Potential Antidiabetic Activity of β-sitosterol from Zingiber roseum Rosc. via Modulation of Peroxisome Proliferator-activated Receptor Gamma (PPARγ)


Cite item

Full Text

Abstract

Aim::To evaluate the antidiabetic potential of β-sitosterol from Zingiber roseum.

Background::Diabetes mellitus is a cluster of metabolic disorders, and 90% of diabetic patients are affected with Type II diabetes (DM2). For the treatment of DM2, thiazolidinedione drugs (TZDs) were proposed, but recent studies have shown that TZDs have several detrimental effects, such as weight gain, kidney enlargement (hypertrophy), fluid retention, increased risk of bone fractures, and potential harm to the liver (hepatotoxicity). That is why a new molecule is needed to treat DM2.

Objective::The current research aimed to assess the efficacy of β-Sitosterol from methanolic extract of Zingiber roseum in managing diabetes via PPARγ modulation.

Methods::Zingiber roseum was extracted using methanol, and GC-MS was employed to analyze the extract. Through homology modeling, PPARγ structure was predicted. Molecular docking, MD simulation, free binding energies, QSAR, ADMET, and bioactivity and toxicity scores were all used during the in-depth computer-based research.

Results::Clinically, agonists of synthetic thiazolidinedione (TZDs) have been used therapeutically to treat DM2, but these TZDs are associated with significant risks. Hence, GC-MS identified phytochemicals to search for a new PPAR-γ agonist. Based on the in-silico investigation, β-sitosterol was found to have a higher binding affinity (-8.9 kcal/mol) than standard drugs. MD simulations and MMGBSA analysis also demonstrated that β-sitosterol bound to the PPAR-γ active site stably.

Conclusion::It can be concluded that β-sitosterol from Z. roseum attenuates Type-II diabetes by modulating PPARγ activity.

About the authors

Muhammed Amanat

Pharmacology, Central University of Punjab

Email: info@benthamscience.net

A. F. M. Shahid Daula

Pharmacy, Noakhali Science and Technology University

Email: info@benthamscience.net

Randhir Singh

Pharmacology, Central University of Punjab

Author for correspondence.
Email: info@benthamscience.net

References

  1. Bosch, X.; Alfonso, F.; Bermejo, J. 1. Diabetes y enfermedad cardiovascular. Una mirada hacia la nueva epidemia del siglo XXI. Rev. Esp. Cardiol., 2002, 55(5), 525-527. doi: 10.1016/S0300-8932(02)76645-1 PMID: 12015933
  2. Bermúdez-Pirela, V.J.; Cano, C.; Medina, M.T.; Souki, A.; Lemus, M.A.; Leal, E.M.; Seyfi, H.A.; Cano, R.; Ciscek, A.; Bermúdez-Arias, F.; Contreras, F.; Israili, Z.H.; Hernández-Hernández, R.; Valasco, M. Metformin plus low-dose glimeperide significantly improves Homeostasis Model Assessment for insulin resistance (HOMA(IR)) and β-cell function (HOMA(β-cell)) without hyperinsulinemia in patients with type 2 diabetes mellitus. Am. J. Ther., 2007, 14(2), 194-202. doi: 10.1097/01.pap.0000249909.54047.0e PMID: 17414590
  3. Ahmed, H. A.; Alkali, I. Y. In silico molecular docking studies of some phytochemicals against peroxisome-proliferator activated receptor gamma (PPAR-γ). GSC Biol. Pharm. Sci., 2018, 5(2), 001-005.
  4. Tesauro, M.; Mazzotta, F.A. Pathophysiology of diabetes.Transplantation, bioengineering, and regeneration of the endocrine pancreas; Elsevier, 2020, pp. 37-47. doi: 10.1016/B978-0-12-814833-4.00003-4
  5. Bermúdez, V.; Finol, F.; Parra, N.; Parra, M.; Pérez, A.; Peñaranda, L.; Vílchez, D.; Rojas, J.; Arráiz, N.; Velasco, M. PPAR-γ agonists and their role in type 2 diabetes mellitus management. Am. J. Ther., 2010, 17(3), 274-283. doi: 10.1097/MJT.0b013e3181c08081 PMID: 20216208
  6. Copps, K.D.; White, M.F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10), 2565-2582. doi: 10.1007/s00125-012-2644-8 PMID: 22869320
  7. Dong, X.; Park, S.; Lin, X.; Copps, K.; Yi, X.; White, M.F. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest., 2006, 116(1), 101-114. doi: 10.1172/JCI25735 PMID: 16374520
  8. Kim, H.S.; Noh, J.H.; Hong, S.H.; Hwang, Y.C.; Yang, T.Y.; Lee, M.S.; Kim, K.W.; Lee, M.K. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression. Biochem. Biophys. Res. Commun., 2008, 367(3), 623-629. doi: 10.1016/j.bbrc.2007.12.192 PMID: 18191635
  9. Chung, M.J.; Cho, S.Y.; Bhuiyan, M.J.H.; Kim, K.H.; Lee, S.J. Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. Br. J. Nutr., 2010, 104(2), 180-188. doi: 10.1017/S0007114510001765 PMID: 20487577
  10. Hassani-Nezhad-Gashti, F.; Rysä, J.; Kummu, O.; Näpänkangas, J.; Buler, M.; Karpale, M.; Hukkanen, J.; Hakkola, J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem. Pharmacol., 2018, 148, 253-264. doi: 10.1016/j.bcp.2018.01.001 PMID: 29309761
  11. Cho, Y.M.; Kim, T.H.; Lim, S.; Choi, S.H.; Shin, H.D.; Lee, H.K.; Park, K.S.; Jang, H.C. Type 2 diabetes-associated genetic variants discovered in the recent genome-wide association studies are related to gestational diabetes mellitus in the Korean population. Diabetologia, 2009, 52(2), 253-261. doi: 10.1007/s00125-008-1196-4 PMID: 19002430
  12. Saadi, H.; Nagelkerke, N.; Carruthers, S.G.; Benedict, S.; Abdulkhalek, S.; Reed, R.; Lukic, M.; Nicholls, M.G. Association of TCF7L2 polymorphism with diabetes mellitus, metabolic syndrome, and markers of beta cell function and insulin resistance in a population-based sample of Emirati subjects. Diabetes Res. Clin. Pract., 2008, 80(3), 392-398. doi: 10.1016/j.diabres.2008.01.008 PMID: 18282631
  13. Christodoulides, C.; Vidal-Puig, A. PPARs and adipocyte function. Mol. Cell. Endocrinol., 2010, 318(1-2), 61-68. doi: 10.1016/j.mce.2009.09.014 PMID: 19772894
  14. Wafer, R.; Tandon, P.; Minchin, J.E.N. The role of peroxisome proliferator-activated receptor gamma (PPARG) in adipogenesis: Applying knowledge from the fish aquaculture industry to biomedical research. Front. Endocrinol. (Lausanne), 2017, 8, 102. doi: 10.3389/fendo.2017.00102 PMID: 28588550
  15. Moller, D.E.; Berger, J.P. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int. J. Obes., 2003, 27(S3)(Suppl. 3), S17-S21. doi: 10.1038/sj.ijo.0802494 PMID: 14704738
  16. Ferré, P. The biology of peroxisome proliferator-activated receptors: Relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004, 53(1), S43-S50. doi: 10.2337/diabetes.53.2007.S43 PMID: 14749265
  17. Małodobra-Mazur, M.; Cierzniak, A.; Ryba, M.; Sozański, T.; Piórecki, N.; Kucharska, A.Z. Cornus mas L. Increases glucose uptake and the expression of PPARG in insulin-resistant adipocytes. Nutrients, 2022, 14(11), 2307. doi: 10.3390/nu14112307 PMID: 35684107
  18. Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009, 32(1), 193-203. doi: 10.2337/dc08-9025 PMID: 18945920
  19. Encinar, J.A.; Fernández-Ballester, G.J.; Galiano-Ibarra, V.; Micol-Molina, V. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols. Drug Des. Devel. Ther., 2015, 9, 5877-5895. doi: 10.2147/DDDT.S93449 PMID: 26604687
  20. Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system. Annu. Rev. Nutr., 2001, 21(1), 193-230. doi: 10.1146/annurev.nutr.21.1.193 PMID: 11375435
  21. Brun, R.P.; Tontonoz, P.; Forman, B.M.; Ellis, R.; Chen, J.; Evans, R.M.; Spiegelman, B.M. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev., 1996, 10(8), 974-984. doi: 10.1101/gad.10.8.974 PMID: 8608944
  22. Fox, C.S.; Pencina, M.J.; Meigs, J.B.; Vasan, R.S.; Levitzky, Y.S.; D’Agostino, R.B., Sr Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: The Framingham Heart Study. Circulation, 2006, 113(25), 2914-2918. doi: 10.1161/CIRCULATIONAHA.106.613828 PMID: 16785337
  23. Prabhu, S.; Vijayakumar, S.; Manogar, P.; Maniam, G.P.; Govindan, N. Homology modeling and molecular docking studies on Type II diabetes complications reduced PPARγ receptor with various ligand molecules. Biomed. Pharmacother., 2017, 92, 528-535. doi: 10.1016/j.biopha.2017.05.077 PMID: 28575810
  24. Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53(1), 409-435. doi: 10.1146/annurev.med.53.082901.104018 PMID: 11818483
  25. Willson, T.M.; Lambert, M.H.; Kliewer, S.A. Peroxisome proliferator activated receptor gamma and metabolic disease. Annu. Rev. Biochem., 2001, 70(1), 341-367. doi: 10.1146/annurev.biochem.70.1.341 PMID: 11395411
  26. Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med., 2013, 19(5), 557-566. doi: 10.1038/nm.3159 PMID: 23652116
  27. Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129. doi: 10.1038/nrd4510 PMID: 25614221
  28. Clardy, J.; Walsh, C. Lessons from natural molecules. Nature, 2004, 432(7019), 829-837. doi: 10.1038/nature03194 PMID: 15602548
  29. Amanat, M.; Reza, M.S.; Shuvo, M.S.R.; Ahmed, K.S.; Hossain, H.; Tawhid, M.; Saifuzzaman, M.; Islam, M.S.; Mazumder, T.; Islam, M.A.; Daula, A.F.M.S.U. Zingiber roseum Rosc. rhizome: A rich source of hepatoprotective polyphenols. Biomed. Pharmacother., 2021, 139, 111673. doi: 10.1016/j.biopha.2021.111673 PMID: 33965729
  30. Ganesan, S.; Pandi, N.R.; Banumathy, N. Ethnomedicinal survey of Alagarkoil hills (reserved forest), Tamil nadu, India. J. Indian Med, 2007, 1(1), 18-18.
  31. Padal, S.; Ramakrishna, H.; Devender, R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India. Int. J. Med. Aromat. Plants, 2012, 2(3), 453-459.
  32. Prakash, O.; Kasana, V.K.; Pant, A.K.; Zafar, A.; Hore, S.K.; Mathela, C.S. Phytochemical composition of essential oil from seeds of Zingiber roseum Rosc. and its antispasmodic activity in rat duodenum. J. Ethnopharmacol., 2006, 106(3), 344-347. doi: 10.1016/j.jep.2006.01.016 PMID: 16510259
  33. Williamson, E.M.; Okpako, D.T.; Evans, F.J. Selection. Preparation and Pharmacological Evaluation of Plant Material; John Wiley & Sons, 1996, 1, .
  34. Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem. Heterocycl. Compd., 2014, 50(3), 444-457. doi: 10.1007/s10593-014-1496-1
  35. Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res., 2009, 37(Database)(1), D387-D392. doi: 10.1093/nar/gkn750 PMID: 18931379
  36. Dev Sharma, A. Homology modeling and molecular docking of Natural metabolites from eucalyptus essential oil against SARS-CoV-2 spike protein. Arab. J. Med. Aromat. Plants., 2021, 7(3), 282-303.
  37. Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci., 2018, 27(1), 129-134. doi: 10.1002/pro.3289 PMID: 28875543
  38. Štekláč, M.; Zajaček, D.; Bučinský, L. 3CLpro and PLpro affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found? J. Mol. Struct., 2021, 1245, 130968. doi: 10.1016/j.molstruc.2021.130968 PMID: 34219808
  39. Xie, X.Q.S. Exploiting PubChem for virtual screening. Expert Opin. Drug Discov., 2010, 5(12), 1205-1220. doi: 10.1517/17460441.2010.524924 PMID: 21691435
  40. Vishvakarma, V.K.; Pal, S.; Singh, P.; Bahadur, I. Interactions between main protease of SARS-CoV-2 and testosterone or progesterone using computational approach. J. Mol. Struct., 2022, 1251, 131965. doi: 10.1016/j.molstruc.2021.131965 PMID: 34840349
  41. Sahu, A.; Pradhan, D.; Raza, K.; Qazi, S.; Jain, A.; Verma, S. In silico library design, screening and MD simulation of COX-2 inhibitors for anticancer activity Proceedings of the 12th International Conference, 2020, pp. 21-32.
  42. Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269-6271. doi: 10.1021/j100308a038
  43. Amanat, M.; Daula, A.S.U.; Islam, F. Potential usage of Zerumbone to suppress inflammation: An in silico study. Am. J. Sci. Med. Res., 2022, 8(2), 1-11.
  44. Yang, J.F.; Wang, F.; Chen, Y.Z.; Hao, G.F.; Yang, G.F. LARMD: integration of bioinformatic resources to profile ligand-driven protein dynamics with a case on the activation of estrogen receptor. Brief. Bioinform., 2020, 21(6), 2206-2218. doi: 10.1093/bib/bbz141 PMID: 31799600
  45. Dolinsky, T.J.; Czodrowski, P.; Li, H.; Nielsen, J.E.; Jensen, J.H.; Klebe, G.; Baker, N.A. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 2007, 35(Web Server)(2), W522-W525. doi: 10.1093/nar/gkm276 PMID: 17488841
  46. Raha, K.; Merz, K.M., Jr Large-scale validation of a quantum mechanics based scoring function: Predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J. Med. Chem., 2005, 48(14), 4558-4575. doi: 10.1021/jm048973n PMID: 15999994
  47. Bahar, I.; Lezon, T.R.; Bakan, A.; Shrivastava, I.H. Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem. Rev., 2010, 110(3), 1463-1497. doi: 10.1021/cr900095e PMID: 19785456
  48. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 1997, 78(14), 2690-2693. doi: 10.1103/PhysRevLett.78.2690
  49. Opo, F.A.D.M.; Rahman, M.M.; Ahammad, F.; Ahmed, I.; Bhuiyan, M.A.; Asiri, A.M. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci. Rep., 2021, 11(1), 4049. doi: 10.1038/s41598-021-83626-x PMID: 33603068
  50. Aja, P.M.; Agu, P.C.; Ezeh, E.M.; Awoke, J.N.; Ogwoni, H.A.; Deusdedit, T.; Ekpono, E.U.; Igwenyi, I.O.; Alum, E.U.; Ugwuja, E.I.; Ibiam, A.U.; Afiukwa, C.A.; Adegboyega, A.E. Prospect into therapeutic potentials of Moringa oleifera phytocompounds against cancer upsurge: de novo synthesis of test compounds, molecular docking, and ADMET studies. Bull. Natl. Res. Cent., 2021, 45(1), 99. doi: 10.1186/s42269-021-00554-6
  51. Chan, K.W.; Yu, K.Y.; Yiu, W.H.; Xue, R.; Lok, S.W.; Li, H.; Zou, Y.; Ma, J.; Lai, K.N.; Tang, S.C. Potential therapeutic targets of rehmannia formulations on diabetic nephropathy: A comparative network pharmacology analysis. Front. Pharmacol., 2022, 13, 794139. doi: 10.3389/fphar.2022.794139 PMID: 35387335
  52. Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from verbenaceae species: alternative sources of (E)-caryophyllene and germacrene-D. Quim. Nova, 2011, 34(9), 1550-1555. doi: 10.1590/S0100-40422011000900013
  53. Noge, K.; Becerra, J. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules, 2009, 14(12), 5289-5297. doi: 10.3390/molecules14125289 PMID: 20032892
  54. de Moura, D.F.; Rocha, T.A.; de Melo Barros, D.; da Silva, M.M.; dos Santos Santana, M.; Neta, B.M.; Cavalcanti, I.M.F.; Martins, R.D.; da Silva, M.V. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch. Microbiol., 2021, 203(7), 4303-4311. doi: 10.1007/s00203-021-02377-5 PMID: 34110480
  55. Saito, A.Y.; Marin Rodriguez, A.A.; Menchaca Vega, D.S.; Sussmann, R.A.C.; Kimura, E.A.; Katzin, A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents, 2016, 48(6), 641-646. doi: 10.1016/j.ijantimicag.2016.08.017 PMID: 27742206
  56. Judzentiene, A.; Budiene, J.; Svediene, J.; Garjonyte, R. Toxic, radical scavenging, and antifungal activity of Rhododendron tomentosum H. essential oils. Molecules, 2020, 25(7), 1676. doi: 10.3390/molecules25071676 PMID: 32260539
  57. Collins, T.; Jones, G.; Sadgrove, N. Volatiles from the rare Australian desert plant Prostanthera centralis BJ Conn (Lamiaceae): Chemical composition and antimicrobial activity. Agriculture, 2014, 4(4), 308-316. doi: 10.3390/agriculture4040308
  58. Abd-ElGawad, A.M.; Elshamy, A.I.; Elgorban, A.M.; Hassan, E.M.; Zaghloul, N.S.; Alamery, S.F.; El Gendy, A.E.N.G.; Elhindi, K.M.; EI-Amier, Y.A. Essential oil of ipomoea carnea: Chemical profile, chemometric analysis, free radical scavenging, and antibacterial activities. Sustainabilit, 2022, 14(15), 9504. doi: 10.3390/su14159504
  59. Ferreira, M.G.P.R.; Kayano, A.M.; Silva-Jardim, I.; Silva, T.O.; Zuliani, J.P.; Facundo, V.A.; Calderon, L.A.; Almeida-e-Silva, A.; Ciancaglini, P.; Stábeli, R.G. Antileishmanial activity of 3-(3,4,5-trimethoxyphenyl) propanoic acid purified from Amazonian Piper tuberculatum Jacq., Piperaceae, fruits. Rev. Bras. Farmacogn., 2010, 20(6), 1003-1006. doi: 10.1590/S0102-695X2010005000033
  60. Mokale, S.N.; Shinde, S.S.; Elgire, R.D.; Sangshetti, J.N.; Shinde, D.B. Synthesis and anti-inflammatory activity of some 3-(4,6-disubtituted-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) propanoic acid derivatives. Bioorg. Med. Chem. Lett., 2010, 20(15), 4424-4426. doi: 10.1016/j.bmcl.2010.06.058 PMID: 20594837
  61. Tesfay, D.; Endale, M.; Getaneh, E.; Abdisa, E.; Guta, L.; Melaku, Y. Chemical composition and antibacterial activity of essential oils from various parts of Gladiolus candidus, Ranunculus multifidus, Artemisia abyssinica and Crinum abyscinicum. Bull. Chem. Soc. Ethiop., 2022, 36(4), 865-878. doi: 10.4314/bcse.v36i4.12
  62. do Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; Vieira, M.C.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; Formagio, A.S.N. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol., 2018, 210, 351-358. doi: 10.1016/j.jep.2017.08.030 PMID: 28844678
  63. Costa, I.F.J.B.; Simão, T.L.B.V.; Calixto, S.D.; Pereira, R.V.; Konno, T.U.P.; Pinto, S.C.; Tinoco, L.W.; Lasunskaia, E.; Leal, I.C.R.; Muzitano, M.F. Anti-mycobacterial and immunomodulatory activity of n-hexane fraction and spathulenol from Ocotea notata leaves. Rodriguésia, 2021, 72, e01162019. doi: 10.1590/2175-7860202172041
  64. Nirmal, S.A.; Pal, S.C.; Mandal, S.C.; Patil, A.N. Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthes arbortristis leaves. Inflammopharmacology, 2012, 20(4), 219-224. doi: 10.1007/s10787-011-0110-8 PMID: 22207496
  65. Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702. doi: 10.1016/j.biopha.2020.110702 PMID: 32882583
  66. Sen, A.; Dhavan, P.; Shukla, K.K.; Singh, S.; Tejovathi, G. Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia. Sci. Secure J. Biotechnol., 2012, 1(1), 9-13.
  67. Vivancos, M.; Moreno, J.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med., 2005, 39(1), 91-97. doi: 10.1016/j.freeradbiomed.2005.02.025 PMID: 15925281
  68. Saeidnia, S.; Manayi, A.; Gohari, A.R.; Abdollahi, M.J.E. The story of beta-sitosterol-a review. European J. Med. Plants, 2014, 4(5), 590-609. doi: 10.9734/EJMP/2014/7764
  69. Wald, G. Molecular basis of visual excitation. Science, 1968, 162(3850), 230-239. doi: 10.1126/science.162.3850.230 PMID: 4877437
  70. Sorg, O.; Didierjean, L.; Saurat, J.H. Metabolism of topical retinaldehyde. Dermatology, 1999, 199(1), 13-17. doi: 10.1159/000051372 PMID: 10473954
  71. Sorg, O.; Kasraee, B.; Salomon, D.; Saurat, J.H. The potential depigmenting activity of retinaldehyde. Dermatology, 2013, 227(3), 231-237. doi: 10.1159/000354294 PMID: 24080511
  72. Islam, F.; Islam, M.S.; Ahmed, K.; Amanat, M. Unveiling the Anthelminthic Potential of Merremia vitifolia Stem through in Vitro and in Silico Approach. Chem. Biodivers., 2023, 20(10), e202300860. doi: 10.1002/cbdv.202300860 PMID: 37715726
  73. Konappa, N.; Udayashankar, A.C.; Krishnamurthy, S.; Pradeep, C.K.; Chowdappa, S.; Jogaiah, S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci. Rep., 2020, 10(1), 16438. doi: 10.1038/s41598-020-73442-0 PMID: 33009462
  74. Vijayakumar, S.; Manogar, P.; Prabhu, S. Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria. Biomed. Pharmacother., 2016, 83, 362-371. doi: 10.1016/j.biopha.2016.06.052 PMID: 27416557
  75. Jamroz, M.; Kolinski, A.; Kmiecik, S. CABS-flex predictions of protein flexibility compared with NMR ensembles. Bioinformatics, 2014, 30(15), 2150-2154. doi: 10.1093/bioinformatics/btu184 PMID: 24735558
  76. Gorai, S.; Junghare, V.; Kundu, K.; Gharui, S.; Kumar, M.; Patro, B.S.; Nayak, S.K.; Hazra, S.; Mula, S. Synthesis of Dihydrobenzofuro3,2‐bchromenes as Potential 3CLpro Inhibitors of SARS‐CoV‐2: A Molecular Docking and Molecular Dynamics Study. ChemMedChem, 2022, 17(8), e202100782. doi: 10.1002/cmdc.202100782 PMID: 35112482
  77. Mazumder, T.; Hasan, T.; Ahmed, K.S.; Hossain, H.; Debnath, T.; Jahan, E.; Rahman, N.; Rahman Shuvo, M.S.; Daula, A.F.M.S.U. Phenolic compounds and extracts from Crotalaria calycina Schrank potentially alleviate pain and inflammation through inhibition of cyclooxygenase-2: An in vivo and molecular dynamics studies. Heliyon, 2022, 8(12), e12368. doi: 10.1016/j.heliyon.2022.e12368 PMID: 36590510
  78. Mir, S.; Dash, G.C.; Chopdar, K.S.; Mohanta, P.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. Molecular modeling of novel fluorophoric thiazolo-2, 3-B quinazolinones to study epidermal growth factor receptor tyrosine kinase inhibition potency. ChemRxiv, 2021. doi: 10.26434/chemrxiv.14174282.v1
  79. Mir, S.A.; Dash, G.C.; Meher, R.K.; Mohanta, P.P.; Chopdar, K.S.; Mohapatra, P.K.; Baitharu, I.; Behera, A.K.; Raval, M.K.; Nayak, B. Biotechnology, In Silico and In Vitro evaluations of fluorophoric thiazolo-2,3-b quinazolinones as anti-cancer agents targeting EGFR-TKD. Appl. Biochem. Biotechnol., 2022, 1-27.
  80. Kazius, J.; McGuire, R.; Bursi, R. Derivation and validation of toxicophores for mutagenicity prediction. J. Med. Chem., 2005, 48(1), 312-320. doi: 10.1021/jm040835a PMID: 15634026
  81. El Kerdawy, A.M.; Osman, A.A.; Zaater, M. Receptor based pharmacophore modeling, virtual screening, and molecular docking studies for the discovery of novel GSK-3β inhibitors. J. Med. Chem., 2019, 25, 1-21.
  82. Sunkara, M.S.; Kuchana, V.; Sree, J.P.; Prabugari, R.; Pilli, A.; Irum, F.; Tangeda, S.J.; Bhowmik, D. Pharmacophore based virtual screening & molecular docking studies on selected plant constituents of Plantago major. J. Appl. Pharm. Sci., 2023, 13(4), 157-167.
  83. Nisha, C. M.; Kumar, A.; Nair, P.; Gupta, N.; Silakari, C.; Tripathi, T.; Kumar, A. Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β-secretase. Adv. Bioinform., 2016, 2016

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers