Preparation and Characterization of Nanostructured Lipid Carriers (NLCs) Containing Glycyrrhiza glabra Extract for the Treatment of Skin Hyperpigmentation


Cite item

Full Text

Abstract

Purpose:This study aimed to prepare, characterize, and in vitro and in vivo evaluate a novel nanostructured lipid carriers (NLCs) formulation containing two fractions of Glycyrrhiza glabra L. (licorice) extract for the treatment of hyperpigmentation.

Methods:Two fractions, one enriched with glabridin (FEG) and the other enriched with liquiritin (FEL), were obtained by partitioning the methanol (MeOH) extract of licorice roots with ethyl acetate (EtOAc) and partitioning the EtOAc fraction with butanol (n-BuOH) and water. The quantities of glabridin (Glab) and liquiritin (LQ) in the fractions were determined by high-performance liquid chromatography (HPLC). FEG and FEL were loaded in different NLC formulations, and surface characterization and long-term stability were studied using Dynamic Light Scattering (DLS). The best formulation was chosen for further surface characterization, including Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), and Fouriertransform infrared (FTIR) spectroscopy. Moreover, entrapment efficiency percentage (EE%), in vitro drug release, in vivo skin penetration, cytotoxicity on B16F10 melanoma cells, effect on melanin production, and anti- tyrosinase activity were tested for the selected formulation.

Results:Based on HPLC results, FEG contained 34.501 mg/g of Glab, and FEL contained 31.714 mg/g of LQ. Among 20 different formulations, NLC 20 (LG-NLCs) showed desirable DLS results with a Z-average size of 185.3 ± 1.08 nm, polydispersity index (PDI) of 0.229 ± 0.35, and zeta potential of -16.2 ± 1.13 mV. It indicated good spherical shape, high EE% (79.01% for Glab and 69.27% for LQ), two-stage release pattern (an initial burst release followed by sustained release), efficient in vivo skin penetration, and strong anti-tyrosinase activity. LG-NLCs had acceptable physiochemical stability for up to 9 months and were non-cytotoxic.

Conclusion:The LG-NLC formulation has revealed desirable surface characterization, good physiochemical stability, efficient drug release pattern and in vivo penetration, and high EE%. Therefore, it can be a suitable nanosystem for the delivery of licorice extract in the treatment of hyperpigmentation.

About the authors

Afsaneh Hoseinsalari

Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Hoda Atapour-Mashhad

Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Javad Asili

Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Zahra Tayarani-Najaran

Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Leila Mohtashami

Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Mahnaz Khanavi

Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Mahdi Vazirian

Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Hamid Akbari Javar

Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Somayeh Niknam

Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences

Email: info@benthamscience.net

Shiva Golmohammadzadeh

Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Mohammad Reza Ardekani

Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Netcharoensirisuk P, Umehara K, De-Eknamkul W, Chaotham C. Cajanin suppresses melanin synthesis through modulating mitf in human melanin-producing cells. Molecules 2021; 26(19): 6040. doi: 10.3390/molecules26196040 PMID: 34641584
  2. Halder RM, Nootheti PK. Ethnic skin disorders overview. J Am Acad Dermatol 2003; 48(6) (Suppl.): S143-8. doi: 10.1067/mjd.2003.274 PMID: 12789168
  3. Kanlayavattanakul M, Lourith N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J Cosmet Laser Ther 2018; 20(2): 123-31. doi: 10.1080/14764172.2017.1368666 PMID: 28853960
  4. Dereure O. Drug-induced skin pigmentation. Epidemiology, diagnosis and treatment. Am J Clin Dermatol 2001; 2(4): 253-62. doi: 10.2165/00128071-200102040-00006 PMID: 11705252
  5. Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin pigmentation types, causes and treatment-A review. Molecules 2023; 28(12): 4839. doi: 10.3390/molecules28124839
  6. Solano F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020; 25(7): 1537. doi: 10.3390/molecules25071537 PMID: 32230973
  7. Song H, Hwang YJ, Ha JW, Boo YC. Screening of an epigenetic drug library identifies 4-((hydroxyamino)carbonyl)-n-(2-hydroxyethyl)-n-phenyl-benzeneacetamide that reduces melanin synthesis by inhibiting tyrosinase activity independently of epigenetic mechanisms. Int J Mol Sci 2020; 21(13): 4589. doi: 10.3390/ijms21134589 PMID: 32605171
  8. Deri B, Kanteev M, Goldfeder M, et al. The unravelling of the complex pattern of tyrosinase inhibition. Sci Rep 2016; 6(1): 34993. doi: 10.1038/srep34993 PMID: 27725765
  9. Desai SR. Hyperpigmentation therapy: A review. J Clin Aesthet Dermatol 2014; 7(8): 13-7. PMID: 25161755
  10. Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: What is available? J Cutan Aesthet Surg 2013; 6(1): 4-11. doi: 10.4103/0974-2077.110089 PMID: 23723597
  11. Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents - Existing and new approaches. Int J Cosmet Sci 2011; 33(3): 210-21. doi: 10.1111/j.1468-2494.2010.00616.x PMID: 21265866
  12. Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res 2006; 19(6): 550-71. doi: 10.1111/j.1600-0749.2006.00334.x PMID: 17083484
  13. Olumide YM, Akinkugbe AO, Altraide D, et al. Complications of chronic use of skin lightening cosmetics. Int J Dermatol 2008; 47(4): 344-53. doi: 10.1111/j.1365-4632.2008.02719.x PMID: 18377596
  14. Halder RM, Richards GM. Topical agents used in the management of hyperpigmentation. Skin Therapy Lett 2004; 9(6): 1-3. PMID: 15334278
  15. Sheth VM, Pandya AG. Melasma: A comprehensive update. J Am Acad Dermatol 2011; 65(4): 699-714. doi: 10.1016/j.jaad.2011.06.001 PMID: 21920242
  16. Sivamani R, Clark A. Phytochemicals in the treatment of hyperpigmentation. Botanics 2016; 6: 89-96. doi: 10.2147/BTAT.S69113
  17. Noreen S, Mubarik F, Farooq F, Khan M, Khan AU, Pane YS. Medicinal uses of licorice (Glycyrrhiza glabra L.): A comprehensive review. Open Access Maced J Med Sci 2021; 9: 668-75. doi: 10.3889/oamjms.2021.7526
  18. Petramfar P, Hajari F, Yousefi G, Azadi S, Hamedi A. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinson’s disease, A randomized double blinded clinical trial. J Ethnopharmacol 2020; 247: 112226. doi: 10.1016/j.jep.2019.112226 PMID: 31574343
  19. Welcome to Plants of the World Online 2024. Available from: https://powo.science.kew.org (accessed on 12-7-2024)
  20. Ferreira MP, Gendron F, Kindscher K. Bioactive Prairie Plants and Aging Adults: Role in Health and Disease Bioactive Food as Dietary Interventions for the Aging Population. San Diego: Academic Press 2013; pp. 263-75. doi: 10.1016/B978-0-12-397155-5.00032-5
  21. Sharma V, Katiyar A, Agrawal RC. Glycyrrhiza glabra: Chemistry and pharmacological activity. Sweeteners 2018; 2018: 87-100. doi: 10.1007/978-3-319-27027-2_21
  22. Hollinger JC, Angra K, Halder RM. Are natural ingredients effective in the management of hyperpigmentation? A systematic review. J Clin Aesthet Dermatol 2018; 11(2): 28-37. PMID: 29552273
  23. Wang WP, Hul J, Sui H, Zhao YS, Feng J, Liu C. Glabridin nanosuspension for enhanced skin penetration: Formulation optimization, in vitro and in vivo evaluation. Pharmazie 2016; 71(5): 252-7. PMID: 27348968
  24. Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57(3): 820-5. doi: 10.1021/jf802601j PMID: 19132888
  25. Hsieh CW, Li PH, Lu IC, Wang TH. Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology. J Oleo Sci 2012; 61(9): 483-9. doi: 10.5650/jos.61.483 PMID: 22975782
  26. Seino H, Arai Y, Nagao N, Ozawa N, Hamada K. Efficient percutaneous delivery of the antimelanogenic agent glabridin using cationic amphiphilic chitosan micelles. PLoS One 2016; 11(10): e0164061. doi: 10.1371/journal.pone.0164061 PMID: 27695112
  27. Zhang C, Luo S, Zhang Z, Niu Y, Zhang W. Evaluation of Glabridin loaded nanostructure lipid carriers. J Taiwan Inst Chem Eng 2017; 71(C): 338-43. doi: 10.1016/j.jtice.2016.11.010
  28. Amer M, Metwalli M. Topical liquiritin improves melasma. Int J Dermatol 2000; 39(4): 299-301. doi: 10.1046/j.1365-4362.2000.00943.x PMID: 10809983
  29. Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther 2007; 20(5): 308-13. doi: 10.1111/j.1529-8019.2007.00144.x PMID: 18045355
  30. Kim SJ, Kwon SS, Jeon SH, Yu ER, Park SN. Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system. Int J Cosmet Sci 2014; 36(6): 553-60. doi: 10.1111/ics.12156 PMID: 25074560
  31. Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159. doi: 10.1186/1476-511X-11-159 PMID: 23167765
  32. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8. doi: 10.1016/S0378-5173(02)00180-1 PMID: 12176234
  33. Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - A systematic review of in vitro data. Eur J Pharm Biopharm 2014; 87(1): 1-18. doi: 10.1016/j.ejpb.2014.02.005 PMID: 24530885
  34. Wissing SA, Müller RH. Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration. J Control Release 2002; 81(3): 225-33. doi: 10.1016/S0168-3659(02)00056-1 PMID: 12044563
  35. Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65. doi: 10.34172/apb.2020.021 PMID: 32373485
  36. Method for isolating liquiritin. Japan Patent JP2674758B2 1987.
  37. Mosallaei N, Jaafari MR, Hanafi-Bojd MY, Golmohammadzadeh S, Malaekeh-Nikouei B. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci 2013; 102(6): 1994-2004. doi: 10.1002/jps.23522
  38. Atapour-Mashhad H, Nejabat M, Hadizadeh F, Hoseinsalari A, Golmohammadzadeh S. Preparation, characterization, and molecular dynamic simulation of novel coenzyme Q10 loaded nanostructured lipid carriers. Curr Pharm Des 2023; 29(27): 2177-90. doi: 10.2174/1381612829666230911105913 PMID: 37694784
  39. He Y, Li H, Zheng X, et al. Preparation, in vivo and in vitro release of polyethylene glycol monomethyl ether-polymandelic acid microspheres loaded Panax Notoginseng Saponins. Molecules 2019; 24(10): 2024. doi: 10.3390/molecules24102024 PMID: 31137874
  40. Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 2009; 47(8): 1909-13. doi: 10.1016/j.fct.2009.05.017 PMID: 19457443
  41. Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Direct toxicity of Rose bengal in MCF-7 cell line: Role of apoptosis. Food Chem Toxicol 2009; 47(4): 855-9. doi: 10.1016/j.fct.2009.01.018 PMID: 19271285
  42. Atapour-Mashhad H, Tayarani-Najaran Z, Davoodnia A, Moloudi R, Mousavi SH. Antitumor activity of novel pyrrolo2,3-dpyrimidin-4-ones. Drug Chem Toxicol 2011; 34(3): 271-6. doi: 10.3109/01480545.2010.545066 PMID: 21649481
  43. Qiao Z, Koizumi Y, Zhang M, et al. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem 2012; 76(10): 1877-83. doi: 10.1271/bbb.120341 PMID: 23047099
  44. Camacho-Hübner A, Beermann F. Cellular and molecular features of mammalian pigmentation-tyrosinase and TRP. Pathol Biol (Paris) 2000; 48(6): 577-83. PMID: 10965538
  45. Khumpeerawat P, Duangjinda M, Phasuk Y. Factors affecting gene expression associated with the skin color of black-bone chicken in Thailand. Poult Sci 2021; 100(11): 101440. doi: 10.1016/j.psj.2021.101440 PMID: 34547619
  46. Hashemi-Shahri SH, Golshan A, Mohajeri SA, et al. ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10 murine melanoma cells. Anticancer Agents Med Chem 2018; 18(7): 1064-9. doi: 10.2174/1871520618666171213143455 PMID: 29237384
  47. Rao H, Ahmad S, Madni A, et al. Compritol-based alprazolam solid lipid nanoparticles for sustained release of alprazolam: Preparation by hot melt encapsulation. Molecules 2022; 27(24): 8894. doi: 10.3390/molecules27248894 PMID: 36558027
  48. Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv 2014; 11(12): 1865-83. doi: 10.1517/17425247.2014.935335 PMID: 25152197
  49. Han F, Li S, Yin R, Liu H, Xu L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2008; 315(1-3): 210-6. doi: 10.1016/j.colsurfa.2007.08.005
  50. Rajaram S, Natham R. Influence of formulation and process variables on the formation of rifampicin nanoparticles by ionic gelation technique. RJPBCS 2013; 4: 820-32.
  51. Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57. doi: 10.3390/pharmaceutics10020057 PMID: 29783687
  52. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6: 219. doi: 10.3389/fphar.2015.00219 PMID: 26483690
  53. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov Food Sci Emerg Technol 2014; 26: 366-74. doi: 10.1016/j.ifset.2014.06.012
  54. Chikh Ali M, Maoka T, Natsuaki KT, Natsuaki T. The simultaneous differentiation of Potato virus Y strains including the newly described strain PVYNTN-NW by multiplex PCR assay. J Virol Methods 2010; 165(1): 15-20. doi: 10.1016/j.jviromet.2009.12.010 PMID: 20025905
  55. Bunjes H. Characterization of solid lipid nano-and microparticles Lipospheres in drug targets and delivery. CRC Press LLC 2005; pp. 41-66. doi: 10.1201/9780203505281.ch3
  56. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613. doi: 10.1016/j.biopha.2018.04.055 PMID: 29677547
  57. Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J Biomol Tech 2010; 21(4): 167-93. PMID: 21119929
  58. Reis S, Gomes MJ, Martins S, Ferreira D, Segundo MA. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. Int J Nanomedicine 2014; 9: 1231-42. doi: 10.2147/IJN.S45561 PMID: 24634584
  59. Andrade LN, Oliveira DML, Chaud MV, et al. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: Physicochemical characterization, release profile, and cytotoxicity. Molecules 2019; 24(21): 3881. doi: 10.3390/molecules24213881 PMID: 31661906
  60. Chen L, Liu Z, Zhao X, Liu L, Xin X, Liang H. Self-assembled pH-responsive metal-organic frameworks for enhancing the encapsulation and anti-oxidation and melanogenesis inhibition activities of glabridin. Molecules 2022; 27(12): 3908. doi: 10.3390/molecules27123908 PMID: 35745031
  61. Rangarajan N, Sampath V, Mohanasundaram S, Mohanasundaram SUV. Spectrophotometry and FTIR analysis of phenolic compounds with antioxidant potentials in Glycyrrhiza glabra and Zingiber officinale. Int J Res Pharm Sci 2021; 12(1): 877-83. doi: 10.26452/ijrps.v12i1.4215
  62. Patel DK, Kesharwani R, Kumar V. Lipid nanoparticle topical and transdermal delivery: A review on production, penetration mechanism to skin. Int J Pharm Investig 2019; 9(4): 148-53. doi: 10.5530/ijpi.2019.4.28
  63. Schäferkorting M, Mehnert W, Korting H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43. doi: 10.1016/j.addr.2007.04.006 PMID: 17544165
  64. Mahor AK, Singh PP, Gupta R, et al. Nanostructured lipid carriers for improved delivery of therapeutics via the oral route. J Nanotechnol 2023; 2023: 1-35. doi: 10.1155/2023/4687959
  65. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 2007; 328(2): 191-5. doi: 10.1016/j.ijpharm.2006.08.007 PMID: 16978810
  66. Üner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers Handbook of nanoparticles. Cham: Springer International Publishing 2016; pp. 117-41. doi: 10.1007/978-3-319-15338-4_3
  67. Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300. PMID: 18019829
  68. Hearing VJ. Determination of melanin synthetic pathways. J Invest Dermatol 2011; 131(E1): E8-E11. doi: 10.1038/skinbio.2011.4 PMID: 22094404
  69. Kulkarni D, Gadade D, Kapare H, Dhas NL, Ban M. Characterization techniques for stimuli-responsive delivery nanoplatforms in cancer treatment. CRC Press 2023; pp. 322-38. doi: 10.1201/9781003368731-19
  70. Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release 2011; 150(1): 45-8. doi: 10.1016/j.jconrel.2010.11.015 PMID: 21087645
  71. Baroli B. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J Pharm Sci 2010; 99(1): 21-50. doi: 10.1002/jps.21817 PMID: 19670463
  72. Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des Devel Ther 2020; 14: 3271-89. doi: 10.2147/DDDT.S264648 PMID: 32848366
  73. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 2003; 56(2): 189-96. doi: 10.1016/S0939-6411(03)00067-5 PMID: 12957632
  74. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009; 1(4): 197-206. doi: 10.4161/derm.1.4.9501 PMID: 20592791
  75. Rosita N, Sultani AA, Hariyadi DM. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin. Sci Rep 2022; 12(1): 19365. doi: 10.1038/s41598-022-23514-0 PMID: 36371457
  76. Damle M. Glycyrrhiza glabra (Liquorice)-A potent medicinal herb. Int J Herb Med 2014; 2(2): 132-6.
  77. Zubair S, Mujtaba G. Comparison of efficacy of topical 2% liquiritin, topical 4% liquiritin and topical 4% hydroquinone in the management of melasma. JPAD 2009; 19(3): 158-63.
  78. Chen J, Yu X, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 2016; 168: 111-7. doi: 10.1016/j.saa.2016.06.008 PMID: 27288962
  79. ArieRakhmini AR FaridhaIlyas FI, VitayaniMuchtar S, IlhamjayaPatellongi IP, KhairuddinDjawad KD, GeminiAlam GA. Comparison of 10%, 20% and 40% licorice extract cream as skin lightening agent. Int J Med Rev Case Rep 2018; 2(4): 1. doi: 10.5455/IJMRCR.Licorice-Extract-Cream-as-Skin-Lightening-Agent
  80. Yokota T, Nishio H, Kubota Y, Mizoguchi M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res 1998; 11(6): 355-61. doi: 10.1111/j.1600-0749.1998.tb00494.x PMID: 9870547
  81. Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 2008; 13(1): 20-4. doi: 10.1038/jidsymp.2008.8 PMID: 18369335

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers