The Impact of Spironolactone Co-administration on Cyclosporin Initial Dosage Optimization for Pediatric Refractory Nephrotic Syndrome

  • Authors: Han H.1, Rui M.2, Yang Y.3, Cui J.4, Huang X.4, Zhang S.5, He S.6, Wang D.4, Chen X.7
  • Affiliations:
    1. Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University
    2. Department of Orthopaedics, The Affiliated Jiangyin Clinical College of Xuzhou Medical University
    3. Department of Pharmacy, The Affiliated Changzhou Children’s Hospital of Nantong University
    4. Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy,, Xuzhou Medical University
    5. Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University
    6. Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School,, Nanjing University
    7. School of Nursing, Xuzhou Medical University
  • Issue: Vol 30, No 18 (2024)
  • Pages: 1419-1432
  • Section: Immunology, Inflammation & Allergy
  • URL: https://rjeid.com/1381-6128/article/view/645718
  • DOI: https://doi.org/10.2174/0113816128307797240416053723
  • ID: 645718

Cite item

Full Text

Abstract

Objectives:Cyclosporin has been used for the treatment of pediatric refractory nephrotic syndrome (PRNS). However, the narrow therapeutic window and large pharmacokinetic variability make it difficult to individualize cyclosporin administration. Meanwhile, spironolactone has been reported to affect cyclosporin metabolism in PRNS patients. This study aims to explore the initial dosage optimization of cyclosporin in PRNS based on the impact of spironolactone co-administration.

Methods:Monte Carlo simulation based on a previously established cyclosporin population pharmacokinetic model for PRNS was used to design cyclosporin dosing regimen.

Results:In this study, the probability of drug concentration reaching the target and the convenience of times of administration were considered comprehensively. The optimal administration regimen in PRNS without spironolactone was 6, 5, 4 and 3 mg/kg cyclosporin split into two doses for the body weight of 5-8, 8-18, 18-46 and 46-70 kg, respectively. The optimal administration regimen in PRNS with spironolactone was 4, 3, 2 mg/kg cyclosporin split into two doses for body weight of 5-14, 14-65, and 65-70 kg, respectively.

Conclusion:The cyclosporin dosing regimen for PRNS based on Monte Carlo simulation was systematically developed and the initial dosage optimization of cyclosporin in PRNS was recommended for the first time.

About the authors

Huan-Huan Han

Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Min Rui

Department of Orthopaedics, The Affiliated Jiangyin Clinical College of Xuzhou Medical University

Email: info@benthamscience.net

Yang Yang

Department of Pharmacy, The Affiliated Changzhou Children’s Hospital of Nantong University

Author for correspondence.
Email: info@benthamscience.net

Jia-Fang Cui

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy,, Xuzhou Medical University

Email: info@benthamscience.net

Xue-Ting Huang

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy,, Xuzhou Medical University

Email: info@benthamscience.net

Shi-Jia Zhang

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University

Email: info@benthamscience.net

Su-Mei He

Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School,, Nanjing University

Email: info@benthamscience.net

Dong-Dong Wang

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy,, Xuzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Xiao Chen

School of Nursing, Xuzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Certikova-Chabova V, Tesar V. Recent insights into the pathogenesis of nephrotic syndrome. Minerva Med 2013; 104(3): 333-47. PMID: 23748287
  2. Eddy AA, Symons JM. Nephrotic syndrome in childhood. Lancet 2003; 362(9384): 629-39. doi: 10.1016/S0140-6736(03)14184-0 PMID: 12944064
  3. McKinney PA, Feltbower RG, Brocklebank JT, Fitzpatrick MM. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr Nephrol 2001; 16(12): 1040-4. doi: 10.1007/s004670100021 PMID: 11793096
  4. Lombel RM, Gipson DS, Hodson EM. Treatment of steroid-sensitive nephrotic syndrome: New guidelines from KDIGO. Pediatr Nephrol 2013; 28(3): 415-26. doi: 10.1007/s00467-012-2310-x PMID: 23052651
  5. Wang DD, Chen X, Li ZP. Tacrolimus ameliorates proteinuria in Chinese pediatric lupus nephritis patients. Int J Clin Exp Med 2019; 12(8): 10931-7.
  6. Allison AC. Immunosuppressive drugs: The first 50 years and a glance forward. Immunopharmacology 2000; 47(2-3): 63-83. doi: 10.1016/S0162-3109(00)00186-7 PMID: 10878284
  7. Tedesco D, Haragsim L. Cyclosporine: A review. J Transplant 2012; 2012: 1-7. doi: 10.1155/2012/230386 PMID: 22263104
  8. Flores C, Fouquet G, Moura IC, Maciel TT, Hermine O. Lessons to learn from low-dose cyclosporin-A: A new approach for unexpected clinical applications. Front Immunol 2019; 10: 588. doi: 10.3389/fimmu.2019.00588 PMID: 30984176
  9. Chan JK, Bhattacharyya D, Lassen KG, Ruelas D, Greene WC. Calcium/calcineurin synergizes with prostratin to promote NF-κB dependent activation of latent HIV. PLoS One 2013; 8(10): e77749. doi: 10.1371/journal.pone.0077749 PMID: 24204950
  10. Forsythe P, Paterson S. Ciclosporin 10 years on: Indications and efficacy. Vet Rec 2014; 174(Suppl 2): 13-21. doi: 10.1136/vr.102484
  11. Fric J, Zelante T, Wong AYW, Mertes A, Yu HB, Ricciardi-Castagnoli P. NFAT control of innate immunity. Blood 2012; 120(7): 1380-9. doi: 10.1182/blood-2012-02-404475 PMID: 22611159
  12. Guaguère E, Steffan J, Olivry T. Cyclosporin A: A new drug in the field of canine dermatology. Vet Dermatol 2004; 15(2): 61-74. doi: 10.1111/j.1365-3164.2004.00376.x PMID: 15030555
  13. Jesus JB, Sena CBC, Macchi BM, do Nascimento JLM. Cyclosporin A as an alternative neuroimmune strategy to control neurites and recover neuronal tissues in leprosy. Neuroimmunomodulation 2022; 29(1): 15-20. doi: 10.1159/000517993 PMID: 34350891
  14. Macian F. NFAT proteins: Key regulators of T-cell development and function. Nat Rev Immunol 2005; 5(6): 472-84. doi: 10.1038/nri1632 PMID: 15928679
  15. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology 2000; 47(2-3): 119-25. doi: 10.1016/S0162-3109(00)00192-2 PMID: 10878286
  16. Yang Y, Li YF, Hu K, et al. The dosage recommendation of cyclosporin in children with hemophagocytic lymphohistiocytosis based on population pharmacokinetic model. Curr Pharm Des 2023; 29(37): 2996-3004. doi: 10.2174/0113816128286290231124055116 PMID: 38062660
  17. Wang DD, Ye QF, Chen X, Xu H, Li ZP. Population pharmacokinetics and initial dosing regimen optimization of cyclosporin in pediatric hemophagocytic lymphohistiocytosis patients. Xenobiotica 2020; 50(4): 435-41. doi: 10.1080/00498254.2019.1651419 PMID: 31382792
  18. Ling J, Yang XP, Dong LL, et al. Population pharmacokinetics of ciclosporin in allogeneic hematopoietic stem cell transplant recipients: C-reactive protein as a novel covariate for clearance. J Clin Pharm Ther 2022; 47(4): 483-92. doi: 10.1111/jcpt.13569 PMID: 34779003
  19. Song L, Huang CR, Pan SZ, et al. A model based on machine learning for the prediction of cyclosporin A trough concentration in Chinese allo-HSCT patients. Expert Rev Clin Pharmacol 2023; 16(1): 83-91. doi: 10.1080/17512433.2023.2142561 PMID: 36373407
  20. Wilhelm AJ, de Graaf P, Veldkamp AI, Janssen JJWM, Huijgens PC, Swart EL. Population pharmacokinetics of ciclosporin in haematopoietic allogeneic stem cell transplantation with emphasis on limited sampling strategy. Br J Clin Pharmacol 2012; 73(4): 553-63. doi: 10.1111/j.1365-2125.2011.04116.x PMID: 21988410
  21. Xue L, Zhang W, Tian J, et al. Multicenter-based population pharmacokinetic analysis of ciclosporin in hematopoietic stem cell transplantation patients. Pharm Res 2020; 37(1): 15. doi: 10.1007/s11095-019-2740-2 PMID: 31873806
  22. Ni S, Zhao W, Wang J, et al. Population pharmacokinetics of ciclosporin in Chinese children with aplastic anemia: Effects of weight, renal function and stanozolol administration. Acta Pharmacol Sin 2013; 34(7): 969-75. doi: 10.1038/aps.2013.9 PMID: 23624757
  23. Wang DD, He SM, Yang Y, et al. Effects of cimetidine on ciclosporin population pharmacokinetics and initial dose optimization in aplastic anemia patients. Eur J Pharm Sci 2022; 174: 106183. doi: 10.1016/j.ejps.2022.106183 PMID: 35398292
  24. Bourgoin H, Paintaud G, Büchler M, et al. Bayesian estimation of cyclosporin exposure for routine therapeutic drug monitoring in kidney transplant patients. Br J Clin Pharmacol 2005; 59(1): 18-27. doi: 10.1111/j.1365-2125.2005.02200.x PMID: 15606436
  25. Falck P, Midtvedt K, Vân Lê TT, et al. A population pharmacokinetic model of ciclosporin applicable for assisting dose management of kidney transplant recipients. Clin Pharmacokinet 2009; 48(9): 615-23. doi: 10.2165/11313380-000000000-00000 PMID: 19725595
  26. Fanta S, Jönsson S, Backman JT, Karlsson MO, Hoppu K. Developmental pharmacokinetics of ciclosporin – A population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol 2007; 64(6): 772-84. doi: 10.1111/j.1365-2125.2007.03003.x PMID: 17662086
  27. Mao J, Jiao Z, Qiu X, Zhang M, Zhong M. Incorporating nonlinear kinetics to improve predictive performance of population pharmacokinetic models for ciclosporin in adult renal transplant recipients: A comparison of modelling strategies. Eur J Pharm Sci 2020; 153: 105471. doi: 10.1016/j.ejps.2020.105471 PMID: 32682934
  28. Mao JJ, Jiao Z, Yun HY, et al. External evaluation of population pharmacokinetic models for ciclosporin in adult renal transplant recipients. Br J Clin Pharmacol 2018; 84(1): 153-71. doi: 10.1111/bcp.13431 PMID: 28891596
  29. Schädeli F, Marti HP, Frey FJ, Uehlinger DE. Population pharmacokinetic model to predict steady-state exposure to once-daily cyclosporin microemulsion in renal transplant recipients. Clin Pharmacokinet 2002; 41(1): 59-69. doi: 10.2165/00003088-200241010-00005 PMID: 11825097
  30. Fruit D, Rousseau A, Amrein C, et al. Ciclosporin population pharmacokinetics and Bayesian estimation in thoracic transplant recipients. Clin Pharmacokinet 2013; 52(4): 277-88. doi: 10.1007/s40262-013-0037-x PMID: 23400901
  31. Langers P, Cremers SCLM, den Hartigh J, et al. Easy-to-use, accurate and flexible individualized Bayesian limited sampling method without fixed time points for ciclosporin monitoring after liver transplantation. Aliment Pharmacol Ther 2005; 21(5): 549-57. doi: 10.1111/j.1365-2036.2005.02364.x PMID: 15740538
  32. Parke J, Charles BG. Factors affecting oral cyclosporin disposition after heart transplantation: Bootstrap validation of a population pharmacokinetic model. Eur J Clin Pharmacol 2000; 56(6-7): 481-7. doi: 10.1007/s002280000164 PMID: 11049011
  33. Goumenos DS, Katopodis KP, Passadakis P, et al. Corticosteroids and ciclosporin A in idiopathic membranous nephropathy: Higher remission rates of nephrotic syndrome and less adverse reactions than after traditional treatment with cytotoxic drugs. Am J Nephrol 2007; 27(3): 226-31. doi: 10.1159/000101367 PMID: 17389782
  34. Stefanidis CJ, Querfeld U. The podocyte as a target: Cyclosporin A in the management of the nephrotic syndrome caused by WT1 mutations. Eur J Pediatr 2011; 170(11): 1377-83. doi: 10.1007/s00431-011-1397-6 PMID: 21298518
  35. Oiwa A, Hiwatashi D, Takeda T, et al. Efficacy and safety of low- dose spironolactone for chronic kidney disease in type 2 diabetes. J Clin Endocrinol Metab 2023; 108(9): 2203-10. doi: 10.1210/clinem/dgad144 PMID: 36916985
  36. Hammer F, Buehling SS, Masyout J, et al. Protective effects of spironolactone on vascular calcification in chronic kidney disease. Biochem Biophys Res Commun 2021; 582: 28-34. doi: 10.1016/j.bbrc.2021.10.023 PMID: 34678593
  37. Wang D, Chen X, Li Z. Cyclosporin population pharmacokinetics in pediatric refractory nephrotic syndrome based on real-world studies: Effects of body weight and spirolactone administration. Exp Ther Med 2019; 17(4): 3015-20. doi: 10.3892/etm.2019.7325 PMID: 30936972
  38. Li T, Hu L, Ma X, et al. Population pharmacokinetics of cyclosporine in Chinese children receiving hematopoietic stem cell transplantation. Acta Pharmacol Sin 2019; 40(12): 1603-10. doi: 10.1038/s41401-019-0277-x PMID: 31341257
  39. Okada A, Ushigome H, Kanamori M, et al. Population pharmacokinetics of cyclosporine A in Japanese renal transplant patients: Comprehensive analysis in a single center. Eur J Clin Pharmacol 2017; 73(9): 1111-9. doi: 10.1007/s00228-017-2279-2 PMID: 28620753
  40. Chen X, Wang D, Wang G, et al. Optimization of initial dose regimen for sirolimus in pediatric patients with lymphangioma. Front Pharmacol 2021; 12: 668952. doi: 10.3389/fphar.2021.668952 PMID: 34819851
  41. Chen X, Wang D, Zheng F, Zhai X, Xu H, Li Z. Population pharmacokinetics and initial dose optimization of tacrolimus in children with severe combined immunodeficiency undergoing hematopoietic stem cell transplantation. Front Pharmacol 2022; 13: 869939. doi: 10.3389/fphar.2022.869939 PMID: 35935844
  42. Chen X, Wang D, Zheng F, et al. Effects of posaconazole on tacrolimus population pharmacokinetics and initial dose in children with crohn’s disease undergoing hematopoietic stem cell transplantation. Front Pharmacol 2022; 13: 758524. doi: 10.3389/fphar.2022.758524 PMID: 35496296
  43. Hu K, He SM, Zhang C, et al. Optimizing the initial tacrolimus dosage in Chinese children with lung transplantation within normal hematocrit levels. Front Pediatr 2024; 12: 1090455. doi: 10.3389/fped.2024.1090455 PMID: 38357508
  44. Wang DD, Mei YQ, Yang L, et al. Optimization of initial dose regimen of tacrolimus in paediatric lung transplant recipients based on Monte Carlo simulation. J Clin Pharm Ther 2022; 47(10): 1659-66. doi: 10.1111/jcpt.13717 PMID: 35716040
  45. Zhang C, Jiang L, Hu K, et al. Effects of aripiprazole on olanzapine population pharmacokinetics and initial dosage optimization in schizophrenia patients. Neuropsychiatr Dis Treat 2024; 20: 479-90. doi: 10.2147/NDT.S455183 PMID: 38469209
  46. Zietse R, Wenting GJ, Kramer P, Mulder P, Schalekamp MA, Weimar W. Contrasting response to cyclosporin in refractory nephrotic syndrome. Clin Nephrol 1989; 31(1): 22-5. PMID: 2914407
  47. Schachtner T, Otto NM, Reinke P. Cyclosporine use and male gender are independent determinants of avascular necrosis after kidney transplantation: A cohort study. Nephrol Dial Transplant 2018; 33(11): 2060-6. doi: 10.1093/ndt/gfy148 PMID: 29868874
  48. Hibi T, Tanabe M, Hoshino K, et al. Cyclosporine A-based immunotherapy in adult living donor liver transplantation: Accurate and improved therapeutic drug monitoring by 4-hr intravenous infusion. Transplantation 2011; 92(1): 100-5. doi: 10.1097/TP.0b013e31821dcae3 PMID: 21546866
  49. Kraeuter M, Helmschrott M, Erbel C, et al. Conversion to generic cyclosporine A in stable chronic patients after heart transplantation. Drug Des Devel Ther 2013; 7: 1421-6. PMID: 24348018
  50. Leclerc V, Ducher M, Ceraulo A, Bertrand Y, Bleyzac N. A clinical decision support tool to find the best initial intravenous cyclosporine regimen in pediatric hematopoietic stem cell transplantation. J Clin Pharmacol 2021; 61(11): 1485-92. doi: 10.1002/jcph.1924 PMID: 34105165
  51. Sumethkul K, Kitumnuaypong T, Angthararak S, Pichaiwong W. Low-dose cyclosporine for active lupus nephritis: A dose titration approach. Clin Rheumatol 2019; 38(8): 2151-9. doi: 10.1007/s10067-019-04469-6 PMID: 30937637
  52. Patocka J, Nepovimova E, Kuca K, Wu W. Cyclosporine A: Chemistry and toxicity - A review. Curr Med Chem 2021; 28(20): 3925-34. doi: 10.2174/1875533XMTEwpNDktz PMID: 33023428
  53. Umpiérrez M, Guevara N, Ibarra M, Fagiolino P, Vázquez M, Maldonado C. Development of a population pharmacokinetic model for cyclosporine from therapeutic drug monitoring data. BioMed Res Int 2021; 2021: 1-9. doi: 10.1155/2021/3108749 PMID: 33928146
  54. Gaies E, Ben Sassi M, Charfi R, et al. Therapeutic durg monitoring of cyclosporin using area under the curve in nephrotic syndrome. Tunis Med 2019; 97(2): 360-4. PMID: 31539095
  55. Saint-Marcoux F, Marquet P, Jacqz-Aigrain E, et al. Patient characteristics influencing ciclosporin pharmacokinetics and accurate Bayesian estimation of ciclosporin exposure in heart, lung and kidney transplant patients. Clin Pharmacokinet 2006; 45(9): 905-22. doi: 10.2165/00003088-200645090-00003 PMID: 16928152
  56. Ahmed K, Ibrahim A, Gonzalez D, Nur A. Population pharmacokinetics and model-based dose optimization of vancomycin in sudanese adult patients with renal impairment. Drug Des Devel Ther 2024; 18: 81-95. doi: 10.2147/DDDT.S432439 PMID: 38260090
  57. Bulitta JB, Fang E, Stryjewski ME, et al. Population pharmacokinetic rationale for intravenous contezolid acefosamil followed by oral contezolid dosage regimens. Antimicrob Agents Chemother 2024; e01400-23. doi: 10.1128/aac.01400-23 PMID: 38415667
  58. Ju G, Liu X, Yang W, et al. Model-informed precision dosing of isoniazid: Parametric population pharmacokinetics model repository. Drug Des Devel Ther 2024; 18: 801-18. doi: 10.2147/DDDT.S434919 PMID: 38500691
  59. Selby PR, Heffernan AJ, Yeung D, et al. Population pharmacokinetics of posaconazole in allogeneic haematopoietic stem cell transplant patients. J Antimicrob Chemother 2024; 79(3): 567-77. doi: 10.1093/jac/dkae006 PMID: 38217845
  60. Su W, Song S, Liu J, et al. Population pharmacokinetics and individualized dosing of tigecycline for critically ill patients: A prospective study with intensive sampling. Front Pharmacol 2024; 15: 1342947. doi: 10.3389/fphar.2024.1342947 PMID: 38348395
  61. Wang P, Liu S, Sun T, Yang J. Daily fluid intake as a novel covariate affecting the population pharmacokinetics of polymyxin B in patients with sepsis. Int J Antimicrob Agents 2024; 63(3): 107099. doi: 10.1016/j.ijantimicag.2024.107099 PMID: 38280575
  62. Yu Z, Liu J, Yu H, et al. Population pharmacokinetics and individualized dosing of vancomycin for critically ill patients receiving continuous renal replacement therapy: The role of residual diuresis. Front Pharmacol 2023; 14: 1298397. doi: 10.3389/fphar.2023.1298397 PMID: 38223197
  63. Kang SW, Jo HG, Kim D, et al. Population pharmacokinetics and model-based dosing optimization of teicoplanin in elderly critically ill patients with pneumonia. J Crit Care 2023; 78: 154402. doi: 10.1016/j.jcrc.2023.154402 PMID: 37634293
  64. Rexiti K, Jiang X, Kong Y, et al. Population pharmacokinetics of mycophenolic acid and dose optimisation in adult Chinese kidney transplant recipients. Xenobiotica 2023; 53(10-11): 603-12. doi: 10.1080/00498254.2023.2287168 PMID: 37991412
  65. Wang J, Shen Y, Wu Z, Ge W. Population pharmacokinetics of voriconazole and dose optimization in elderly Chinese patients. J Clin Pharmacol 2024; 64(2): 253-63. doi: 10.1002/jcph.2357 PMID: 37766506
  66. Yellepeddi VK, Lindley B, Radetich E, et al. Population pharmacokinetics and target attainment analysis of vancomycin after intermittent dosing in adults with cystic fibrosis. Antimicrob Agents Chemother 2024; 68(1): e00992-23. doi: 10.1128/aac.00992-23 PMID: 38059634
  67. Wang Y, Yao F, Chen S, et al. Optimal teicoplanin dosage regimens in critically ill patients: Population pharmacokinetics and dosing simulations based on renal function and infection type. Drug Des Devel Ther 2023; 17: 2259-71. doi: 10.2147/DDDT.S413662 PMID: 37546521
  68. Wei S, Li X, Zhang Q, et al. Population pharmacokinetics of topiramate in Chinese children with epilepsy. Eur J Clin Pharmacol 2023; 79(10): 1401-15. doi: 10.1007/s00228-023-03549-6 PMID: 37597080
  69. Cojutti PG, Giuliano S, Pascale R, et al. Population pharmacokinetic and pharmacodynamic analysis for maximizing the effectiveness of ceftobiprole in the treatment of severe methicillin-resistant staphylococcal infections. Microorganisms 2023; 11(12): 2964. doi: 10.3390/microorganisms11122964 PMID: 38138108
  70. Li X, Qi H, Jin F, et al. Population pharmacokinetics-pharmacodynamics of ceftazidime in neonates and young infants: Dosing optimization for neonatal sepsis. Eur J Pharm Sci 2021; 163: 105868. doi: 10.1016/j.ejps.2021.105868 PMID: 33951483
  71. Li Y, Lu J, Kang Y, et al. Nemonoxacin dosage adjustment in patients with severe renal impairment based on population pharmacokinetic and pharmacodynamic analysis. Br J Clin Pharmacol 2021; 87(12): 4636-47. doi: 10.1111/bcp.14881 PMID: 33928669
  72. Chen X, Wang D, Zhu L, et al. Population pharmacokinetics and initial dose optimization of sirolimus improving drug blood level for seizure control in pediatric patients with tuberous sclerosis complex. Front Pharmacol 2021; 12: 647232. doi: 10.3389/fphar.2021.647232 PMID: 33995061
  73. Liu XQ, Yin YW, Wang CY, Li ZR, Zhu X, Jiao Z. How to handle the delayed or missed dose of rivaroxaban in patients with non-valvular atrial fibrillation: Model-informed remedial dosing. Expert Rev Clin Pharmacol 2021; 14(9): 1153-63. doi: 10.1080/17512433.2021.1937126 PMID: 34058934
  74. Shimamoto Y, Verstegen RHJ, Mizuno T, Schechter T, Allen U, Ito S. Population pharmacokinetics of vancomycin in paediatric patients with febrile neutropenia and augmented renal clearance: Development of new dosing recommendations. J Antimicrob Chemother 2021; 76(11): 2932-40. doi: 10.1093/jac/dkab302 PMID: 34480578
  75. Chen X, Yu X, Wang DD, Xu H, Li Z. Initial dosage optimization of ciclosporin in pediatric Chinese patients who underwent bone marrow transplants based on population pharmacokinetics. Exp Ther Med 2020; 20(1): 401-8. doi: 10.3892/etm.2020.8732 PMID: 32537004

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers