Role of Amphotericin B in the Treatment of Mucormycosis

  • Authors: Sachdeva A.1, Targhotra M.2, Kanwar Chauhan M.3, Chopra M.4
  • Affiliations:
    1. NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research,, Delhi Pharmaceutical Sciences and Research University
    2. NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University
    3. NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research,, Delhi Pharmaceutical Sciences and Research University,
    4. Department of Pharmaceutical Chemistry, Centre for Healthcare, Allied Medical and Paramedical Sciences, Delhi Skill and Entrepreneurship University,
  • Issue: Vol 30, No 1 (2024)
  • Pages: 1-9
  • Section: Immunology, Inflammation & Allergy
  • URL: https://rjeid.com/1381-6128/article/view/645439
  • DOI: https://doi.org/10.2174/0113816128272443231221101415
  • ID: 645439

Cite item

Full Text

Abstract

Background:Regardless of the most recent inclusion of mold-active agents (isavuconazole and posaconazole) to antifungal agents against mucormycosis, in conjunction with amphotericin B (AMB) items, numerous uncertainties still exist regarding the treatment of this rare infection. The order Mucorales contains a variety of fungi that cause the serious but uncommon fungal illness known as mucormycosis. The moulds are prevalent in nature and typically do not pose significant risks to people. Immunocompromised people are affected by it.

Objective:This article's primary goal is to highlight the integral role that AMB plays in this condition.

Methods:Like sinusitis (including pansinusitis, rhino-orbital, or rhino-cerebral sinusitis) is one of the many signs and symptoms of mucormycosis. The National Center for Biotechnology Information (NCBI) produces a variety of online information resources for review articles on the topic-based mucormycosis, AMB, diagnosis of mucormycosis and the PubMed® database of citations and abstracts published in life science journals. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.

Results:The article provides a summary of the pharmacological attributes of the various AMB compositions accessible for systemic use.

Conclusion:The article demonstrates the traits of the drug associated with its chemical, pharmacokinetics, stability, and other features, and illustrates their most useful characteristics for clinical application.

About the authors

Alisha Sachdeva

NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research,, Delhi Pharmaceutical Sciences and Research University

Email: info@benthamscience.net

Monika Targhotra

NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University

Email: info@benthamscience.net

Meenakshi Kanwar Chauhan

NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research,, Delhi Pharmaceutical Sciences and Research University,

Author for correspondence.
Email: info@benthamscience.net

Monica Chopra

Department of Pharmaceutical Chemistry, Centre for Healthcare, Allied Medical and Paramedical Sciences, Delhi Skill and Entrepreneurship University,

Email: info@benthamscience.net

References

  1. Gomes MZR, Lewis RE, Kontoyiannis DP. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin Microbiol Rev 2011; 24(2): 411-45. doi: 10.1128/CMR.00056-10 PMID: 21482731
  2. Fürbringer P. Beobachtungen über lungenmycose beim menschen. Virchows Arch 1876; 66(3): 330-65. doi: 10.1007/BF01878266
  3. Kauffman CA. Zygomycosis: Reemergence of an old pathogen. Clin Infect Dis 2004; 39(4): 588-90. doi: 10.1086/422729 PMID: 15356828
  4. Patel A, Agarwal R, Rudramurthy SM, et al. Multicenter epidemiologic study of coronavirus disease–associated mucormycosis, India. Emerg Infect Dis 2021; 27(9): 2349-59. doi: 10.3201/eid2709.210934 PMID: 34087089
  5. Prakash H, Skiada A, Paul RA, Chakrabarti A, Rudramurthy SM. Connecting the dots: Interplay of pathogenic mechanisms between COVID-19 disease and mucormycosis. J Fungi 2021; 7(8): 616. doi: 10.3390/jof7080616 PMID: 34436155
  6. Hoenigl M, Seidel D, Carvalho A, et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe 2022; 3: e543-2. doi: 10.1016/S2666-5247(21)00237-8
  7. Lanternier F, Dannaoui E, Morizot G, et al. A global analysis of mucormycosis in france: The retrozygo study (2005-2007). ClinInfect Dis 2012; 54: S35-43. doi: 10.1093/cid/cir880
  8. Walsh TJ, Gamaletsou MN, McGinnis MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis 2012; 54: S55-60. doi: 10.1093/cid/cir868 PMID: 22247446
  9. Petrikkos G, Tsioutis C. Recent advances in the pathogenesis of mucormycoses. Clin Ther 2018; 40(6): 894-902. doi: 10.1016/j.clinthera.2018.03.009 PMID: 29631910
  10. Hassan MIA, Voigt K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med Mycol 2019; 57(Suppl. 2): S245-56. doi: 10.1093/mmy/myz011 PMID: 30816980
  11. Fu Y, Lee H, Collins M, et al. Cloning and functional characterization of the Rhizopus oryzae high affinity iron permease (rFTR1) gene*1. FEMS Microbiol Lett 2004; 235(1): 169-76. doi: 10.1016/j.femsle.2004.04.031 PMID: 15158278
  12. Gebremariam T, Liu M, Luo G, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest 2014; 124(1): 237-50. doi: 10.1172/JCI71349 PMID: 24355926
  13. Patiño-Medina JA, Maldonado-Herrera G, Pérez-Arques C, et al. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet 2018; 64(4): 853-69. doi: 10.1007/s00294-017-0798-0 PMID: 29264641
  14. Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. Lancet 2003; 362(9398): 1828-38. doi: 10.1016/S0140-6736(03)14904-5 PMID: 14654323
  15. Binder U, Maurer E, Lass-Flörl C. Mucormycosis - From the pathogens to the disease. Clin Microbiol Infect 2014; 20(Suppl. 6): 60-6. doi: 10.1111/1469-0691.12566 PMID: 24476149
  16. Lackner G, Partida-Martinez LP, Hertweck C. Endofungal bacteria as producers of mycotoxins. Trends Microbiol 2009; 17(12): 570-6. doi: 10.1016/j.tim.2009.09.003 PMID: 19800796
  17. Partida-Martinez LP, Hertweck C. Pathogenic fungus Harbours endosymbiotic bacteria for toxin production. Nature 2005; 437(7060): 884-8. doi: 10.1038/nature03997 PMID: 16208371
  18. Lamaris GA, Ben-Ami R, Lewis RE, Chamilos G, Samonis G, Kontoyiannis DP. Increased virulence of Zygomycetes organisms following exposure to voriconazole: A study involving fly and murine models of zygomycosis. J Infect Dis 2009; 199(9): 1399-406. doi: 10.1086/597615 PMID: 19358672
  19. Lewis RE, Liao G, Wang W, Prince RA, Kontoyiannis DP. Voriconazole pre-exposure selects for breakthrough mucormycosis in a mixed model of Aspergillus fumigatus-Rhizopus oryzae pulmonary infection. Virulence 2011; 2(4): 348-55. doi: 10.4161/viru.2.4.17074 PMID: 21788730
  20. Rees JR, Pinner RW, Hajjeh RA, Brandt ME, Reingold AL. The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992-1993: Results of population-based laboratory active surveillance. Clin Infect Dis 1998; 27(5): 1138-47. doi: 10.1093/clinids/27.5.1138 PMID: 9827260
  21. Torres-Narbona M, Guinea J, Martínez-Alarcón J, Muñoz P, Gadea I, Bouza E. Impact of zygomycosis on microbiology workload: A survey study in Spain. J Clin Microbiol 2007; 45(6): 2051-3. doi: 10.1128/JCM.02473-06 PMID: 17392438
  22. Bitar D, Van Cauteren D, Lanternier F, et al. Increasing incidence of zygomycosis (mucormycosis), France, 1997-2006. Emerg Infect Dis 2009; 15(9): 1395-401. doi: 10.3201/eid1509.090334 PMID: 19788806
  23. Ambrosioni J, Bouchuiguir-Wafa K, Garbino J. Emerging invasive zygomycosis in a tertiary care center: Epidemiology and associated risk factors. Int J Infect Dis 2010; 14(Suppl. 3): e100-3. doi: 10.1016/j.ijid.2009.11.024 PMID: 20335060
  24. Saegeman V, Maertens J, Meersseman W, Spriet I, Verbeken E, Lagrou K. Increasing incidence of mucormycosis in University Hospital, Belgium. Emerg Infect Dis 2010; 16(9): 1456-8. doi: 10.3201/eid1609.100276 PMID: 20735932
  25. Kontoyiannis DP, Yang H, Song J, et al. Prevalence, clinical and economic burden of mucormycosis-related hospitalizations in the United States: A retrospective study BMC Infect Dis 2016; 16(1): 730. doi: 10.1186/s12879-016-2023-z
  26. Guinea J, Escribano P, Vena A, et al. Increasing incidence of mucormycosis in a large Spanish hospital from 2007 to 2015: Epidemiology and microbiological characterization of the isolates. PLoS One 2017; 12(6): e0179136. doi: 10.1371/journal.pone.0179136 PMID: 28591186
  27. Prakash H, Ghosh AK, Rudramurthy SM, et al. A prospective multicenter study on mucormycosis in India: Epidemiology, diagnosis, and treatment. Med Mycol 2019; 57(4): 395-402. doi: 10.1093/mmy/myy060 PMID: 30085158
  28. Chakrabarti A, Das A, Mandal J, et al. The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med Mycol 2006; 44(4): 335-42. doi: 10.1080/13693780500464930 PMID: 16772227
  29. Chakrabarti A, Das A, Sharma A, et al. Ten years’ experience in zygomycosis at a tertiary care centre in India. J Infect 2001; 42(4): 261-6. doi: 10.1053/jinf.2001.0831 PMID: 11545569
  30. Chakrabarti A, Chatterjee SS, Das A, et al. Invasive zygomycosis in India: Experience in a tertiary care hospital. Postgrad Med J 2009; 85(1009): 573-81. doi: 10.1136/pgmj.2008.076463 PMID: 19892892
  31. Lin E, Moua T, Limper AH. Pulmonary mucormycosis: Clinical features and outcomes. Infection 2017; 45(4): 443-8. doi: 10.1007/s15010-017-0991-6 PMID: 28220379
  32. Jeong W, Keighley C, Wolfe R, et al. The epidemiology and clinical manifestations of mucormycosis: A systematic review and meta-analysis of case reports. Clin Microbiol Infect 2019; 25(1): 26-34. doi: 10.1016/j.cmi.2018.07.011 PMID: 30036666
  33. Chander J, Singla N, Kaur M, et al. Saksenaea erythrospora, an emerging mucoralean fungus causing severe necrotizing skin and soft tissue infections - A study from a tertiary care hospital in North India. Infect Dis 2017; 49(3): 170-7. doi: 10.1080/23744235.2016.1239027 PMID: 27701965
  34. Chakrabarti A, Marak RSK, Shivaprakash MR, et al. Cavitary pulmonary zygomycosis caused by Rhizopus homothallicus. J Clin Microbiol 2010; 48(5): 1965-9. doi: 10.1128/JCM.01272-09 PMID: 20200286
  35. Xess I, Mohapatra S, Shivaprakash MR, et al. Evidence implicating Thamnostylum lucknowense as an etiological agent of rhino-orbital mucormycosis. J Clin Microbiol 2012; 50(4): 1491-4. doi: 10.1128/JCM.06611-11 PMID: 22301030
  36. Sipsas NV, Gamaletsou MN, Anastasopoulou A, Kontoyiannis DP. Therapy of mucormycosis. J Fungi 2018; 4: 90. doi: 10.3390/jof4030090
  37. Key facts mucormycosis. Available from: https://www.who.int/india/home/emergencies/coronavirus-disease-(covid-19)/mucormycosis (Cited 2023 Oct 10).
  38. Mucormycosis statistics. Available from: https://www.cdc.gov/fungal/diseases/mucormycosis/statistics.html (Cited 2023 Oct 10).
  39. Dismukes WE. Introduction to antifungal drugs. Clin Infect Dis 2000; 30(4): 653-7. doi: 10.1086/313748 PMID: 10770726
  40. Donovick R, Gold W, Pagano JF, Stout HA. Amphotericins A and B, antifungal antibiotics produced by a streptomycete I. in vitro studies. Antibiot Annu 1955-1956; 3: 579-86. PMID: 13355330
  41. Filippin FB, Souza LC. Therapeutic efficacy of amphotericin B lipid formulations. Braz J Pharm Sci 2006; 42: 27.
  42. Almeida MVAd. Amphotericin B and its lipid formulations. Faculty of Health Sciences, University Fernand-o Pessoa 2013; pp. 58.
  43. Martinez R. An update on the use of antifungal agents. J Bras Pneumol 2006; 32(5): 449-60. doi: 10.1590/S1806-37132006000500013 PMID: 17268750
  44. O’Neil MJ. The merck index: An encyclopedia of chemicals, drugs, and biologicals. J Am Chem Society 2007; 2197.
  45. Adler-Moore JP, Gangneux JP, Pappas PG. Comparison between liposomal formulations of amphotericin B. Med Mycol 2016; 54(3): 223-31. doi: 10.1093/mmy/myv111 PMID: 26768369
  46. Bergold AMGS. New antifungic drugs: A review. Visão Acadêmica 2004; 5: 13.
  47. Finkelstein A, Holz R. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes 1973; 2: 377-408. PMID: 4585230
  48. Georgopapadakou NH. Antifungals: Mechanism of action and resistance, established and novel drugs. Curr Opin Microbiol 1998; 1(5): 547-57. doi: 10.1016/S1369-5274(98)80087-8 PMID: 10066533
  49. Mesa-Arango AC, Scorzoni L, Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 2012; 3: 286. doi: 10.3389/fmicb.2012.00286 PMID: 23024638
  50. Gonzalez JM, Rodriguez CA, Agudelo M, Zuluaga AF, Vesga O. Antifungal pharmacodynamics: Latin America’s perspective. Braz J Infect Dis 2017; 21(1): 79-87. doi: 10.1016/j.bjid.2016.09.009 PMID: 27821250
  51. Hong Y, Shaw PJ, Nath CE, et al. Population pharmacokinetics of liposomal amphotericin B in pediatric patients with malignant diseases. Antimicrob Agents Chemother 2006; 50(3): 935-42. doi: 10.1128/AAC.50.3.935-942.2006 PMID: 16495254
  52. Bellmann R, Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017; 45(6): 737-79. doi: 10.1007/s15010-017-1042-z PMID: 28702763
  53. Lepak A, Andes D. Antifungal PK/PD considerations in fungal pulmonary infections. Semin Respir Crit Care Med 2011; 32(6): 783-94. doi: 10.1055/s-0031-1295726 PMID: 22167406
  54. Ayestarán A, López RM, Montoro JB, et al. Pharmacokinetics of conventional formulation versus fat emulsion formulation of amphotericin B in a group of patients with neutropenia. Antimicrob Agents Chemother 1996; 40(3): 609-12. doi: 10.1128/AAC.40.3.609 PMID: 8851579
  55. Kan VL, Bennett JE, Amantea MA, et al. Comparative safety, tolerance, and pharmacokinetics of amphotericin B lipid complex and amphotericin B desoxycholate in healthy male volunteers. J Infect Dis 1991; 164(2): 418-21. doi: 10.1093/infdis/164.2.418 PMID: 1856491
  56. Hoeprich PD. Elimination half-life of amphotericin B. J Infect 1990; 20(2): 173-5. doi: 10.1016/0163-4453(90)93626-4 PMID: 2319153
  57. Atkinson AJ Jr, Bennett JE. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother 1978; 13(2): 271-6. doi: 10.1128/AAC.13.2.271 PMID: 646348
  58. Gondal JA, Swartz RP, Rahman A. Therapeutic evaluation of free and liposome-encapsulated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother 1989; 33(9): 1544-8. doi: 10.1128/AAC.33.9.1544 PMID: 2684010
  59. van Etten EWM, Otte-Lambillion M, van Vianen W, Kate MT, Bakker-Woudenberg IAJM. Biodistribution of liposomal amphotericin B (AmBisome) and amphotericin B-desoxycholate (Fungizone) in uninfected immunocompetent mice and leucopenic mice infected with Candida albicans. J Antimicrob Chemother 1995; 35(4): 509-19. doi: 10.1093/jac/35.4.509 PMID: 7628985
  60. Saravolatz LD, Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: Time for a new "gold standard". Clin Infect Dis 2003; 37(3): 415-25. doi: 10.1086/376634 PMID: 12884167
  61. Walsh TJ, Yeldandi V, McEvoy M, et al. Safety, tolerance, and pharmacokinetics of a small unilamellar liposomal formulation of amphotericin B (AmBisome) in neutropenic patients. Antimicrob Agents Chemother 1998; 42(9): 2391-8. doi: 10.1128/AAC.42.9.2391 PMID: 9736569
  62. Adedoyin A, Bernardo JF, Swenson CE, et al. Pharmacokinetic profile of ABELCET (amphotericin B lipid complex injection): Combined experience from phase I and phase II studies. Antimicrob Agents Chemother 1997; 41: 2201-8. doi: 10.1128/AAC.41.10.2201 PMID: 9333048
  63. Hollister LE. AMA drug evaluations annual 1991. JAMA 1991; 266(3): 424. doi: 10.1001/jama.1991.03470030126039
  64. World Health Organization. Accelerated stability studies of widely used pharmaceutical substances under simulated tropical conditions. 1986. Available from: https://iris.who.int/handle/10665/ 61480 (Cited 2023 Sep10).
  65. National Toxicology Program. Amphotericin B. National Institutes of Health North Carolina 1992.
  66. Montenegro MB. Methodology development and validation of amphotericin B stability by HPLC-DAD. J Braz Chem Soc 2020; 916-26.
  67. Hung CT, Lam FC, Perrier DG, Souter A. A stability study of amphotericin B in aqueous media using factorial design. Int J Pharm 1988; 44(1-3): 117-23. doi: 10.1016/0378-5173(88)90107-X
  68. Wiest DB, Maish WA, Garner SS, El-Chaar GM. Stability of amphotericin B in four concentrations of dextrose injection. Am J Health Syst Pharm 1991; 48(11): 2430-3. doi: 10.1093/ajhp/48.11.2430 PMID: 1746578
  69. Cifani C, Costantino S, Massi M, Berrino L. Commercially available lipid formulations of amphotericin b: Are they bioequivalent and therapeutically equivalent? Acta Biomed 2012; 83(2): 154-63. PMID: 23393924
  70. Dannaoui E, Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro susceptibilities of zygomycetes to conventional and new antifungals. J Antimicrob Chemother 2003; 51(1): 45-52. doi: 10.1093/jac/dkg020 PMID: 12493786
  71. Lamoth F, Damonti L, Alexander BD. Role of antifungal susceptibility testing in non-Aspergillus invasive mold infections. J Clin Microbiol 2016; 54(6): 1638-40. doi: 10.1128/JCM.00318-16 PMID: 27008871
  72. Gleissner B, Schilling A, Anagnostopolous I, Siehl I, Thiel E. Improved outcome of zygomycosis in patients with hematological diseases? Leuk Lymphoma 2004; 45(7): 1351-60. doi: 10.1080/10428190310001653691 PMID: 15359632
  73. Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 2000; 182(1): 274-82. doi: 10.1086/315643 PMID: 10882607
  74. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev 2000; 13(2): 236-301. doi: 10.1128/CMR.13.2.236 PMID: 10756000
  75. Espinel-Ingroff A, Chakrabarti A, Chowdhary A, et al. Multicenter evaluation of MIC distributions for epidemiologic cutoff value definition to detect amphotericin B, posaconazole, and itraconazole resistance among the most clinically relevant species of Mucorales. Antimicrob Agents Chemother 2015; 59(3): 1745-50. doi: 10.1128/AAC.04435-14 PMID: 25583714
  76. Lewis RE, Albert ND, Liao G, Hou J, Prince RA, Kontoyiannis DP. Comparative pharmacodynamics of amphotericin B lipid complex and liposomal amphotericin B in a murine model of pulmonary mucormycosis. Antimicrob Agents Chemother 2010; 54(3): 1298-304. doi: 10.1128/AAC.01222-09 PMID: 20038620
  77. Kontoyiannis DP, Lewis RE. How I treat mucormycosis. Blood 2011; 118(5): 1216-24. doi: 10.1182/blood-2011-03-316430 PMID: 21622653
  78. Lanternier F, Poiree S, Elie C, et al. Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin B (L-AMB) for the initial treatment of mucormycosis. J Antimicrob Chemother 2015; 70(11): 3116-23. doi: 10.1093/jac/dkv236 PMID: 26316385
  79. Ritesh A. Amphotericin versus posaconazole for pulmonary mucormycosis. NCT05468372, 2022.
  80. Ritesh A. Combined inhalational with intravenous amphotericin B versus intravenous amphotericin B alone for pulmonary mucormycosis. NCT04502381, 2022.
  81. Assistance Publique. Pilot study of high dose liposomal amphotericin B efficacy in initial zygomycosis treatment (AMBIZYGO). NCT00467883, 2014.
  82. Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center. The deferasirox-ambisome therapy for mucormycosis (DEFEAT Mucor) study. NCT00419770, 2023.
  83. Reed C, Bryant R, Ibrahim AS, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis 2008; 47(3): 364-71. doi: 10.1086/589857 PMID: 18558882
  84. Ibrahim AS, Gebremariam T, Fu Y, Edwards JE Jr, Spellberg B. Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother 2008; 52(4): 1556-8. doi: 10.1128/AAC.01458-07 PMID: 18212099
  85. Ibrahim AS, Gebermariam T, Fu Y, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J Clin Invest 2007; 117(9): 2649-57. doi: 10.1172/JCI32338 PMID: 17786247
  86. Reed C, Ibrahim A, Edwards JE Jr, Walot I, Spellberg B. Deferasirox, an iron-chelating agent, as salvage therapy for rhinocerebral mucormycosis. Antimicrob Agents Chemother 2006; 50(11): 3968-9. doi: 10.1128/AAC.01065-06 PMID: 17000743
  87. Gebremariam T, Gu Y, Singh S, Kitt TM, Ibrahim AS. Combination treatment of liposomal amphotericin B and isavuconazole is synergistic in treating experimental mucormycosis. J Antimicrob Chemother 2021; 76(10): 2636-9. doi: 10.1093/jac/dkab233 PMID: 34263306
  88. Gil-Lamaignere C, Simitsopoulou M, Roilides E, Maloukou A, Winn RM, Walsh TJ. Interferon-γ and granulocyte-macrophage colony-stimulating factor augment the activity of polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis 2005; 191(7): 1180-7. doi: 10.1086/428503 PMID: 15747255
  89. Kocoglu H, Yazici Z, Hursitoglu M, et al. Successful treatment of rhinocerebralmucormycosis with combination of liposomal amphotericin B and caspofungin (LAmB-C): An anecdotal clinical experience that deserves further investigations. Eurasian J Med Oncol 2017; 1: 172-4.
  90. Sheybani F, Naderi H, Sarvghad M, Ghabouli M, Arian M. How should we manage a patient with invasive mucoromycosis who develops life-threatening reaction to amphotericin B? Report of two cases and literature review. Med Mycol Case Rep 2015; 8(8): 29-31. doi: 10.1016/j.mmcr.2015.03.003 PMID: 25834786
  91. Kazak E, Aslan E, Akalın H, et al. A mucormycosis case treated with a combination of caspofungin and amphotericin B. J Mycol Med 2013; 23(3): 179-84. doi: 10.1016/j.mycmed.2013.06.003 PMID: 23856448
  92. Ibrahim AS, Gebremariam T, Schwartz JA, Edwards JE Jr, Spellberg B. Posaconazole mono- or combination therapy for treatment of murine zygomycosis. Antimicrob Agents Chemother 2009; 53(2): 772-5. doi: 10.1128/AAC.01124-08 PMID: 18936190
  93. Ojeda-Uribe M, Herbrecht R, Kiefer MH, et al. Lessons from a case of oromandibular mucormycosis treated with surgery and a combination of amphotericin B lipid formulation plus caspofungin. Acta Haematol 2010; 124(2): 98-102. doi: 10.1159/000315675 PMID: 20689269
  94. Vazquez L, Mateos JJ, Sanz-Rodriguez C, Perez E, Caballero D, San Miguel JF. Successful treatment of rhinocerebral zygomycosis with a combination of caspofungin and liposomal amphotericin B. Haematologica 2005; 90(12): ECR39. PMID: 16464754
  95. Spellberg B, Fu Y, Edwards JE Jr, Ibrahim AS. Combination therapy with amphotericin B lipid complex and caspofungin acetate of disseminated zygomycosis in diabetic ketoacidotic mice. Antimicrob Agents Chemother 2005; 49(2): 830-2. doi: 10.1128/AAC.49.2.830-832.2005 PMID: 15673781
  96. Gargouri M, Marrakchi C, Feki W, et al. Combination of amphotericin B and caspofungin in the treatment of mucormycosis. Med Mycol Case Rep 2019; 26: 32-7. doi: 10.1016/j.mmcr.2019.09.006 PMID: 31667058

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers