Changes in the optical properties of coatings based on hollow ZnO/SiO2 particles under electron irradiation
- 作者: Dudin A.N.1, Yurina V.Y.1, Neshchimenko V.V.1, Mikhailov M.M.1,2, Yuriev S.A.1,2, Lapin A.N.2
-
隶属关系:
- Аmur State University
- Tomsk State University of Control Systems and Radioelectronics
- 期: 编号 4 (2024)
- 页面: 51-56
- 栏目: Articles
- URL: https://rjeid.com/1028-0960/article/view/664656
- DOI: https://doi.org/10.31857/S1028096024040068
- EDN: https://elibrary.ru/GJKVHD
- ID: 664656
如何引用文章
详细
A comparative analysis of the diffuse reflectance spectra and their changes after irradiation with electrons with an energy of 30 keV of coatings based on polymethylphenylsiloxane resin and pigment powders of two-layer hollow ZnO/SiO2 particles was carried out. The analysis was carried out in situ in the range 250–2500 nm. The samples were irradiated in a “Spectrum” space simulator. The radiation resistance of the studied coatings based on two-layer hollow ZnO/SiO2 particles was estimated relative to coatings based on ZnO polycrystals by analyzing the difference diffuse reflectance spectra obtained by subtracting the spectra after irradiation from the spectra of unirradiated samples. It has been found that the intensity of the induced absorption bands in coatings based on hollow ZnO/SiO2 particles is less than in coatings based on ZnO microparticles, and the radiation resistance when estimating changes in the integral absorption coefficient of solar radiation (ΔαS) is twice as high. The increase in radiation resistance is probably determined by the different nature of defect accumulation: in the case of solid microparticles, defects can accumulate inside grains; in hollow particles, the accumulation of defects can occur only within the thin shell of the sphere.
全文:

作者简介
A. Dudin
Аmur State University
Email: viktoriay-09@mail.ru
俄罗斯联邦, 675027, Blagoveshchensk
V. Yurina
Аmur State University
编辑信件的主要联系方式.
Email: viktoriay-09@mail.ru
俄罗斯联邦, 675027, Blagoveshchensk
V. Neshchimenko
Аmur State University
Email: viktoriay-09@mail.ru
俄罗斯联邦, 675027, Blagoveshchensk
M. Mikhailov
Аmur State University; Tomsk State University of Control Systems and Radioelectronics
Email: viktoriay-09@mail.ru
俄罗斯联邦, 675027, Blagoveshchensk; 634050, Tomsk
S. Yuriev
Аmur State University; Tomsk State University of Control Systems and Radioelectronics
Email: viktoriay-09@mail.ru
俄罗斯联邦, 675027, Blagoveshchensk; 634050, Tomsk
A. Lapin
Tomsk State University of Control Systems and Radioelectronics
Email: viktoriay-09@mail.ru
俄罗斯联邦, 634050, Tomsk
参考
- Wang Y., Sunkara B., Zhan J., He J., Miao L., McPherson G.L., John V.T., Spinu L. // Langmuir. 2012. V. 28. P. 13783. https://www.doi.org/10.1021/la302841c
- Yan Y., Li A., Lu C., Zhai T., Lu S., Li W., Zhou W. // Chem. Engin. J. 2020. V. 396. P. 125316. https://www.doi.org/10.1016/j.cej.2020.125316
- Li C., Liang Z., Xiao H., Wu Y., Liu Y. // Mater. Lett. 2010. V. 64. № 18. P. 1972. https://www.doi.org/0.1016/j.matlet.2010.06.027
- Rasmidi R., Duinong M., Chee F.P. // Radiat. Phys. Chem. 2021. V. 184. P. 109455. https://www.doi.org/10.1016/j.radphyschem.2021.109455
- Li C., Mikhailov M.M., Neshchimenko V.V. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 319. P. 123. https://www.doi.org/10.1016/j.nimb.2013.11.007
- Belov A., Mikhaylov A., Korolev D., Guseinov D., Gryaznov E., Okulich E., Sergeev V., Antonov I., Kasatkin A., Gorshkov O., Tetelbaum D., Kozlovski V. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 379. P. 13. https://www.doi.org/10.1016/j.nimb.2016.02.054
- Bhatia S., Verma N. // Mater. Res. Bull. 2017. V. 95. P. 468. https://www.doi.org/10.1016/j.materresbull.2017.08.019
- Singh V.P., Das D., Rath C. // Mater. Res.h Bull. 2013. V. 48. № 2. P. 682. https://www.doi.org/10.1016/j.materresbull.2012.11.026
- Wang Z.G., Zu X.T., Zhu S., Wang L.M. // Physica E. 2006. V. 35. № 1. P. 199. https://www.doi.org/10.1016/j.physe.2006.07.022
- Spallino L., Spera M., Vaccaro L., Agnello S., Gelar- di F.M., Zatsepin A.F., Cannas M. // Appl. Surf. Sci. 2017. V. 420. P. 94. https://www.doi.org/10.1016/j.apsusc.2017.05.082
- Amosov A.V., Dzyuba V.P., Kulchin Yu.N., Storozhen- ko D.V. // Phys. Procedia. 2017. V. 86. P. 61. https://www.doi.org/10.1016/j.phpro.2017.01.021
- Singh S.K., Kumar A., Singh S., Kumar A., Jain A. // Silicon. 2021. V. 38. № 5. P. 2861. https://www.doi.org/10.1016/j.matpr.2020.09.137
- Chen J., Yu Y., Xiu H., Feng A., Mi L., Yu Y.// Ceram. Int. 2022. V. 48. № 19. P. 28006. https://www.doi.org/10.1016/j.ceramint.2021.09.155
- Neshchimenko V.V., Li C., Mikhailov M.M. // Dyes and Pigments. 2017. V. 145. P. 354. https://www.doi.org/10.1016/j.dyepig.2017.03.058
- Neshchimenko V.V., Li C., Mikhailov M.M., Lv J. // Nanoscale. 2018. V. 10. № 47. P. 22335. https://www.doi.org/10.1039/C8NR04455D
- Mikhailov M.M., Yuryev S.A., Lapin A.N., Goronch- ko V.A. // Ceram. Int. 2023. V. 49. № 12. P. 20817. https://www.doi.org/10.1016/j.ceramint.2023.03.214
- Дудин А.Н., Нещименко В.В., Ли Ч. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 4. С. 70. https://www.doi.org/10.31857/S1028096022040069
- Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Y., Dvoretskii M.I. // Instrum. Exp. Tech. 1985. V. 28. P. 929.
- Johnson F.S. // J. Meteorological. 1954. V. 11. № 6. P. 431.
- ASTM E490-00a Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. 2019.
- ASTM E903-96 Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. 2005.
- Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., Behner F., Bellagamba L., Boudreau J., Broglia L., Brunengo A., Burkhardt H., Chauvie S., Chuma J., Chytracek R., Cooperman G. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 506. P. 250. https://www.doi.org/10.1016/S0168-9002(03)01368-8
补充文件
