Preparation and Characterization of Nanostructured Lipid Carriers (NLCs) Containing Glycyrrhiza glabra Extract for the Treatment of Skin Hyperpigmentation
- Authors: Hoseinsalari A.1, Atapour-Mashhad H.2, Asili J.3, Tayarani-Najaran Z.4, Mohtashami L.3, Khanavi M.1, Vazirian M.1, Akbari Javar H.5, Niknam S.5, Golmohammadzadeh S.2, Ardekani M.R.1
-
Affiliations:
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences
- Issue: Vol 30, No 40 (2024)
- Pages: 3213-3232
- Section: Immunology, Inflammation & Allergy
- URL: https://rjeid.com/1381-6128/article/view/645977
- DOI: https://doi.org/10.2174/0113816128327512240730102545
- ID: 645977
Cite item
Full Text
Abstract
Purpose:This study aimed to prepare, characterize, and in vitro and in vivo evaluate a novel nanostructured lipid carriers (NLCs) formulation containing two fractions of Glycyrrhiza glabra L. (licorice) extract for the treatment of hyperpigmentation.
Methods:Two fractions, one enriched with glabridin (FEG) and the other enriched with liquiritin (FEL), were obtained by partitioning the methanol (MeOH) extract of licorice roots with ethyl acetate (EtOAc) and partitioning the EtOAc fraction with butanol (n-BuOH) and water. The quantities of glabridin (Glab) and liquiritin (LQ) in the fractions were determined by high-performance liquid chromatography (HPLC). FEG and FEL were loaded in different NLC formulations, and surface characterization and long-term stability were studied using Dynamic Light Scattering (DLS). The best formulation was chosen for further surface characterization, including Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), and Fouriertransform infrared (FTIR) spectroscopy. Moreover, entrapment efficiency percentage (EE%), in vitro drug release, in vivo skin penetration, cytotoxicity on B16F10 melanoma cells, effect on melanin production, and anti- tyrosinase activity were tested for the selected formulation.
Results:Based on HPLC results, FEG contained 34.501 mg/g of Glab, and FEL contained 31.714 mg/g of LQ. Among 20 different formulations, NLC 20 (LG-NLCs) showed desirable DLS results with a Z-average size of 185.3 ± 1.08 nm, polydispersity index (PDI) of 0.229 ± 0.35, and zeta potential of -16.2 ± 1.13 mV. It indicated good spherical shape, high EE% (79.01% for Glab and 69.27% for LQ), two-stage release pattern (an initial burst release followed by sustained release), efficient in vivo skin penetration, and strong anti-tyrosinase activity. LG-NLCs had acceptable physiochemical stability for up to 9 months and were non-cytotoxic.
Conclusion:The LG-NLC formulation has revealed desirable surface characterization, good physiochemical stability, efficient drug release pattern and in vivo penetration, and high EE%. Therefore, it can be a suitable nanosystem for the delivery of licorice extract in the treatment of hyperpigmentation.
Keywords
About the authors
Afsaneh Hoseinsalari
Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences
Email: info@benthamscience.net
Hoda Atapour-Mashhad
Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Javad Asili
Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Zahra Tayarani-Najaran
Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Leila Mohtashami
Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Mahnaz Khanavi
Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences
Email: info@benthamscience.net
Mahdi Vazirian
Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences
Email: info@benthamscience.net
Hamid Akbari Javar
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences
Email: info@benthamscience.net
Somayeh Niknam
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences
Email: info@benthamscience.net
Shiva Golmohammadzadeh
Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Mohammad Reza Ardekani
Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Netcharoensirisuk P, Umehara K, De-Eknamkul W, Chaotham C. Cajanin suppresses melanin synthesis through modulating mitf in human melanin-producing cells. Molecules 2021; 26(19): 6040. doi: 10.3390/molecules26196040 PMID: 34641584
- Halder RM, Nootheti PK. Ethnic skin disorders overview. J Am Acad Dermatol 2003; 48(6) (Suppl.): S143-8. doi: 10.1067/mjd.2003.274 PMID: 12789168
- Kanlayavattanakul M, Lourith N. Skin hyperpigmentation treatment using herbs: A review of clinical evidences. J Cosmet Laser Ther 2018; 20(2): 123-31. doi: 10.1080/14764172.2017.1368666 PMID: 28853960
- Dereure O. Drug-induced skin pigmentation. Epidemiology, diagnosis and treatment. Am J Clin Dermatol 2001; 2(4): 253-62. doi: 10.2165/00128071-200102040-00006 PMID: 11705252
- Thawabteh AM, Jibreen A, Karaman D, Thawabteh A, Karaman R. Skin pigmentation types, causes and treatment-A review. Molecules 2023; 28(12): 4839. doi: 10.3390/molecules28124839
- Solano F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020; 25(7): 1537. doi: 10.3390/molecules25071537 PMID: 32230973
- Song H, Hwang YJ, Ha JW, Boo YC. Screening of an epigenetic drug library identifies 4-((hydroxyamino)carbonyl)-n-(2-hydroxyethyl)-n-phenyl-benzeneacetamide that reduces melanin synthesis by inhibiting tyrosinase activity independently of epigenetic mechanisms. Int J Mol Sci 2020; 21(13): 4589. doi: 10.3390/ijms21134589 PMID: 32605171
- Deri B, Kanteev M, Goldfeder M, et al. The unravelling of the complex pattern of tyrosinase inhibition. Sci Rep 2016; 6(1): 34993. doi: 10.1038/srep34993 PMID: 27725765
- Desai SR. Hyperpigmentation therapy: A review. J Clin Aesthet Dermatol 2014; 7(8): 13-7. PMID: 25161755
- Sarkar R, Arora P, Garg KV. Cosmeceuticals for hyperpigmentation: What is available? J Cutan Aesthet Surg 2013; 6(1): 4-11. doi: 10.4103/0974-2077.110089 PMID: 23723597
- Gillbro JM, Olsson MJ. The melanogenesis and mechanisms of skin-lightening agents - Existing and new approaches. Int J Cosmet Sci 2011; 33(3): 210-21. doi: 10.1111/j.1468-2494.2010.00616.x PMID: 21265866
- Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res 2006; 19(6): 550-71. doi: 10.1111/j.1600-0749.2006.00334.x PMID: 17083484
- Olumide YM, Akinkugbe AO, Altraide D, et al. Complications of chronic use of skin lightening cosmetics. Int J Dermatol 2008; 47(4): 344-53. doi: 10.1111/j.1365-4632.2008.02719.x PMID: 18377596
- Halder RM, Richards GM. Topical agents used in the management of hyperpigmentation. Skin Therapy Lett 2004; 9(6): 1-3. PMID: 15334278
- Sheth VM, Pandya AG. Melasma: A comprehensive update. J Am Acad Dermatol 2011; 65(4): 699-714. doi: 10.1016/j.jaad.2011.06.001 PMID: 21920242
- Sivamani R, Clark A. Phytochemicals in the treatment of hyperpigmentation. Botanics 2016; 6: 89-96. doi: 10.2147/BTAT.S69113
- Noreen S, Mubarik F, Farooq F, Khan M, Khan AU, Pane YS. Medicinal uses of licorice (Glycyrrhiza glabra L.): A comprehensive review. Open Access Maced J Med Sci 2021; 9: 668-75. doi: 10.3889/oamjms.2021.7526
- Petramfar P, Hajari F, Yousefi G, Azadi S, Hamedi A. Efficacy of oral administration of licorice as an adjunct therapy on improving the symptoms of patients with Parkinsons disease, A randomized double blinded clinical trial. J Ethnopharmacol 2020; 247: 112226. doi: 10.1016/j.jep.2019.112226 PMID: 31574343
- Welcome to Plants of the World Online 2024. Available from: https://powo.science.kew.org (accessed on 12-7-2024)
- Ferreira MP, Gendron F, Kindscher K. Bioactive Prairie Plants and Aging Adults: Role in Health and Disease Bioactive Food as Dietary Interventions for the Aging Population. San Diego: Academic Press 2013; pp. 263-75. doi: 10.1016/B978-0-12-397155-5.00032-5
- Sharma V, Katiyar A, Agrawal RC. Glycyrrhiza glabra: Chemistry and pharmacological activity. Sweeteners 2018; 2018: 87-100. doi: 10.1007/978-3-319-27027-2_21
- Hollinger JC, Angra K, Halder RM. Are natural ingredients effective in the management of hyperpigmentation? A systematic review. J Clin Aesthet Dermatol 2018; 11(2): 28-37. PMID: 29552273
- Wang WP, Hul J, Sui H, Zhao YS, Feng J, Liu C. Glabridin nanosuspension for enhanced skin penetration: Formulation optimization, in vitro and in vivo evaluation. Pharmazie 2016; 71(5): 252-7. PMID: 27348968
- Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57(3): 820-5. doi: 10.1021/jf802601j PMID: 19132888
- Hsieh CW, Li PH, Lu IC, Wang TH. Preparing glabridin-in-water nanoemulsions by high pressure homogenization with response surface methodology. J Oleo Sci 2012; 61(9): 483-9. doi: 10.5650/jos.61.483 PMID: 22975782
- Seino H, Arai Y, Nagao N, Ozawa N, Hamada K. Efficient percutaneous delivery of the antimelanogenic agent glabridin using cationic amphiphilic chitosan micelles. PLoS One 2016; 11(10): e0164061. doi: 10.1371/journal.pone.0164061 PMID: 27695112
- Zhang C, Luo S, Zhang Z, Niu Y, Zhang W. Evaluation of Glabridin loaded nanostructure lipid carriers. J Taiwan Inst Chem Eng 2017; 71(C): 338-43. doi: 10.1016/j.jtice.2016.11.010
- Amer M, Metwalli M. Topical liquiritin improves melasma. Int J Dermatol 2000; 39(4): 299-301. doi: 10.1046/j.1365-4362.2000.00943.x PMID: 10809983
- Draelos ZD. Skin lightening preparations and the hydroquinone controversy. Dermatol Ther 2007; 20(5): 308-13. doi: 10.1111/j.1529-8019.2007.00144.x PMID: 18045355
- Kim SJ, Kwon SS, Jeon SH, Yu ER, Park SN. Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system. Int J Cosmet Sci 2014; 36(6): 553-60. doi: 10.1111/ics.12156 PMID: 25074560
- Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159. doi: 10.1186/1476-511X-11-159 PMID: 23167765
- Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8. doi: 10.1016/S0378-5173(02)00180-1 PMID: 12176234
- Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - A systematic review of in vitro data. Eur J Pharm Biopharm 2014; 87(1): 1-18. doi: 10.1016/j.ejpb.2014.02.005 PMID: 24530885
- Wissing SA, Müller RH. Solid lipid nanoparticles as carrier for sunscreens: In vitro release and in vivo skin penetration. J Control Release 2002; 81(3): 225-33. doi: 10.1016/S0168-3659(02)00056-1 PMID: 12044563
- Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull 2020; 10(2): 150-65. doi: 10.34172/apb.2020.021 PMID: 32373485
- Method for isolating liquiritin. Japan Patent JP2674758B2 1987.
- Mosallaei N, Jaafari MR, Hanafi-Bojd MY, Golmohammadzadeh S, Malaekeh-Nikouei B. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J Pharm Sci 2013; 102(6): 1994-2004. doi: 10.1002/jps.23522
- Atapour-Mashhad H, Nejabat M, Hadizadeh F, Hoseinsalari A, Golmohammadzadeh S. Preparation, characterization, and molecular dynamic simulation of novel coenzyme Q10 loaded nanostructured lipid carriers. Curr Pharm Des 2023; 29(27): 2177-90. doi: 10.2174/1381612829666230911105913 PMID: 37694784
- He Y, Li H, Zheng X, et al. Preparation, in vivo and in vitro release of polyethylene glycol monomethyl ether-polymandelic acid microspheres loaded Panax Notoginseng Saponins. Molecules 2019; 24(10): 2024. doi: 10.3390/molecules24102024 PMID: 31137874
- Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Role of caspases and Bax protein in saffron-induced apoptosis in MCF-7 cells. Food Chem Toxicol 2009; 47(8): 1909-13. doi: 10.1016/j.fct.2009.05.017 PMID: 19457443
- Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I. Direct toxicity of Rose bengal in MCF-7 cell line: Role of apoptosis. Food Chem Toxicol 2009; 47(4): 855-9. doi: 10.1016/j.fct.2009.01.018 PMID: 19271285
- Atapour-Mashhad H, Tayarani-Najaran Z, Davoodnia A, Moloudi R, Mousavi SH. Antitumor activity of novel pyrrolo2,3-dpyrimidin-4-ones. Drug Chem Toxicol 2011; 34(3): 271-6. doi: 10.3109/01480545.2010.545066 PMID: 21649481
- Qiao Z, Koizumi Y, Zhang M, et al. Anti-melanogenesis effect of Glechoma hederacea L. extract on B16 murine melanoma cells. Biosci Biotechnol Biochem 2012; 76(10): 1877-83. doi: 10.1271/bbb.120341 PMID: 23047099
- Camacho-Hübner A, Beermann F. Cellular and molecular features of mammalian pigmentation-tyrosinase and TRP. Pathol Biol (Paris) 2000; 48(6): 577-83. PMID: 10965538
- Khumpeerawat P, Duangjinda M, Phasuk Y. Factors affecting gene expression associated with the skin color of black-bone chicken in Thailand. Poult Sci 2021; 100(11): 101440. doi: 10.1016/j.psj.2021.101440 PMID: 34547619
- Hashemi-Shahri SH, Golshan A, Mohajeri SA, et al. ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10 murine melanoma cells. Anticancer Agents Med Chem 2018; 18(7): 1064-9. doi: 10.2174/1871520618666171213143455 PMID: 29237384
- Rao H, Ahmad S, Madni A, et al. Compritol-based alprazolam solid lipid nanoparticles for sustained release of alprazolam: Preparation by hot melt encapsulation. Molecules 2022; 27(24): 8894. doi: 10.3390/molecules27248894 PMID: 36558027
- Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv 2014; 11(12): 1865-83. doi: 10.1517/17425247.2014.935335 PMID: 25152197
- Han F, Li S, Yin R, Liu H, Xu L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp 2008; 315(1-3): 210-6. doi: 10.1016/j.colsurfa.2007.08.005
- Rajaram S, Natham R. Influence of formulation and process variables on the formation of rifampicin nanoparticles by ionic gelation technique. RJPBCS 2013; 4: 820-32.
- Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018; 10(2): 57. doi: 10.3390/pharmaceutics10020057 PMID: 29783687
- Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol 2015; 6: 219. doi: 10.3389/fphar.2015.00219 PMID: 26483690
- Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov Food Sci Emerg Technol 2014; 26: 366-74. doi: 10.1016/j.ifset.2014.06.012
- Chikh Ali M, Maoka T, Natsuaki KT, Natsuaki T. The simultaneous differentiation of Potato virus Y strains including the newly described strain PVYNTN-NW by multiplex PCR assay. J Virol Methods 2010; 165(1): 15-20. doi: 10.1016/j.jviromet.2009.12.010 PMID: 20025905
- Bunjes H. Characterization of solid lipid nano-and microparticles Lipospheres in drug targets and delivery. CRC Press LLC 2005; pp. 41-66. doi: 10.1201/9780203505281.ch3
- Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613. doi: 10.1016/j.biopha.2018.04.055 PMID: 29677547
- Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J Biomol Tech 2010; 21(4): 167-93. PMID: 21119929
- Reis S, Gomes MJ, Martins S, Ferreira D, Segundo MA. Lipid nanoparticles for topical and transdermal application for alopecia treatment: Development, physicochemical characterization, and in vitro release and penetration studies. Int J Nanomedicine 2014; 9: 1231-42. doi: 10.2147/IJN.S45561 PMID: 24634584
- Andrade LN, Oliveira DML, Chaud MV, et al. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: Physicochemical characterization, release profile, and cytotoxicity. Molecules 2019; 24(21): 3881. doi: 10.3390/molecules24213881 PMID: 31661906
- Chen L, Liu Z, Zhao X, Liu L, Xin X, Liang H. Self-assembled pH-responsive metal-organic frameworks for enhancing the encapsulation and anti-oxidation and melanogenesis inhibition activities of glabridin. Molecules 2022; 27(12): 3908. doi: 10.3390/molecules27123908 PMID: 35745031
- Rangarajan N, Sampath V, Mohanasundaram S, Mohanasundaram SUV. Spectrophotometry and FTIR analysis of phenolic compounds with antioxidant potentials in Glycyrrhiza glabra and Zingiber officinale. Int J Res Pharm Sci 2021; 12(1): 877-83. doi: 10.26452/ijrps.v12i1.4215
- Patel DK, Kesharwani R, Kumar V. Lipid nanoparticle topical and transdermal delivery: A review on production, penetration mechanism to skin. Int J Pharm Investig 2019; 9(4): 148-53. doi: 10.5530/ijpi.2019.4.28
- Schäferkorting M, Mehnert W, Korting H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43. doi: 10.1016/j.addr.2007.04.006 PMID: 17544165
- Mahor AK, Singh PP, Gupta R, et al. Nanostructured lipid carriers for improved delivery of therapeutics via the oral route. J Nanotechnol 2023; 2023: 1-35. doi: 10.1155/2023/4687959
- Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 2007; 328(2): 191-5. doi: 10.1016/j.ijpharm.2006.08.007 PMID: 16978810
- Üner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers Handbook of nanoparticles. Cham: Springer International Publishing 2016; pp. 117-41. doi: 10.1007/978-3-319-15338-4_3
- Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300. PMID: 18019829
- Hearing VJ. Determination of melanin synthetic pathways. J Invest Dermatol 2011; 131(E1): E8-E11. doi: 10.1038/skinbio.2011.4 PMID: 22094404
- Kulkarni D, Gadade D, Kapare H, Dhas NL, Ban M. Characterization techniques for stimuli-responsive delivery nanoplatforms in cancer treatment. CRC Press 2023; pp. 322-38. doi: 10.1201/9781003368731-19
- Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release 2011; 150(1): 45-8. doi: 10.1016/j.jconrel.2010.11.015 PMID: 21087645
- Baroli B. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J Pharm Sci 2010; 99(1): 21-50. doi: 10.1002/jps.21817 PMID: 19670463
- Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des Devel Ther 2020; 14: 3271-89. doi: 10.2147/DDDT.S264648 PMID: 32848366
- Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 2003; 56(2): 189-96. doi: 10.1016/S0939-6411(03)00067-5 PMID: 12957632
- Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009; 1(4): 197-206. doi: 10.4161/derm.1.4.9501 PMID: 20592791
- Rosita N, Sultani AA, Hariyadi DM. Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin. Sci Rep 2022; 12(1): 19365. doi: 10.1038/s41598-022-23514-0 PMID: 36371457
- Damle M. Glycyrrhiza glabra (Liquorice)-A potent medicinal herb. Int J Herb Med 2014; 2(2): 132-6.
- Zubair S, Mujtaba G. Comparison of efficacy of topical 2% liquiritin, topical 4% liquiritin and topical 4% hydroquinone in the management of melasma. JPAD 2009; 19(3): 158-63.
- Chen J, Yu X, Huang Y. Inhibitory mechanisms of glabridin on tyrosinase. Spectrochim Acta A Mol Biomol Spectrosc 2016; 168: 111-7. doi: 10.1016/j.saa.2016.06.008 PMID: 27288962
- ArieRakhmini AR FaridhaIlyas FI, VitayaniMuchtar S, IlhamjayaPatellongi IP, KhairuddinDjawad KD, GeminiAlam GA. Comparison of 10%, 20% and 40% licorice extract cream as skin lightening agent. Int J Med Rev Case Rep 2018; 2(4): 1. doi: 10.5455/IJMRCR.Licorice-Extract-Cream-as-Skin-Lightening-Agent
- Yokota T, Nishio H, Kubota Y, Mizoguchi M. The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation. Pigment Cell Res 1998; 11(6): 355-61. doi: 10.1111/j.1600-0749.1998.tb00494.x PMID: 9870547
- Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 2008; 13(1): 20-4. doi: 10.1038/jidsymp.2008.8 PMID: 18369335
Supplementary files
