Disulfidptosis-related Protein RPN1 may be a Novel Anti-osteoporosis Target of Kaempferol
- Autores: Pan C.1, Zhang C.1, Lin Z.1, Liang Z.2, Cui Y.1, Shang Z.3, Wei Y.1, Chen F.1
-
Afiliações:
- , Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
- , Yulin Orthopedic Hospital of Integrated Traditional Chinese and Western Medicine
- , Nanjing University of Chinese Medicine
- Edição: Volume 27, Nº 11 (2024)
- Páginas: 1611-1628
- Seção: Chemistry
- URL: https://rjeid.com/1386-2073/article/view/643894
- DOI: https://doi.org/10.2174/0113862073273655231213070619
- ID: 643894
Citar
Texto integral
Resumo
Background:Osteoporosis (OP) is an age-related skeletal disease. Kaempferol can regulate bone mesenchymal stem cells (BMSCs) osteogenesis to improve OP, but its mechanism related to disulfidptosis, a newly discovered cell death mechanism, remains unclear.
Objective:The study aimed to investigate the biological function and immune mechanism of disulfidptosis- related ribophorin I (RPN1) in OP and to experimentally confirm that RPN1 is the target for the treatment of OP with kaempferol.
Methods:Differential expression analysis was conducted on disulfide-related genes extracted from the GSE56815 and GSE7158 datasets. Four machine learning algorithms identified disease signature genes, with RPN1 identified as a significant risk factor for OP through the nomogram. Validation of RPN1 differential expression in OP patients was performed using the GSE56116 dataset. The impact of RPN1 on immune alterations and biological processes was explored. Predictive ceRNA regulatory networks associated with RPN1 were generated via miRanda, miRDB, and TargetScan databases. Molecular docking estimated the binding model between kaempferol and RPN1. The targeting mechanism of kaempferol on RPN1 was confirmed through pathological HE staining and immunohistochemistry in ovariectomized (OVX) rats.
Results:RPN1 was abnormally overexpressed in the OP cohort, associated with TNF signaling, hematopoietic cell lineage, and NF-kappa B pathway. Immune infiltration analysis showed a positive correlation between RPN1 expression and CD8+ T cells and resting NK cells, while a negative correlation with CD4+ naive T cells, macrophage M1, T cell gamma delta, T cell follicular helper cells, activated mast cells, NK cells, and dendritic cells, was found. Four miRNAs and 17 lncRNAs associated with RPN1 were identified. Kaempferol exhibited high binding affinity (-7.2 kcal/mol) and good stability towards the RPN1. The experimental results verified that kaempferol could improve bone microstructure destruction and reverse the abnormally high expression of RPN1 in the femur of ovariectomized rats.
Conclusion:RPN1 may be a new diagnostic biomarker in patients with OP, and may serve as a new target for kaempferol to improve OP.
Palavras-chave
Sobre autores
Chengzhen Pan
, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Chi Zhang
, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Zonghan Lin
, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Zhou Liang
, Yulin Orthopedic Hospital of Integrated Traditional Chinese and Western Medicine
Email: info@benthamscience.net
Yinhang Cui
, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Zhihao Shang
, Nanjing University of Chinese Medicine
Email: info@benthamscience.net
Yuanxun Wei
, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
Email: info@benthamscience.net
Feng Chen
, Ruikang Hospital Affiliated with Guangxi University of Chinese Medicine
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Iolascon, G.; de SIRE, A.; Curci, C.; Paoletta, M.; Liguori, S.; Calafiore, D.; Gimigliano, F.; Moretti, A. Osteoporosis guidelines from a rehabilitation perspective: systematic analysis and quality appraisal using AGREE II. Eur. J. Phys. Rehabil. Med., 2021, 57(2), 273-279. doi: 10.23736/S1973-9087.21.06581-3 PMID: 33650841
- Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci., 2020, 21(20), 7623. doi: 10.3390/ijms21207623 PMID: 33076329
- Zou, Z.; Liu, W.; Cao, L.; Liu, Y.; He, T.; Peng, S.; Shuai, C. Advances in the occurrence and biotherapy of osteoporosis. Biochem. Soc. Trans., 2020, 48(4), 1623-1636. doi: 10.1042/BST20200005 PMID: 32627832
- Reid, I.R. A broader strategy for osteoporosis interventions. Nat. Rev. Endocrinol., 2020, 16(6), 333-339. doi: 10.1038/s41574-020-0339-7 PMID: 32203407
- Shen, Y.; Huang, X.; Wu, J.; Lin, X.; Zhou, X.; Zhu, Z.; Pan, X.; Xu, J.; Qiao, J.; Zhang, T.; Ye, L.; Jiang, H.; Ren, Y.; Shan, P.F. The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990-2019. Front. Endocrinol., 2022, 13, 882241. doi: 10.3389/fendo.2022.882241 PMID: 35669691
- Shen, L.; Luo, K.; Deng, X.; Liu, J.; Yuan, W.Q.; Sun, C.G.; Zhang, Z.S.; Wei, C.; Wang, J.X.; Cummings, S.R.; Xia, W.B.; Wang, S.F.; Zhan, S.Y.; Song, C.L. A commentary on Incidence and cost of vertebral fracture in urban China: A five-year population-based cohort study. Int. J. Surg., 2023, 109(10), 3203-3204. doi: 10.1097/JS9.0000000000000583 PMID: 37418569
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull., 2020, 133(1), ldaa005. doi: 10.1093/bmb/ldaa005 PMID: 32282039
- Yu, F.; Xia, W. The epidemiology of osteoporosis, associated fragility fractures, and management gap in China. Arch. Osteoporos., 2019, 14(1), 32. doi: 10.1007/s11657-018-0549-y PMID: 30848398
- Li, N.; Zheng, B.; Liu, M.; Zhou, H.; Zhao, L.; Cai, H.; Huang, J. Cost-effectiveness of antiosteoporosis strategies for postmenopausal women with osteoporosis in China. Menopause, 2019, 26(8), 906-914. doi: 10.1097/GME.0000000000001339 PMID: 30994577
- Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules, 2020, 25(18), 4073. doi: 10.3390/molecules25184073 PMID: 32906577
- Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J. Funct. Foods, 2017, 30, 203-219. doi: 10.1016/j.jff.2017.01.022 PMID: 32288791
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases (Review). Exp. Ther. Med., 2019, 18(4), 2759-2776. doi: 10.3892/etm.2019.7886 PMID: 31572524
- Huang, A.Y.; Xiong, Z.; Liu, K.; Chang, Y.; Shu, L.; Gao, G.; Zhang, C. Identification of kaempferol as an OSX upregulator by network pharmacology-based analysis of qianggu Capsule for osteoporosis. Front. Pharmacol., 2022, 13, 1011561. doi: 10.3389/fphar.2022.1011561 PMID: 36210811
- Gan, L.; Leng, Y.; Min, J.; Luo, X.M.; Wang, F.; Zhao, J. Kaempferol promotes the osteogenesis in rBMSCs via mediation of SOX2/miR-124-3p/PI3K/Akt/mTOR axis. Eur. J. Pharmacol., 2022, 927, 174954. doi: 10.1016/j.ejphar.2022.174954 PMID: 35421359
- Mistry, R.K.; Brewer, A.C. Redox-Dependent Regulation of Sulfur Metabolism in Biomolecules: Implications for Cardiovascular Health. Antioxid. Redox Signal., 2019, 30(7), 972-991. doi: 10.1089/ars.2017.7224 PMID: 28661184
- Liu, X.; Nie, L.; Zhang, Y.; Yan, Y.; Wang, C.; Colic, M.; Olszewski, K.; Horbath, A.; Chen, X.; Lei, G.; Mao, C.; Wu, S.; Zhuang, L.; Poyurovsky, M.V.; James You, M.; Hart, T.; Billadeau, D.D.; Chen, J.; Gan, B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat. Cell Biol., 2023, 25(3), 404-414. doi: 10.1038/s41556-023-01091-2 PMID: 36747082
- Law, M.E.; Yaaghubi, E.; Ghilardi, A.F.; Davis, B.J.; Ferreira, R.B.; Koh, J.; Chen, S.; DePeter, S.F.; Schilson, C.M.; Chiang, C.W.; Heldermon, C.D.; Nørgaard, P.; Castellano, R.K.; Law, B.K. Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Lett., 2022, 534, 215604. doi: 10.1016/j.canlet.2022.215604 PMID: 35247515
- Nakajima, K.; Ono, M.; Radović, U.; Dizdarević, S.; Tomizawa, S.I.; Kuroha, K.; Nagamatsu, G.; Hoshi, I.; Matsunaga, R.; Shirakawa, T.; Kurosawa, T.; Miyazaki, Y.; Seki, M.; Suzuki, Y.; Koseki, H.; Nakamura, M.; Suda, T.; Ohbo, K. Lack of whey acidic protein (WAP) four-disulfide core domain protease inhibitor 2 (WFDC2) causes neonatal death from respiratory failure in mice. Dis. Model. Mech., 2019, 12(11), dmm040139. doi: 10.1242/dmm.040139 PMID: 31562139
- Zhong, Z.X.; Li, X.Z.; Liu, J.T.; Qin, N.; Duan, H.Q.; Duan, X.C. Disulfide bond-based sn38 prodrug nanoassemblies with high drug loading and reduction-triggered drug release for pancreatic cancer therapy. Int. J. Nanomedicine, 2023, 18, 1281-1298. doi: 10.2147/IJN.S404848 PMID: 36945256
- Toro-Domínguez, D.; Martorell-Marugán, J.; López-Domínguez, R.; García-Moreno, A.; González-Rumayor, V.; Alarcón-Riquelme, M.E.; Carmona-Sáez, P. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics, 2019, 35(5), 880-882. doi: 10.1093/bioinformatics/bty721 PMID: 30137226
- Halyo, V.; Martin, L. Martin L. Perl (19272014). Nature, 2014, 516(7531), 330. doi: 10.1038/516330a PMID: 25519123
- Jia, L.; Yao, W.; Jiang, Y.; Li, Y.; Wang, Z.; Li, H.; Huang, F.; Li, J.; Chen, T.; Zhang, H. Development of interactive biological web applications with R/Shiny. Brief. Bioinform., 2022, 23(1), bbab415. doi: 10.1093/bib/bbab415 PMID: 34642739
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
- Zhang, H.; Meltzer, P.; Davis, S. RCircos: An R package for Circos 2D track plots. BMC Bioinformatics, 2013, 14(1), 244. doi: 10.1186/1471-2105-14-244 PMID: 23937229
- Beck, M.W. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. J. Stat. Softw., 2018, 85(11), 1-20. doi: 10.18637/jss.v085.i11 PMID: 30505247
- Buckley, S.J.; Harvey, R.J. Lessons learnt from using the machine learning random forest algorithm to predict virulence in streptococcus pyogenes. Front. Cell. Infect. Microbiol., 2021, 11, 809560. doi: 10.3389/fcimb.2021.809560 PMID: 35004362
- Naqvi, A.A.T.; Rizvi, S.A.M.; Hassan, M.I. Pan-cancer analysis of Chromobox (CBX) genes for prognostic significance and cancer classification. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(1), 166561. doi: 10.1016/j.bbadis.2022.166561 PMID: 36183965
- Satake, H.; Osugi, T.; Shiraishi, A. Impact of machine learning-associated research strategies on the identification of peptide-receptor interactions in the post-omics era. Neuroendocrinology, 2023, 113(2), 251-261. doi: 10.1159/000518572 PMID: 34348315
- Altamimi, A.S.; El-Azab, A.S.; Abdelhamid, S.G.; Alamri, M.A.; Bayoumi, A.H.; Alqahtani, S.M.; Alabbas, A.B.; Altharawi, A.I.; Alossaimi, M.A.; Mohamed, M.A. Synthesis, anticancer screening of some novel trimethoxy quinazolines and vegfr2, egfr tyrosine kinase inhibitors assay; molecular docking studies. Molecules, 2021, 26(10), 2992. doi: 10.3390/molecules26102992 PMID: 34069962
- Mahdy, N.E.; Abdel-Baki, P.M.; El-Rashedy, A.A.; Ibrahim, R.M. Modulatory effect of pyrus pyrifolia fruit and its phenolics on key enzymes against metabolic syndrome: bioassay-guided approach, hplc analysis, and in silico study. Plant Foods Hum. Nutr., 2023, 78(2), 383-389. doi: 10.1007/s11130-023-01069-3 PMID: 37219720
- Pereira, S.V.; Colombo, F.B.; de Freitas, L.A.P. Ultrasound influence on the solubility of solid dispersions prepared for a poorly soluble drug. Ultrason. Sonochem., 2016, 29, 461-469. doi: 10.1016/j.ultsonch.2015.10.022 PMID: 26548840
- Shi, Y.; Chen, X.; Elsasser, S.; Stocks, B.B.; Tian, G.; Lee, B.H.; Shi, Y.; Zhang, N.; de Poot, S.A.H.; Tuebing, F.; Sun, S.; Vannoy, J.; Tarasov, S.G.; Engen, J.R.; Finley, D.; Walters, K.J. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science, 2016, 351(6275), aad9421. doi: 10.1126/science.aad9421 PMID: 26912900
- Cunchillos, C.; Lecointre, G. Early steps of metabolism evolution inferred by cladistic analysis of amino acid catabolic pathways. C. R. Biol., 2002, 325(2), 119-129. doi: 10.1016/S1631-0691(02)01411-7 PMID: 11980173
- Ning, K.; Liu, S.; Yang, B.; Wang, R.; Man, G.; Wang, D.; Xu, H. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol. Metab., 2022, 58, 101450. doi: 10.1016/j.molmet.2022.101450 PMID: 35121170
- Wilson, C.M.; High, S. Ribophorin I acts as a substrate-specific facilitator of N-glycosylation. J. Cell Sci., 2007, 120(4), 648-657. doi: 10.1242/jcs.000729 PMID: 17264154
- Ding, J.; Xu, J.; Deng, Q.; Ma, W.; Zhang, R.; He, X.; Liu, S.; Zhang, L. Knockdown of oligosaccharyltransferase subunit ribophorin 1 induces endoplasmic-reticulum-stress-dependent cell apoptosis in breast cancer. Front. Oncol., 2021, 11, 722624. doi: 10.3389/fonc.2021.722624 PMID: 34778038
- Cheray, M.; Bessette, B.; Lacroix, A.; Mélin, C.; Jawhari, S.; Pinet, S.; Deluche, E.; Clavère, P.; Durand, K.; Sanchez-Prieto, R.; Jauberteau, M.O.; Battu, S.; Lalloué, F. KLRC 3, a Natural Killer receptor gene, is a key factor involved in glioblastoma tumourigenesis and aggressiveness. J. Cell. Mol. Med., 2017, 21(2), 244-253. doi: 10.1111/jcmm.12960 PMID: 27641066
- Gokturk, B.; Keles, S.; Kirac, M.; Artac, H.; Tokgoz, H.; Guner, S.N.; Caliskan, U.; Caliskaner, Z.; van der Burg, M.; van Dongen, J.; Morgan, N.V.; Reisli, I. CD3G gene defects in familial autoimmune thyroiditis. Scand. J. Immunol., 2014, 80(5), 354-361. doi: 10.1111/sji.12200 PMID: 24910257
- Okamoto, K.; Takayanagi, H. Effect of T cells on bone. Bone, 2023, 168, 116675. doi: 10.1016/j.bone.2023.116675 PMID: 36638904
- Soysa, N.S.; Alles, N. The role of IL‐3 in bone. J. Cell. Biochem., 2019, 120(5), 6851-6859. doi: 10.1002/jcb.27956 PMID: 30320936
- Griffith, J.F.; Yeung, D.K.W.; Ahuja, A.T.; Choy, C.W.Y.; Mei, W.Y.; Lam, S.S.L.; Lam, T.P.; Chen, Z.Y.; Leung, P.C. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone, 2009, 44(6), 1092-1096. doi: 10.1016/j.bone.2009.02.022 PMID: 19268721
- Lundberg, P.; Boström, I.; Mukohyama, H.; Bjurholm, A.; Smans, K.; Lerner, U.H. Neuro-hormonal control of bone metabolism. Regul. Pept., 1999, 85(1), 47-58. doi: 10.1016/S0167-0115(99)00069-5 PMID: 10588449
- Zhang, W.; Gao, R.; Rong, X.; Zhu, S.; Cui, Y.; Liu, H.; Li, M. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Front. Endocrinol., 2022, 13, 965258. doi: 10.3389/fendo.2022.965258 PMID: 36147571
- Yao, Z.; Getting, S.J.; Locke, I.C. Regulation of TNF-Induced osteoclast differentiation. Cells, 2021, 11(1), 132. doi: 10.3390/cells11010132 PMID: 35011694
- Zha, L.; He, L.; Liang, Y.; Qin, H.; Yu, B.; Chang, L.; Xue, L. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomed. Pharmacother., 2018, 102, 369-374. doi: 10.1016/j.biopha.2018.03.080 PMID: 29571022
- Rachner, T.D.; Link-Rachner, C.S.; Bornhäuser, M.; Hofbauer, L.C. Skeletal health in patients following allogeneic hematopoietic cell transplantation. Bone, 2022, 158, 115684. doi: 10.1016/j.bone.2020.115684 PMID: 33049368
- Capece, D.; Verzella, D.; Flati, I.; Arboretto, P.; Cornice, J.; Franzoso, G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol., 2022, 43(9), 757-775. doi: 10.1016/j.it.2022.07.004 PMID: 35965153
- Mishra, R. Sehring, I.; Cederlund, M.; Mulaw, M.; Weidinger, G. NF-κB Signaling Negatively Regulates Osteoblast Dedifferentiation during Zebrafish Bone Regeneration. Dev. Cell, 2020, 52(2), 167-182.e7. doi: 10.1016/j.devcel.2019.11.016 PMID: 31866203
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol., 2010, 28(1), 445-489. doi: 10.1146/annurev-immunol-030409-101212 PMID: 20192806
- Hori, S.; Nomura, T.; Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, 299(5609), 1057-1061. doi: 10.1126/science.1079490 PMID: 12522256
- Martín-Fontecha, A.; Thomsen, L.L.; Brett, S.; Gerard, C.; Lipp, M.; Lanzavecchia, A.; Sallusto, F. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol., 2004, 5(12), 1260-1265. doi: 10.1038/ni1138 PMID: 15531883
- Murphy, K.M.; Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol., 2002, 2(12), 933-944. doi: 10.1038/nri954 PMID: 12461566
- Sato, K.; Suematsu, A.; Okamoto, K.; Yamaguchi, A.; Morishita, Y.; Kadono, Y.; Tanaka, S.; Kodama, T.; Akira, S.; Iwakura, Y.; Cua, D.J.; Takayanagi, H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med., 2006, 203(12), 2673-2682. doi: 10.1084/jem.20061775 PMID: 17088434
- Dar, H.Y.; Shukla, P.; Mishra, P.K.; Anupam, R.; Mondal, R.K.; Tomar, G.B.; Sharma, V.; Srivastava, R.K. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance. Bone Rep., 2018, 8, 46-56. doi: 10.1016/j.bonr.2018.02.001 PMID: 29955622
- Dar, H.Y.; Singh, A.; Shukla, P.; Anupam, R.; Mondal, R.K.; Mishra, P.K.; Srivastava, R.K. High dietary salt intake correlates with modulated Th17-Treg cell balance resulting in enhanced bone loss and impaired bone-microarchitecture in male mice. Sci. Rep., 2018, 8(1), 2503. doi: 10.1038/s41598-018-20896-y PMID: 29410520
- Zaiss, M.M.; Axmann, R.; Zwerina, J.; Polzer, K.; Gückel, E.; Skapenko, A.; Schulze-Koops, H.; Horwood, N.; Cope, A.; Schett, G. Treg cells suppress osteoclast formation: A new link between the immune system and bone. Arthritis Rheum., 2007, 56(12), 4104-4112. doi: 10.1002/art.23138 PMID: 18050211
- Shashkova, E.V.; Trivedi, J.; Cline-Smith, A.B.; Ferris, C.; Buchwald, Z.S.; Gibbs, J.; Novack, D.; Aurora, R. Osteoclast-Primed Foxp3+ CD8 T Cells Induce T-bet, Eomesodermin, and IFN-γ To Regulate Bone Resorption. J. Immunol., 2016, 197(3), 726-735. doi: 10.4049/jimmunol.1600253 PMID: 27324129
- Peng, C.; Guo, Z.; Zhao, Y.; Li, R.; Wang, L.; Gong, W. Effect of lymphocyte subsets on bone density in senile osteoporosis: A retrospective study. J. Immunol. Res., 2022, 2022, 1-11. doi: 10.1155/2022/3337622 PMID: 36339939
- Xue, X.; Zhao, X.; Wang, J.; Wang, C.; Ma, C.; Zhang, Y.; Li, Y.; Peng, C. Carthami flos extract against carbon tetrachloride-induced liver fibrosis via alleviating angiogenesis in mice. Phytomedicine, 2023, 108, 154517. doi: 10.1016/j.phymed.2022.154517
- Najar, M.; Fayyad-Kazan, M.; Meuleman, N.; Bron, D.; Fayyad-Kazan, H.; Lagneaux, L. Mesenchymal stromal cells of the bone marrow and natural killer cells: Cell interactions and cross modulation. J. Cell Commun. Signal., 2018, 12(4), 673-688. doi: 10.1007/s12079-018-0448-4 PMID: 29350342
- Najar, M.; Fayyad-Kazan, M.; Meuleman, N.; Bron, D.; Fayyad-Kazan, H.; Lagneaux, L. Immunomodulatory effects of foreskin mesenchymal stromal cells on natural killer cells. J. Cell. Physiol., 2018, 233(7), 5243-5254. doi: 10.1002/jcp.26305 PMID: 29194614
- Bondeson, J.; Blom, A.B.; Wainwright, S.; Hughes, C.; Caterson, B.; van den Berg, W.B. The role of synovial macrophages and macrophage‐produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum., 2010, 62(3), 647-657. doi: 10.1002/art.27290 PMID: 20187160
- Li, C.J.; Xiao, Y.; Yang, M.; Su, T.; Sun, X.; Guo, Q.; Huang, Y.; Luo, X.H. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J. Clin. Invest., 2018, 128(12), 5251-5266. doi: 10.1172/JCI99044 PMID: 30352426
- Nicolaidou, V.; Wong, M.M.; Redpath, A.N.; Ersek, A.; Baban, D.F.; Williams, L.M.; Cope, A.P.; Horwood, N.J. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One, 2012, 7(7), e39871. doi: 10.1371/journal.pone.0039871 PMID: 22802946
- Zhang, L.; Liu, T.; Chen, H.; Zhao, Q.; Liu, H. Predicting lncRNAmiRNA interactions based on interactome network and graphlet interaction. Genomics, 2021, 113(3), 874-880. doi: 10.1016/j.ygeno.2021.02.002 PMID: 33588070
- Chen, X.; Xie, D.; Zhao, Q.; You, Z.H. MicroRNAs and complex diseases: From experimental results to computational models. Brief. Bioinform., 2019, 20(2), 515-539. doi: 10.1093/bib/bbx130 PMID: 29045685
Arquivos suplementares
