severity of acute necrotizing pancreatitis by reducing plasma amylase, pancreatic MPO, serum IL-6 levels, pancreatic edema, inflammation, and pancreatic necrosis. Hesperidin also protected against acute pancreatitis-associated lung injury and prevented acinar cell necrosis, mitochondrial membrane potential loss, and ATP depletion. In addition, hesperidin exhibited a high binding affinity with SIRT1 and increased the protein levels of SIRT1. The SIRT1 inhibitor EX527 abolished the protective effect of hesperidin against necrosis in acinar cells.
Conclusion:These findings indicate that hesperidin alleviates the severity of acute necrotizing pancreatitis by activating SIRT1, which may provide insight into the mechanisms of natural compounds in treating AP. Hesperidin has potential as a therapeutic agent for acute necrotizing pancreatitis and provides a new approach for novel therapeutic strategies.
About the authors
Rui Zhang
Department of Pharmacy, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Junjie Lan
Department of Pharmacy, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Qi Chen
Department of Pharmacy, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Yang Liu
Department of Hepatobiliary Surgery II, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Linfang Hu
Department of Pharmacy, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Jinyong Cao
Department of Endoscopy, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Huaye Zhao
Department of Pharmacy, Guizhou Provincial Peoples Hospital
Email: info@benthamscience.net
Yan Shen
School of Pharmacy and Bioengineering, Chongqing University of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- van Dijk, S.M.; Hallensleben, N.D.L.; van Santvoort, H.C.; Fockens, P.; van Goor, H.; Bruno, M.J.; Besselink, M.G. Acute pancreatitis: Recent advances through randomised trials. Gut, 2017, 66(11), 2024-2032. doi: 10.1136/gutjnl-2016-313595 PMID: 28838972
- Petrov, M.S.; Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(3), 175-184. doi: 10.1038/s41575-018-0087-5 PMID: 30482911
- Szatmary, P.; Grammatikopoulos, T.; Cai, W.; Huang, W.; Mukherjee, R.; Halloran, C.; Beyer, G.; Sutton, R. Acute pancreatitis: Diagnosis and treatment. Drugs, 2022, 82(12), 1251-1276. doi: 10.1007/s40265-022-01766-4 PMID: 36074322
- Garg, P.K.; Singh, V.P. Organ failure due to systemic injury in acute pancreatitis. Gastroenterology, 2019, 156(7), 2008-2023. doi: 10.1053/j.gastro.2018.12.041 PMID: 30768987
- Jaber, S.; Garnier, M.; Asehnoune, K.; Bounes, F.; Buscail, L.; Chevaux, J.B.; Dahyot-Fizelier, C.; Darrivere, L.; Jabaudon, M.; Joannes-Boyau, O.; Launey, Y.; Levesque, E.; Levy, P.; Montravers, P.; Muller, L.; Rimmelé, T.; Roger, C.; Savoye-Collet, C.; Seguin, P.; Tasu, J.P.; Thibault, R.; Vanbiervliet, G.; Weiss, E.; De Jong, A. Guidelines for the management of patients with severe acute pancreatitis, 2021. Anaesth. Crit. Care Pain Med., 2022, 41(3), 101060. doi: 10.1016/j.accpm.2022.101060 PMID: 35636304
- Lee, P.J.; Papachristou, G.I. New insights into acute pancreatitis. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 479-496. doi: 10.1038/s41575-019-0158-2 PMID: 31138897
- Maléth, J.; Hegyi, P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1700), 20150425. doi: 10.1098/rstb.2015.0425 PMID: 27377719
- Biczo, G.; Vegh, E.T.; Shalbueva, N.; Mareninova, O.A.; Elperin, J.; Lotshaw, E.; Gretler, S.; Lugea, A.; Malla, S.R.; Dawson, D.; Ruchala, P.; Whitelegge, J.; French, S.W.; Wen, L.; Husain, S.Z.; Gorelick, F.S.; Hegyi, P.; Rakonczay, Z., Jr; Gukovsky, I.; Gukovskaya, A.S. Mitochondrial dysfunction, through impaired autophagy, leads to endoplasmic reticulum stress, deregulated lipid metabolism, and pancreatitis in animal models. Gastroenterology, 2018, 154(3), 689-703. doi: 10.1053/j.gastro.2017.10.012 PMID: 29074451
- Saluja, A.; Dudeja, V.; Dawra, R.; Sah, R.P. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology, 2019, 156(7), 1979-1993. doi: 10.1053/j.gastro.2019.01.268 PMID: 30776339
- Mukherjee, R.; Mareninova, O.A.; Odinokova, I.V.; Huang, W.; Murphy, J.; Chvanov, M.; Javed, M.A.; Wen, L.; Booth, D.M.; Cane, M.C.; Awais, M.; Gavillet, B.; Pruss, R.M.; Schaller, S.; Molkentin, J.D.; Tepikin, A.V.; Petersen, O.H.; Pandol, S.J.; Gukovsky, I.; Criddle, D.N.; Gukovskaya, A.S.; Sutton, R. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut, 2016, 65(8), 1333-1346. doi: 10.1136/gutjnl-2014-308553 PMID: 26071131
- Habtezion, A.; Gukovskaya, A.S.; Pandol, S.J. Acute pancreatitis: a multifaceted set of organelle and cellular interactions. Gastroenterology, 2019, 156(7), 1941-1950. doi: 10.1053/j.gastro.2018.11.082 PMID: 30660726
- Criddle, D.N.; Gerasimenko, J.V.; Baumgartner, H.K.; Jaffar, M.; Voronina, S.; Sutton, R.; Petersen, O.H.; Gerasimenko, O.V. Calcium signalling and pancreatic cell death: apoptosis or necrosis? Cell Death Differ., 2007, 14(7), 1285-1294. doi: 10.1038/sj.cdd.4402150 PMID: 17431416
- Kaczmarek, A.; Vandenabeele, P.; Krysko, D.V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 2013, 38(2), 209-223. doi: 10.1016/j.immuni.2013.02.003 PMID: 23438821
- Chen, R.; Kang, R.; Fan, X-G.; Tang, D. Release and activity of histone in diseases. Cell Death Dis., 2014, 5(8), e1370. doi: 10.1038/cddis.2014.337 PMID: 25118930
- Sendler, M.; Mayerle, J.; Lerch, M.M. Necrosis, apoptosis, necroptosis, pyroptosis: it matters how acinar cells die during pancreatitis. Cell. Mol. Gastroenterol. Hepatol., 2016, 2(4), 407-408. doi: 10.1016/j.jcmgh.2016.05.007 PMID: 28174728
- Hoque, R.; Sohail, M.; Malik, A.; Sarwar, S.; Luo, Y.; Shah, A.; Barrat, F.; Flavell, R.; Gorelick, F.; Husain, S.; Mehal, W. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology, 2011, 141(1), 358-369. doi: 10.1053/j.gastro.2011.03.041 PMID: 21439959
- Sendler, M.; van den Brandt, C.; Glaubitz, J.; Wilden, A.; Golchert, J.; Weiss, F.U.; Homuth, G.; De Freitas Chama, L.L.; Mishra, N.; Mahajan, U.M.; Bossaller, L.; Völker, U.; Bröker, B.M.; Mayerle, J.; Lerch, M.M. NLRP3 Inflammasome Regulates Development of Systemic Inflammatory Response and Compensatory Anti-Inflammatory Response Syndromes in Mice With Acute Pancreatitis. Gastroenterology, 2020, 158(1), 253-269.e14. doi: 10.1053/j.gastro.2019.09.040 PMID: 31593700
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112. doi: 10.1038/s41577-019-0215-7 PMID: 31558839
- Del Río, J.A.; Fuster, M.D.; Gómez, P.; Porras, I.; García-Lidón, A.; Ortuño, A. Citrus limon: a source of flavonoids of pharmaceutical interest. Food Chem., 2004, 84(3), 457-461. doi: 10.1016/S0308-8146(03)00272-3
- Giuffrè, A.M.; Zappia, C.; Capocasale, M. Physicochemical stability of blood orange juice during frozen storage. Int. J. Food Prop., 2017, 20(S2), 1930-1943.
- Maria, G.A.; Riccardo, N. Citrus bergamia, Risso: the peel, the juice and the seed oil of the bergamot fruit of Reggio Calabria (South Italy). Emir. J. Food Agric., 2020, 32(7), 522-532. doi: 10.9755/ejfa.2020.v32.i7.2128
- Sharma, P. Ruchika; Dhiman, P.; Kumar, R.; Saneja, A.; Singh, D. A solid dispersion of Citrus reticulata peel biowaste as an effective antiepileptic: Sustainable approach toward value addition and agro-industrial waste valorisation. J. Drug Deliv. Sci. Technol., 2023, 81, 104238. doi: 10.1016/j.jddst.2023.104238
- Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A Therapeutic Agent For Obesity. Drug Des. Devel. Ther., 2019, 13, 3855-3866. doi: 10.2147/DDDT.S227499 PMID: 32009777
- Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 613-631. doi: 10.1080/10408398.2014.906382 PMID: 25675136
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules, 2019, 24(3), 648. doi: 10.3390/molecules24030648 PMID: 30759833
- Tejada, S.; Pinya, S.; Martorell, M.; Capó, X.; Tur, J.A.; Pons, A.; Sureda, A. Potential Anti-inflammatory Effects of Hesperidin from the Genus Citrus. Curr. Med. Chem., 2019, 25(37), 4929-4945. doi: 10.2174/0929867324666170718104412 PMID: 28721824
- Wang, S.; He, N.; Xing, H.; Sun, Y.; Ding, J.; Liu, L. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J. Recept. Signal Transduct. Res., 2020, 40(4), 388-394. doi: 10.1080/10799893.2020.1738483 PMID: 32164488
- Liang, G.; Yang, J.; Liu, T.; Wang, S.; Wen, Y.; Han, C.; Huang, Y.; Wang, R.; Wang, Y.; Hu, L.; Wang, G.; Li, F.; Tyndall, J.D.A.; Deng, L.; Du, D.; Xia, Q. A multi-strategy platform for quality control and Q-markers screen of Chaiqin chengqi decoction. Phytomedicine, 2021, 85, 153525. doi: 10.1016/j.phymed.2021.153525 PMID: 33740732
- Aja, P.M.; Izekwe, F.I.; Famurewa, A.C.; Ekpono, E.U.; Nwite, F.E.; Igwenyi, I.O.; Awoke, J.N.; Ani, O.G.; Aloke, C.; Obasi, N.A.; Udeh, K.U.; Ale, B.A. Hesperidin protects against cadmium-induced pancreatitis by modulating insulin secretion, redox imbalance and iNOS/NF-ĸB signaling in rats. Life Sci., 2020, 259, 118268. doi: 10.1016/j.lfs.2020.118268 PMID: 32800830
- Nagashima, S.; Tábara, L.C.; Tilokani, L.; Paupe, V.; Anand, H.; Pogson, J.H.; Zunino, R.; McBride, H.M.; Prudent, J. Golgi-derived PI (4) P-containing vesicles drive late steps of mitochondrial division. Science, 2020, 367(6484), 1366-1371. doi: 10.1126/science.aax6089 PMID: 32193326
- Zhang, X.; Jin, T.; Shi, N.; Yao, L.; Yang, X.; Han, C.; Wen, L.; Du, D.; Szatmary, P.; Mukherjee, R.; Liu, T.; Xia, Q.; Criddle, D.N.; Huang, W.; Chvanov, M.; Sutton, R. Mechanisms of Pancreatic Injury Induced by Basic Amino Acids Differ Between L-Arginine, L-Ornithine, and L-Histidine. Front. Physiol., 2019, 9, 1922. doi: 10.3389/fphys.2018.01922 PMID: 30697165
- Liu, X.; Lu, J.; Liao, Y.; Liu, S.; Chen, Y.; He, R.; Men, L.; Lu, C.; Chen, Z.; Li, S.; Xiong, G.; Yang, S. Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed. Pharmacother., 2019, 117, 109070. doi: 10.1016/j.biopha.2019.109070 PMID: 31176164
- Dawra, R.; Sharif, R.; Phillips, P.; Dudeja, V.; Dhaulakhandi, D.; Saluja, A.K. Development of a new mouse model of acute pancreatitis induced by administration of L -arginine. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292(4), G1009-G1018. doi: 10.1152/ajpgi.00167.2006 PMID: 17170029
- Shen, Y.; Wen, L.; Zhang, R.; Wei, Z.; Shi, N.; Xiong, Q.; Xia, Q.; Xing, Z.; Zeng, Z.; Niu, H.; Huang, W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br. J. Pharmacol., 2018, 175(10), 1621-1636. doi: 10.1111/bph.14169 PMID: 29457828
- Zhang, R.; Wen, L.; Shen, Y.; Shi, N.; Xing, Z.; Xia, Q.; Niu, H.; Huang, W. One compound of saponins from Disocorea zingiberensis protected against experimental acute pancreatitis by preventing mitochondria-mediated necrosis. Sci. Rep., 2016, 6(1), 35965. doi: 10.1038/srep35965 PMID: 27779235
- Chen, W.; Shen, Y.; Li, Z.; Zhang, M.; Lu, C.; Shen, Y. Design and synthesis of 2-phenylnaphthalenoids as inhibitors of DNA topoisomeraseIIα and antitumor agents. Eur. J. Med. Chem., 2014, 86, 782-796. doi: 10.1016/j.ejmech.2014.08.073 PMID: 25240702
- Wang, Y.; Sternfeld, L.; Yang, F.; Rodriguez, J.A.; Ross, C.; Hayden, M.R.; Carriere, F.; Liu, G.; Hofer, W.; Schulz, I. Enhanced susceptibility to pancreatitis in severe hypertriglyceridaemic lipoprotein lipase-deficient mice and agonist-like function of pancreatic lipase in pancreatic cells. Gut, 2009, 58(3), 422-430. doi: 10.1136/gut.2007.146258 PMID: 18936103
- Xiao, J.; Feng, X.; Huang, X.Y.; Huang, Z.; Huang, Y.; Li, C.; Li, G.; Nong, S.; Wu, R.; Huang, Y.; Long, X.D. Spautin-1 Ameliorates Acute Pancreatitis via inhibiting impaired Autophagy and Alleviating Calcium Overload. Mol. Med., 2016, 22(1), 643-652. doi: 10.2119/molmed.2016.00034 PMID: 27579473
- Duan, H.; Zhang, R.; Yuan, L.; Liu, Y.; Asikaer, A.; Liu, Y.; Shen, Y. Exploring the therapeutic mechanisms of Gleditsiae Spina acting on pancreatic cancer via network pharmacology, molecular docking and molecular dynamics simulation. RSC Advances, 2023, 13(20), 13971-13984. doi: 10.1039/D3RA01761C PMID: 37181515
- He, Q.; Zhao, L.; Li, G.; Shen, Y.; Hu, Y.; Wang, Y. The antimicrobial cyclic peptide B2 combats multidrug resistant Acinetobacter baumannii infection. New J. Chem., 2022, 46(14), 6577-6586. doi: 10.1039/D1NJ05353A
- Li, L.; Peng, C.; Wang, Y.; Xiong, C.; Liu, Y.; Wu, C.; Wang, J. Identify promising IKK-β inhibitors: A docking-based 3D-QSAR study combining molecular design and molecular dynamics simulation. Arab. J. Chem., 2022, 15(5), 103786. doi: 10.1016/j.arabjc.2022.103786
- Fu, L.; Chen, Y.; Guo, H.; Xu, L.; Tan, M.; Dong, Y.; Shu, M.; Wang, R.; Lin, Z. A selectivity study of polysubstituted pyridinylimidazoles as dual inhibitors of JNK3 and p38α MAPK based on 3D-QSAR, molecular docking, and molecular dynamics simulation. Struct. Chem., 2021, 32(2), 819-834. doi: 10.1007/s11224-020-01668-9
- Singh, V.K.; Yadav, D.; Garg, P.K. Diagnosis and management of chronic pancreatitis: a review. JAMA, 2019, 322(24), 2422-2434. doi: 10.1001/jama.2019.19411 PMID: 31860051
- Rakonczay, Z., Jr; Hegyi, P.; Dósa, S.; Iványi, B.; Jármay, K.; Biczó, G.; Hracskó, Z.; Varga, I.S.; Karg, E.; Kaszaki, J.; Varró, A.; Lonovics, J.; Boros, I.; Gukovsky, I.; Gukovskaya, A.S.; Pandol, S.J.; Takács, T. A new severe acute necrotizing pancreatitis model induced by l-ornithine in rats. Crit. Care Med., 2008, 36(7), 2117-2127. doi: 10.1097/CCM.0b013e31817d7f5c PMID: 18594222
- Granger, J.; Remick, D. Acute pancreatitis: models, markers, and mediators. Shock, 2005, 24(Suppl. 1), 45-51. doi: 10.1097/01.shk.0000191413.94461.b0 PMID: 16374372
- Khan, G.M.; Li, J.J.; Tenner, S. Association of extent and infection of pancreatic necrosis with organ failure and death in acute necrotizing pancreatitis. Clin. Gastroenterol. Hepatol., 2005, 3(8), 829. doi: 10.1016/S1542-3565(05)00485-4 PMID: 16234014
- Johnson, C.D.; Abu-Hilal, M. Persistent organ failure during the first week as a marker of fatal outcome in acute pancreatitis. Gut, 2004, 53(9), 1340-1344. doi: 10.1136/gut.2004.039883 PMID: 15306596
- Mofidi, R.; Duff, M.D.; Wigmore, S.J.; Madhavan, K.K.; Garden, O.J.; Parks, R.W. Association between early systemic inflammatory response, severity of multiorgan dysfunction and death in acute pancreatitis. Br. J. Surg., 2006, 93(6), 738-744. doi: 10.1002/bjs.5290 PMID: 16671062
- Nassar, T.I.; Qunibi, W.Y. AKI Associated with Acute Pancreatitis. Clin. J. Am. Soc. Nephrol., 2019, 14(7), 1106-1115. doi: 10.2215/CJN.13191118 PMID: 31118209
- Holodinsky, J.K.; Roberts, D.J.; Ball, C.G.; Blaser, A.; Starkopf, J.; Zygun, D.A.; Stelfox, H.; Malbrain, M.L.; Jaeschke, R.C.; Kirkpatrick, A.W. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: a systematic review and meta-analysis. Crit. Care, 2013, 17(5), R249. doi: 10.1186/cc13075 PMID: 24144138
- Song, A.M.; Bhagat, L.; Singh, V.P.; Van Acker, G.G.D.; Steer, M.L.; Saluja, A.K. Inhibition of cyclooxygenase-2 ameliorates the severity of pancreatitis and associated lung injury. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 283(5), G1166-G1174. doi: 10.1152/ajpgi.00370.2001 PMID: 12381531
- Hofbauer, B.; Saluja, A.; Bhatia, M.; Frossard, J.; Lee, H.; Bhagat, L.; Steer, M. Effect of recombinant platelet-activating factor acetylhydrolase on two models of experimental acute pancreatitis. Gastroenterology, 1998, 115(5), 1238-1247. doi: 10.1016/S0016-5085(98)70096-4 PMID: 9797380
- Bhatia, M.; Saluja, A.K.; Hofbauer, B.; Lee, H.S.; Frossard, J.L.; Steer, M.L. The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis-associated lung injury. Int. J. Pancreatol., 1998, 24(2), 77-83. doi: 10.1007/BF02788564 PMID: 9816540
- Párniczky, A.; Kui, B.; Szentesi, A.; Balázs, A.; Szűcs, Á.; Mosztbacher, D.; Czimmer, J.; Sarlós, P.; Bajor, J.; Gódi, S.; Vincze, Á.; Illés, A.; Szabó, I.; Pár, G.; Takács, T.; Czakó, L.; Szepes, Z.; Rakonczay, Z.; Izbéki, F.; Gervain, J.; Halász, A.; Novák, J.; Crai, S.; Hritz, I.; Góg, C.; Sümegi, J.; Golovics, P.; Varga, M.; Bod, B.; Hamvas, J.; Varga-Müller, M.; Papp, Z.; Sahin-Tóth, M.; Hegyi, P. Prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis. PLoS One, 2016, 11(10), e0165309. doi: 10.1371/journal.pone.0165309 PMID: 27798670
- Sathyanarayan, G.; Garg, P.K.; Prasad, H.K.; Tandon, R.K. Elevated level of interleukin-6 predicts organ failure and severe disease in patients with acute pancreatitis. J. Gastroenterol. Hepatol., 2007, 22(4), 550-554. doi: 10.1111/j.1440-1746.2006.04752.x PMID: 17376050
- Ismail, O.Z.; Bhayana, V. Lipase or amylase for the diagnosis of acute pancreatitis? Clin. Biochem., 2017, 50(18), 1275-1280. doi: 10.1016/j.clinbiochem.2017.07.003 PMID: 28720341
- Pyrzynska, K. Hesperidin: A review on extraction methods, stability and biological activities. Nutrients, 2022, 14(12), 2387. doi: 10.3390/nu14122387 PMID: 35745117
- du Preez, B.V.P.; de Beer, D.; Joubert, E. By-product of honeybush (Cyclopia maculata) tea processing as source of hesperidin-enriched nutraceutical extract. Ind. Crops Prod., 2016, 87, 132-141. doi: 10.1016/j.indcrop.2016.04.012
- Chen, G.; Zhang, L.; Zhao, J.; Ye, J. Determination of hesperidin and synephrine in Pericarpium Citri Reticulatae by capillary electrophoresis with electrochemical detection. Anal. Bioanal. Chem., 2002, 373(3), 169-173. doi: 10.1007/s00216-002-1300-4 PMID: 12043020
- Köksoy, F.N.; Yankol, Y.; Oran, E.S.E.N.; Őzkan Gūrdal, S.; Yūksel, M.; Akyildiz Iğdem, A.; Yildirim Yazgan, N.; Soybir, G.R. Preventive effects of enoxaparin and hesperidin in cerulein-induced acute pancreatitis in rats. Turk. J. Gastroenterol., 2013, 24(6), 495-501. doi: 10.4318/tjg.2013.0585 PMID: 24623288
- Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; Quon, M.J. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2011, 96(5), E782-E792. doi: 10.1210/jc.2010-2879 PMID: 21346065
- Borra, M.T.; Smith, B.C.; Denu, J.M. Mechanism of human SIRT1 activation by resveratrol. J. Biol. Chem., 2005, 280(17), 17187-17195. doi: 10.1074/jbc.M501250200 PMID: 15749705
- Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B.; Bemis, J.E.; Xie, R.; Disch, J.S.; Ng, P.Y.; Nunes, J.J.; Lynch, A.V.; Yang, H.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D.A.; Olefsky, J.M.; Jirousek, M.R.; Elliott, P.J.; Westphal, C.H. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature, 2007, 450(7170), 712-716. doi: 10.1038/nature06261 PMID: 18046409
- Tang, B.L. Sirt1's systemic protective roles and its promise as a target in antiaging medicine. Transl. Res., 2011, 157(5), 276-284. doi: 10.1016/j.trsl.2010.11.006 PMID: 21497775
- Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol., 2016, 17(11), 679-690. doi: 10.1038/nrm.2016.93 PMID: 27552971
- Liu, Y.; Sun, Y.; Xue, B.H.; Wang, X.D.; Yu, W.L. Negative Regulation of SIRT1 by IRF9 Involved in Hyperlipidemia Acute Pancreatitis Associated with Kidney Injury. Dig. Dis. Sci., 2021, 66(4), 1063-1071. doi: 10.1007/s10620-020-06331-1 PMID: 32462510
- Bansod, S.; Godugu, C. Nimbolide ameliorates pancreatic inflammation and apoptosis by modulating NF-κB/SIRT1 and apoptosis signaling in acute pancreatitis model. Int. Immunopharmacol., 2021, 90, 107246. doi: 10.1016/j.intimp.2020.107246 PMID: 33310297
- Wang, N.; Zhang, F.; Yang, L.; Zou, J.; Wang, H.; Liu, K.; Liu, M.; Zhang, H.; Xiao, X.; Wang, K. Resveratrol protects against L-arginine-induced acute necrotizing pancreatitis in mice by enhancing SIRT1-mediated deacetylation of p53 and heat shock factor 1. Int. J. Mol. Med., 2017, 40(2), 427-437. doi: 10.3892/ijmm.2017.3012 PMID: 28586010
- Rong, Y.; Ren, J.; Song, W.; Xiang, R.; Ge, Y.; Lu, W.; Fu, T. Resveratrol Suppresses Severe Acute Pancreatitis-Induced Microcirculation Disturbance through Targeting SIRT1-FOXO1 Axis. Oxid. Med. Cell. Longev., 2021, 2021, 1-8. doi: 10.1155/2021/8891544 PMID: 33628394
- Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells, 2016, 39(2), 87-95. doi: 10.14348/molcells.2016.2318 PMID: 26831453
- Aquilano, K.; Baldelli, S.; Pagliei, B.; Cannata, S.M.; Rotilio, G.; Ciriolo, M.R. p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid. Redox Signal., 2013, 18(4), 386-399. doi: 10.1089/ars.2012.4615 PMID: 22861165
- Beyfuss, K.; Hood, D.A. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep., 2018, 23(1), 100-117. doi: 10.1080/13510002.2017.1416773 PMID: 29298131
- Daitoku, H.; Hatta, M.; Matsuzaki, H.; Aratani, S.; Ohshima, T.; Miyagishi, M.; Nakajima, T.; Fukamizu, A. Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10042-10047. doi: 10.1073/pnas.0400593101 PMID: 15220471
- Famurewa, A.C.; Renu, K.; Eladl, M.A.; Chakraborty, R.; Myakala, H.; El-Sherbiny, M.; Elsherbini, D.M.A.; Vellingiri, B.; Madhyastha, H.; Ramesh Wanjari, U.; Goutam Mukherjee, A.; Valsala Gopalakrishnan, A. Hesperidin and hesperetin against heavy metal toxicity: Insight on the molecular mechanism of mitigation. Biomed. Pharmacother., 2022, 149, 112914. doi: 10.1016/j.biopha.2022.112914 PMID: 36068775
Supplementary files
